An Efficient Convergent Approach for Difference Delayed Reaction-Diffusion Equations
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i3.5197Keywords:
Reaction diffusion equations , Lagrange interpolating polynomials, Convergence AnalