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1. Introduction

Similar to the Bernoulli and Euler numbers [1], the Genocchi numbers, denoted as Gn,
are established by means of the subsequent generating function:

∞∑
n=0

Gn
tn

n!
=

2t

et + 1
, |t| < π.

Some novel identities involving these numbers can be found in [5, 19, 27]. These numbers
have undergone diverse generalizations, often achieved by combining them with the prin-
ciples of well-known polynomials. A specific example is the integration with exponential
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polynomials, leading to the formation of Genocchi polynomials and higher-order Genocchi
polynomials (see [18]), outlined as follows:

∞∑
n=0

Gn(x)
tn

n!
=

2t

et + 1
ext, |t| < π, (1.1)

∞∑
n=0

G(k)
n (x)

tn

n!
=

(
2t

et + 1

)k

ext. (1.2)

Mixing with the Apostol polynomials yields the Apostol-Genocchi polynomials, and Apostol-
Genocchi polynomials of higher order, which are respectively defined as follows:

∞∑
n=0

Gn(x, λ)
tn

n!
=

2t

λet + 1
ext, (1.3)

∞∑
n=0

G(k)
n (x, λ)

tn

n!
=

(
2t

λet + 1

)k

ext, (1.4)

where |t| < π when λ = 1 and |t| < log(−λ) when λ ̸= 1, λ ∈ C. Also, mixing with
Frobenius polynomials yields the so-called Frobenius-Genocchi polynomials, which are
given by

∞∑
n=0

GF
n (x;u)

tn

n!
=

(1− u)t

et − u
ext, (1.5)

and further gives
∞∑
n=0

GF
n (x;u, λ)

tn

n!
=

(1− u)t

λet − u
ext, (1.6)

the Apostol-Frobenius-Genocchi polynomials by mixing with Apostol-Genocchi polynomi-
als (see [6, 15–17, 22, 23, 28, 30, 32, 33]). Further generalization and other variation of
Frobenius-Genocchi polynomials, specifically, the generalized Apostol-Frobenius-Genocchi
polynomials and Frobenius-Euler-Genocchi polynomials, are introduced in [34] and [3] re-
spectively, and defined as follows:

∞∑
n=0

Hr
n(x;u, a, b, c, λ, )

tn

n!
=

(
(at − u)t

λbt − u

)r

cxt, (1.7)

∞∑
n=0

Ar
n(x;u)

tn

n!
=

(1− u)tr

et − u
ext. (1.8)

It is worth-mentioning that (1.7) is parallel to the generalized Apostol type Frobenius-
Euler polynomials of Kurt and Simsek [24]. Moreover, mixing the Genocchi numbers with
the concept of polylogarithm Lik(z) [9]

Lik(z) =

∞∑
n=0

zn

nk
, k ∈ Z, (1.9)
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yields the poly-Genocchi polynomials, which are defined as follows

∞∑
n=0

G(k)
n (x)

xn

n!
=

2Lik(1− et)

et + 1
ext, (1.10)

such that when k = 1, Li1(1− et) = ln(1− (1− et)) = ln(et) = t and so (1.10) gives (1.1).
Furthermore, with a slight modification of the generating function, another generalization,

denoted by G
(k)
n,2(x), was defined by Kim et al. [31] as follows

∞∑
n=0

G
(k)
n,2(x)

xn

n!
=

Lik(1− e−2t)

et + 1
ext. (1.11)

These polynomials are called modified poly-Genocchi polynomials. Note that, when k = 1,
equations (1.10) and (1.11) give the Genocchi polynomials in (1.1). That is,

G(1)
n (x) = G

(1)
n,2(x) = Gn(x).

Kim et. al [31] obtained several properties of these polynomials.

The higher order Apostol-Type poly-Genocchi polynomials G(k,α)
n (x;λ, a, b, c) and Apostol-

Frobenius-Type poly-Genocchi polynomials G(k,α)
n (x;λ, u, a, b, c) and are respectively de-

fined by (see [11, 12])

∞∑
n=0

G(k,α)
n (x;λ, a, b, c)

tn

n!
=

(
Lik(1− (ab)−2t)

a−t + λbt

)α

cxt, (1.12)

∞∑
n=0

G(k,α)
n (x;λ, u, a, b, c)

tn

n!
=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)α

cxt. (1.13)

Further extension and variation of these polynomials can be found in [13, 14].

The Bell polynomials, represented as Bn(x), are defined as polynomials with coeffi-
cients corresponding to the Stirling numbers of the second kind. To be more precise,

Bn(x) =
n∑

k=0

S(n, k)xk, (1.14)

where S(n, k) denotes the Stirling numbers of the second kind. These numbers adhere to
the following exponential generating function

∞∑
n=0

S(n, j)
tn

n!
=

(et − 1)j

j!
, (1.15)

(see [10, 26]). By mixing the concept of Bell polynomials with partially degenerate
Bernoulli polynomials of the first kind defined by the generating function

log(1 + λt)1/λ

et − 1
ext =

∞∑
n=0

Bn,λ(x)
tn

n!
,
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the partially degenerate Bell-Bernoulli polynomials of the first kind are defined in [20] by
the generating function

log(1 + λt)1/λ

et − 1
ext+y(et−1) =

∞∑
n=0

BelBn,λ(x, y)
tn

n!
.

Further generalization is introduced in [20] by incorporating the concept of Dirichlet char-
acter with conductor d.

Also, by mixing the concept of Bell polynomials, Alam et al. [2] developed generating
functions for new families of special polynomials, including two parametric types of Bell-
based Bernoulli and Euler polynomials, defined as follows:

∞∑
n=0

BellBr
n(ξ + iη, x;u, λ)

tn

n!
=

(
1

et − 1

)r

e(ξ+iη)teζ(e
x−1),

∞∑
n=0

BellHr
n(ξ + iη, x;u, λ)

tn

n!
=

(
2

et + 1

)r

e(ξ+iη)teζ(e
x−1).

They investigated fundamental properties of these generating functions and used them,
along with certain identities, to present relations among trigonometric functions, two
parametric types of Bell-based Bernoulli and Euler polynomials, and Stirling numbers.
They also derived computational formulae for these polynomials. By applying a partial
derivative operator to these generating functions, they obtained various derivative formulae
and finite combinatorial sums involving the aforementioned polynomials and numbers.

In separate papers, Alam et al. [4] and Ayed et al. [8] introduced a novel class of Bell-
based Apostol-type Frobenius-Euler polynomials and Bell-based Apostol-type Frobenius-
Genocchi polynomials, respectively. These are defined as follows:

∞∑
n=0

BellHr
n(x;u, λ)

tn

n!
=

(
1− u

λet − u

)r

eζ(e
x−1), (1.16)

∞∑
n=0

BellGr
n(ξ + iη, x;u, λ)

tn

n!
=

(
(1− u)t

λet − u

)r

e(ξ+iη)teζ(e
x−1). (1.17)

Their research explored various properties of these polynomials and numbers, deriving
summation formulas in terms of Apostol-type Bernoulli, Euler, and Genocchi polynomi-
als [4]. They established numerous identities using diverse analytical methods and the
generating function technique, and introduced parametric variations that unveiled specific
polynomial identities [4]. Additionally, they investigated various formulas and proper-
ties, including differentiation rules, addition formulas, relations, and summation formulas.
Moreover, they identified the first few zero values of the Apostol-type Frobenius-Genocchi
polynomials and provided graphical representations of these zero values [7, 8]. It is note-
worthy that an alternative method for introducing Bell-based Frobenius-Euler polynomials
has been established in [21]. This variation, known as Bell-based Frobenius-type Eulerian
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polynomials, is defined as follows:

∞∑
n=0

BellAr
n(ξ, ζ|u)

tn

n!
=

(
1− u

et(u−1) − u

)r

eξteζ(e
x−1)

In line with the polynomial exploration in [12], it is equally compelling to investigate
Bell-based Apostol-Frobenius-type poly-Genocchi polynomials.

2. Higher Order Bivariate Bell-Based Apostol-Frobenius-Type
Poly-Genocchi Polynomials

In this section, we introduce higher-order bivariate Bell-based Apostol-Frobenius-Type
poly-Genocchi polynomials, aligning them with the Bell-based Apostol-type Frobenius-
Euler polynomials as defined by Alam et al. [4] and the generalized Apostol-Frobenius-
Type poly-Genocchi polynomials by Khan [34]. The following definition formally presents
the higher-order Bell-based Apostol-Frobenius-Type poly-Genocchi polynomials.

Definition 2.1. The bivariate Bell-based Apostol-Frobenius-type Poly-Genocchi polyno-

mials of higher order with parameters a and b, denoted by BG
(r)
n (x, y;u, λ, a, b) are defined

by
∞∑
n=0

BG
(r)
n,k(x, y;u, λ, a, b)

tn

n!
=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ext+y(et−1). (2.1)

When x = 0, the Bell-based Apostol-Frobenius-type poly-Genocchi polynomials of higher

order BG
(r)
n,k(y;u, λ) are defined by

∞∑
n=0

BG
(r)
n,k(y;u, λ, a, b)

tn

n!
=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ey(e
t−1) (2.2)

Remark 2.2. Using the fact that Li1(z) = − ln(1− z), we get

Li1(1− (ab)−(1−u)t) = − ln(1− (1− (ab)−(1−u)t)) = (1− u)t ln ab.

Hence, when k = 1, the Bell-based Apostol-Frobenius-Type poly-Genocchi polynomials of

higher order BG
(r)
n,k(y;u, λ) in (2.2) can further be reduced to

∞∑
n=0

BG
(r)
n (x, y;u, λ, a, b)

tn

n!
=

(
(1− u)t ln ab

λbt − ua−t

)r

ext+y(et−1), (2.3)

the higher order bivariate Bell-based Apostol-Frobenius-Type Genocchi numbers with pa-
rameters a and b.
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Remark 2.3. When y = 1, the Bell-based Apostol-Frobenius-Type poly-Genocchi polyno-

mials of higher order BG
(r)
n,k(y;u, λ) in (2.2) can further be reduced to

∞∑
n=0

BG
(r)
n,k(1;u, λ, a, b)

tn

n!
=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ee
t−1,

the Bell-based Apostol-Frobenius-Type poly-Genocchi numbers of higher order.

Remark 2.4. The Bell-based Apostol-Frobenius-Type poly-Genocchi polynomials of higher

order BG
(r)
n,k(y;u, λ) in (2.2) can further be reduced as follows:

(i) When k = 1, a = 1, b = e,

∞∑
n=0

BG
(r)
n (x, y;u, λ)

tn

n!
=

(
(1− u)t

λet − u

)r

ext+y(et−1), (2.4)

the Higher Order Bivariate Bell-based Apostol-Frobenius-Type Genocchi polynomials,

where BGn(x, y;u, λ) = BG
(1)
n (x, y;u, λ, 1, e).

(ii) When r = 1, (2.4) gives

∞∑
n=0

BGn(x, y;u, λ)
tn

n!
=

(1− u)t

λet − u
ext+y(et−1), (2.5)

the Bivariate Bell-based Apostol-Frobenius-Type Genocchi polynomials, where BGn(x, y;u, λ) =

BG
(1)
n (x, y;u, λ, 1, e).

Remark 2.5. When r = 0, the Bivariate Bell-based Apostol-Frobenius-Type poly-Genocchi

polynomials of higher order BG
(r)
n,k(y;u, λ) in (2.1) can be reduced to

∞∑
n=0

BG
(0)
n (x, y;u, λ)

tn

n!
= ext+y(et−1),

Bn(x, y) = BG
(0)
n (x, y;u, λ) (2.6)

the Bivariate Bell Polynomial.

The following theorem contains the first identity for the bivariate Bell-based Apostol-
Frobenius-Type poly-Genocchi polynomials of higher order expressed in terms Bell-based
Apostol-Frobenius-Type poly-Genocchi polynomials of higher order and the Bell polyomi-
als.

Theorem 2.6. The bivariate Bell-based Apostol-Frobenius-Type poly-Genocchi polynomi-

als of higher order with parameters a and b, BG
(r)
n,k(x, y;u, λ, a, b), are equal to

BG
(r)
n,k(x, y;u, λ, a, b) =

n∑
k=0

(
n

k

)
G

(r)
k (x;u, λ, a, b)Bn−k(y). (2.7)
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Proof. Using Definition 2.1, we have

∞∑
n=0

BG
(r)
n,k(x, y;u, λ, a, b)

tn

n!
=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ext+y(et−1)

=

{(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ext

}
ey(e

t−1)

=

( ∞∑
n=0

G
(r)
n,k(x;u, λ, a, b)

tn

n!

)( ∞∑
n=0

Bn(y)
tn

n!

)

=
∞∑
n=0

{
n∑

k=0

(
n

k

)
G

(r)
k (x;u, λ, a, b)Bn−k(y)

}
tn

n!
.

Comparing the coefficients of tn

n! yields the desired identity in (2.7).

The next theorem expresses the bivariate Bell-based Apostol-Frobenius-Type poly-
Genocchi polynomials of higher order as polynomial in x with Bell-based Apostol-Frobenius-
Type poly-Genocchi polynomials of higher order as the coefficients.

Theorem 2.7. The bivariate Bell-based Apostol-Frobenius-Type poly-Genocchi polynomi-

als of higher order BG
(r)
n,k(x, y;u, λ, a, b) are equal to

BG
(r)
n,k(x, y;u, λ, a, b) =

n∑
j=0

(
n

k

)
BG

(r)
n−j,k(y;u, λ, a, b)x

j . (2.8)

Proof. Using Definition 2.1, we have

∞∑
n=0

BG
(r)
n,k(x, y;u, λ, a, b)

tn

n!
=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ey(e
t−1)ext

=

( ∞∑
n=0

BG
(r)
n,k(y;u, λ, a, b)

tn

n!

)( ∞∑
n=0

(xt)n

n!

)

=
∞∑
n=0


n∑

j=0

(
n

j

)
BG

(r)
j,k(y;u, λ, a, b)x

n−j

 tn

n!

Comparing the coefficients of tn

n! yields

BG
(r)
n,k(x, y;u, λ, a, b) =

n∑
j=0

(
n

j

)
BG

(r)
j,k(y;u, λ, a, b)x

n−j ,

which is equivalent to the desired identity in (2.8).
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The next theorem contains the addition formula for bivariate Bell-based Apostol-
Frobenius-Type poly-Genocchi polynomials of higher order.

Theorem 2.8. The bivariate Bell-based Apostol-Frobenius-Type poly-Genocchi polynomi-

als of higher order BG
(r)
n,k(x, y;u, λ, a, b) are equal to

BG
(r)
n,k(x+ y, z;u, λ, a, b) =

n∑
j=0

(
n

j

)
G

(r)
j,k(x;u, λ, a, b)Bn−j(y, z). (2.9)

Proof. Using Definition 2.1, we have

∞∑
n=0

BG
(r)
n,k(x+ y, z;u, λ, a, b)

tn

n!
=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

e(x+y)t+z(et−1)

=

{(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ext

}
eyt+z(et−1)

=

( ∞∑
n=0

G
(r)
n,k(x;u, λ, a, b)

tn

n!

)( ∞∑
n=0

Bn(y, z)
tn

n!

)

=
∞∑
n=0


n∑

j=0

(
n

k

)
G

(r)
j,k(x;u, λ, a, b)Bn−j(y, z)

 tn

n!
.

Comparing the coefficients of tn

n! yields the desired identity in (2.9).

3. Implicit Summation Formula

Within this section, we will derive different summation formulas for BG
(r)
n (x+y, z;u, λ),

establishing implicit connections among the variables by considering them as arguments.
The subsequent theorem encapsulates a particular expression of these summation formulas.

Theorem 3.1. The bivariate Bell-based Apostol-Frobenius-Type poly-Genocchi polynomi-

als of higher order BG
(r)
n (x, y;u, λ) satisfy the following summation formula:

BG
(r1+r2)
n,k (x1 + x2, y2 + y2;u, λ, a, b)

=

n∑
j=0

(
n

j

)
BG

(r1)
j,k (x1, y1;u, λ, a, b)BG

(r2)
n−j,k(x2, y2;u, λ). (3.1)

Proof. Note that we can express the right hand side of (2.1) as follows:(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r1+r2

e(x1+x2)t+(y1+y2)(et−1)



1479

=

{(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r1

ex1t+y1(et−1)

}
{(

Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r2

ex2t+y2(et−1)

}
.

Applying (2.1) yields

∞∑
n=0

BG
(r1+r2)
n,k (x1 + x2, y2 + y2;u, λ, a, b)

tn

n!

=

( ∞∑
n=0

BG
(r1)
n,k (x1, y1;u, λ, a, b)

tn

n!

)( ∞∑
n=0

BG
(r2)
n,k (x2, y2;u, λ, a, b)

tn

n!

)

=

∞∑
n=0

n∑
j=0

BG
(r1)
j,k (x1, y1;u, λ, a, b)BG

(r2)
n−j,k(x2, y2;u, λ, a, b)

(
n

j

)
.

By comparing the coefficients of tn

n! , we obtain

BG
(r1+r2)
n,k (x1 + x2, y2 + y2;u, λ, a, b)

=
n∑

j=0

(
n

k

)
BG

(r1)
j,k (x1, y1;u, λ, a, b)BG

(r2)
n−j,k(x2, y2;u, λ),

which is exactly the desired summation formula in (3.5).

Remark 3.2. When r1 = r,r2 = 0,x1 = x,x2 = 1,y1 = y, y2 = 0, the summation formula
in (3.5) reduces to

BG
(r)
n,k(x+ 1, y;u, λ, a, b) =

n∑
j=0

(
n

j

)
BG

(r)
j,k(x, y;u, λ, a, b)Bn−k(1, 0)

=
n∑

j=0

(
n

j

)
BG

(r)
j,k(x, y;u, λ, a, b). (3.2)

On the other hand, when y = 1, (2.9) gives

BG
(r)
n,k(x+ 1, z;u, λ, a, b) =

n∑
j=0

(
n

j

)
G

(r)
j,k(x;u, λ, a, b)Bn−j(1, z). (3.3)

Replacing z with y in (3.3) and subtract it from (3.2) yields

n∑
j=0

(
n

j

)
G

(r)
j,k(x;u, λ, a, b)Bn−j(1, z) =

n∑
j=0

(
n

j

)
BG

(r)
j,k(x, y;u, λ, a, b).
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We recall the following series manipulation formula:

∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n=0

∞∑
m=0

f(n+m)
xn

n!

yn

m!
. (3.4)

Applying (3.4) obtains(
Lik(1− (ab)−(1−u)(t+v))

λbt+v − ua−(t+v)

)r

ey(e
t+v−1)

= e−x(t+v)
∞∑
n=0

BG
(r)
n,k(x, y;u, λ, a, b)

(t+ v)n

n!

= e−x(t+v)
∞∑
j=0

∞∑
l=0

BG
(r)
j+l,k(x, y;u, λ, a, b)

tj

j!

vl

l!
.

Replacing x with z yields(
Lik(1− (ab)−(1−u)(t+v))

λbt+v − ua−(t+v)

)r

ey(e
t+v−1)

= e−z(t+v)
∞∑
j=0

∞∑
l=0

BG
(r)
j+l,k(z, y;u, λ, a, b)

tj

j!

vl

l!
.

Thus, by using (3.4) again, we have

∞∑
j=0

∞∑
l=0

BG
(r)
j+l,k(x, y;u, λ, a, b)

tj

j!

vl

l!

= e(x−z)(t+v)
∑
j,l≥0

BG
(r)
j+l,k(z, y;u, λ, a, b)

tj

j!

vl

l!

=

( ∞∑
N=0

(x− z)N
(t+ v)N

N !

)∑
j,l≥0

BG
(r)
j+l,k(z, y;u, λ, a, b)

tj

j!

vl

l!


=

 ∑
n,m≥0

(x− z)n+m tn

n!

vm

m!

∑
j,l≥0

BG
(r)
j+l,k(z, y;u, λ, a, b)

tj

j!

vl

l!


=
∑
j,l≥0


j,l∑

n,m=0

(
j

n

)(
l

m

)
(x− z)n+m

BG
(r)
j+l,k(z, y;u, λ, a, b)

 tj

j!

vl

l!
.

Comparing the coefficients of tj

j!
vl

l! completes the proof of the following theorem.



1481

Theorem 3.3. The bivariate Bell-based Apostol-Frobenius-Type poly-Genocchi polynomi-

als of higher order BG
(r)
n,k(x, y;u, λ, a, b) satisfy the following summation formula:

BG
(r)
j+l,k(x, y;u, λ, a, b) =

j,l∑
n,m=0

(
k

n

)(
l

m

)
(x− z)n+m

BGk+l−n−m(z, y;u, λ, a, b). (3.5)

The next theorem gives the difference when the variable x in BG
(r)
n,k(x, y;u, λ, a, b) is

shifted by 1.

Theorem 3.4. For n ≥ 1, the difference BG
(r)
n,k(x+1, y;u, λ)−BG

(r)
n,k(x, y;u, λ, a, b) equals

BG
(r)
n,k(x+ 1, y;u, λ, a, b)− BG

(r)
n,k(x, y;u, λ, a, b) =

n−1∑
j=0

(
n

k

)
BG

(r)
j,k(x, y;u, λ, a, b). (3.6)

Proof. Using Definition 2.1, we have
∞∑
n=0

BG
(r)
n,k(x+ 1, y;u, λ, a, b)

tn

n!
−

∞∑
n=0

BG
(r)
n,k(x, y;u, λ, a, b)

tn

n!

=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

e(x+1)t+y(et−1) −

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ext+y(et−1)

=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ext+y(et−1)(et − 1)

=

( ∞∑
n=0

BG
(r)
n,k(x, y;u, λ, a, b)

tn

n!

)∑
n≥0

tn+1

(n+ 1)!


=

∞∑
n=0


n∑

j=0

(
n+ 1

j

)
BG

(r)
j,k(x, y;u, λ, a, b)

 tn

n!
.

Thus, we have
∞∑
n=0

(
BG

(r)
n,k(x+ 1, y;u, λ, a, b)− BG

(r)
n,k(x, y;u, λ, a, b)

) tn

n!

=

∞∑
n=0


n∑

j=0

(
n+ 1

j

)
BG

(r)
j,k(x, y;u, λ, a, b)

 tn+1

(n+ 1)!

=

∞∑
n=1


n−1∑
j=0

(
n

j

)
BG

(r)
j,k(x, y;u, λ, a, b)

 tn

n!
.

This immediately gives

BG
(r)
n,k(x+ 1, y;u, λ, a, b)− BG

(r)
n,k(x, y;u, λ, a, b) =

n−1∑
j=0

(
n

j

)
BG

(r)
j,k(x, y;u, λ, a, b).
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4. Connection with Second Kind Stirling Numbers and Bivariate Bell
Polynomials

In this section, we derive some formulas connecting BG
(r)
n (x, y;u, λ) with Stirling num-

bers of the second kind given in (1.15) and bivariate Bell polynomials in (2.6).

Theorem 4.1. The bivariate Bell-based Apostol-Frobenius-Type poly-Genocchi polynomi-

als of higher order BG
(r)
n (x, y;u, λ) satisfy the following summation formula

BG
(r)
n,k(x, y;u, λ) =

n∑
i=0

i∑
j=0

(
n

i

)
(x)jS(i, j)BG

(r)
n−i,k(y;u, λ). (4.1)

Proof. Using Definition 2.1, we have

∞∑
n=0

BG
(r)
n,k(x, y;u, λ, a, b)

tn

n!
=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ey(e
t−1)(1 + et − 1)x

=

( ∞∑
n=0

BG
(r)
n,k(y;u, λ, a, b)

tn

n!

) ∞∑
j=0

(
x

n

)
(et − 1)n


=

( ∞∑
n=0

BG
(r)
n,k(y;u, λ, a, b)

tn

n!

) ∞∑
j=0

(x)j
(et − 1)j

j!


=

( ∞∑
n=0

BG
(r)
n,k(y;u, λ, a, b)

tn

n!

) ∞∑
j=0

(x)j

∞∑
n=0

S(n, j)
tn

n!


=

( ∞∑
n=0

BG
(r)
n,k(y;u, λ, a, b)

tn

n!

) ∞∑
n=0


∞∑
j=0

(x)jS(n, j)

 tn

n!


=

∞∑
n=0

n∑
i=0

(
n

i

)
∞∑
j=0

(x)jS(i, j)BG
(r)
n−i,k(y;u, λ, a, b)

 tn

n!

=
∞∑
n=0


n∑

i=0

(
n

i

) ∞∑
j=0

(x)jS(i, j)BG
(r)
n−i,k(y;u, λ, a, b)

 tn

n!

BG
(r)
n,k(x, y;u, λ, a, b) =

n∑
i=0

∞∑
j=0

(
n

i

)
(x)jS(i, j)BG

(r)
n−i,k(y;u, λ, a, b)

=

n∑
i=0

i∑
j=0

(
n

i

)
(x)jS(i, j)BG

(r)
n−i,k(y;u, λ, a, b).

The subsequent theorem is another relation for BG
(r)
n,k(x, y;u, λ, a, b) in connection with

Stirling numbers of the second kind.
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Theorem 4.2. The higher order Bivariate Bell-based Apostol-Frobenius-type poly-Genocchi
polynomials with parameters a, b satisfy the relation,

BG
(r)
n,k(x, y;u, λ, a, b) =

n∑
j=0

(
n

j

)
(−1)rBG

(r)
n−j(x, y;u, λ, a, b)dj (4.2)

where

dj =
∑

n1+n2+...+nr=j

r∏
i=1

cni

(
j

n1, n2, . . . , nr

)

cj =

j∑
m=0

(−1)m+j+1 ((1− u) ln ab)jm!S(j + 1,m+ 1)

(j + 1)(m+ 1)k−1
.

Proof. Now, (2.1) can be written as

∞∑
n=0

BG
(r)
n,k(x, y;u, λ, a, b)

tn

n!
=

ext+y(et−1)

(λbt − ua−t)r

( ∞∑
m=1

(1− e−(1−u)t ln ab)m

mk

)r

=
ext+y(et−1)

(λbt − ua−t)r

( ∞∑
m=0

(1− e−(1−u)t ln ab)m+1

(m+ 1)k

)r

=
ext+y(et−1)

(λbt − ua−t)r

( ∞∑
m=0

m!

(m+ 1)k−1

(1− e−(1−u)t ln ab)m+1

(m+ 1)!

)r

=
ext+y(et−1)

(λbt − ua−t)r

 ∞∑
m=0

(−1)m+1m!

(m+ 1)k−1

∞∑
j=m+1

S(j,m+ 1)
(−(1− u)t ln ab)j

j!

r

= (−1)rext+y(et−1)

(
(1− u)t ln ab

λbt − ua−t

)r
 ∞∑

j=0

cj
tj

j!

r

,

where

cj =

j∑
m=0

(−1)m+j+1 ((1− u) ln ab)jm!S(j + 1,m+ 1)

(j + 1)(m+ 1)k−1
.

Note that the power series
(∑∞

j=0 cj
tj

j!

)r
can be expressed as ∞∑

j=0

cj
tj

j!

r

=

∞∑
n=0

dn
tn

n!
,

where

dn =
∑

n1+n2+...+nr=n

r∏
i=1

cni

(
n

n1, n2, . . . , nr

)
,
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(see [10]). It follows that

∞∑
n=0

BG
(r)
n,k(x, y;u, λ, a, b)

tn

n!
= (−1)r

( ∞∑
n=0

BG
(r)
n (x, y;u, λ, a, b)

tn

n!

)( ∞∑
n=0

dn
tn

n!

)

=
∞∑
n=0


n∑

j=0

(
n

j

)
(−1)rBG

(r)
n−j(x, y;u, λ, a, b)dj

 tn

n!

Comparing the coefficients completes the proof of the theorem.

The next theorem contains a relation that expresses the bivariate Bell polynomials in
terms of bivariate Bell-based Apostol-Frobenius-type poly-Genocchi polynomials.

Theorem 4.3. The following relation holds

Bn(x, y) =
λ BGn+1(x+ 1, y;u, λ)− u BGn+1(x, y;u, λ)

(1− u)(n+ 1)
. (4.3)

Proof. Using equation (2.6), we have

∞∑
n=0

Bn(x, y)
tn

n!
=

(
λet − u

(1− u)t

)(
(1− u) t

λet − u
ext+y(et−1)

)
=

1

(1− u)t

(
λ

(
(1− u) t

λet − u
e(x+1)t+y(et−1)

)
− u

(
(1− u) t

λet − u
ext+y(et−1)

))
=

1

(1− u)

(
λ

∞∑
n=0

BGn(x+ 1, y;u, λ)
tn−1

n!
− u

∞∑
n=0

BG
(r)
n (x, y;u, λ)

tn−1

n!

)

=
1

1− u

(
λ

∞∑
n=−1

BGn(x+ 1, y;u, λ)
tn

(n+ 1)!
− u

∞∑
n=−1

BG
(r)
n (x, y;u, λ)

tn

(n+ 1)!

)

=
∞∑

n=−1

(
λ BGn+1(x+ 1, y;u, λ)− u BGn+1(x, y;u, λ)

(1− u)(n+ 1)

)
tn

n!

Comparing the coefficients of tn

n! yields

Bn(x, y) =
λ BGn+1(x+ 1, y;u, λ)− u BGn+1(x, y;u, λ)

(1− u)(n+ 1)
.

5. Derivative Formulas

The derivative formulas for special polynomials play a crucial role in various areas of
mathematics, physics, engineering, and other scientific disciplines. For instance, derivative
formulas allow for the analysis of the behavior and properties of special polynomials in
terms of their rates of change. This is fundamental in calculus and mathematical analysis
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for understanding functions and their behavior. They are also essential for manipulat-
ing generating functions, which represent sequences of coefficients of special polynomials.
These functions are widely used in combinatorics, number theory, and discrete mathemat-
ics for counting and enumerative purposes.

The following theorem contains the derivative formula for BG
(r)
n,k(x, y;u, λ) with respect

to the variable x.

Theorem 5.1. The following derivative formula holds

∂

∂x
BG

(r)
n,k(x, y;u, λ) = nBG

(r)
n−1,k(x, y;u, λ). (5.1)

Proof. Using Definition 2.1, we have

∂

∂x

∞∑
n=0

BG
(r)
n,k(x, y;u, λ, a, b)

tn

n!
=

∂

∂x

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ext+y(et−1)

∞∑
n=0

∂

∂x
BG

(r)
n,k(x, y;u, λ, a, b)

tn

n!
=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ext+y(et−1) t

= t
∞∑
n=0

BG
(r)
n,k(x, y;u, λ, a, b)

tn

n!

=
∞∑
n=0

BG
(r)
n,k(x, y;u, λ, a, b)

tn+1

n!

=

∞∑
n=1

nBG
(r)
n−1,k(x, y;u, λ, a, b)

tn

n!
.

Comparing the coefficients of tn

n! yields

∂

∂x
BG

(r)
n,k(x, y;u, λ, a, b) = nBG

(r)
n−1,k(x, y;u, λ, a, b).

Remark 5.2. This relation shows that BG
(r)
n,k(x, y;u, λ, a, b) is an Apell Polynomial (see

[25, 29]). Belonging to the category of Appell polynomials, the polynomials BG
(r)
n,k(x, y;u, λ, a, b)

are expected to demonstrate the following characteristics:

BG
(r)
n,k(x, y;u, λ, a, b) =

n∑
j=0

(
n

j

)
cjx

n−j

BG
(r)
n,k(x, y;u, λ, a, b) =

 n∑
j=0

cj
j!
Dj

xn

for some scalar ck ̸= 0. Clearly, using (2.8), cj = BG
(r)
j,k(y;u, λ, a, b). Hence,

BG
(r)
n,k(x, y;u, λ, a, b) =

 n∑
j=0

BG
(r)
j,k(y;u, λ, a, b)

j!
Dj

xn. (5.2)
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The next theorem contains the derivative formula for BG
(r)
n,k(x, y;u, λ, a, b) with respect

to the variable y.

Theorem 5.3. The following derivative formula holds

∂

∂y
BG

(r)
n,k(x, y;u, λ, a, b) = BG

(r)
n,k(x+ 1, y;u, λ, a, b)− BG

(r)
n,k(x, y;u, λ, a, b). (5.3)

Proof. Using Definition 2.1, we have

∞∑
n=0

∂

∂y
BG

(r)
n,k(x, y;u, λ, a, b)

tn

n!

=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ext+y(et−1)(et − 1)

=

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

e(x+1)t+y(et−1)

−

(
Lik(1− (ab)−(1−u)t)

λbt − ua−t

)r

ext+y(et−1)

=
∞∑
n=0

BG
(r)
n,k(x+ 1, y;u, λ)

tn

n!
−

∞∑
n=0

BG
(r)
n,k(x, y;u, λ)

tn

n!

=

∞∑
n=0

{
BG

(r)
n,k(x+ 1, y;u, λ, a, b)− BG

(r)
n,k(x, y;u, λ, a, b)

} tn

n!
.

Comparing the coefficients of tn

n! yields

∂

∂y
BG

(r)
n,k(x, y;u, λ, a, b) = BG

(r)
n,k(x+ 1, y;u, λ, a, b)− BG

(r)
n,k(x, y;u, λ, a, b).
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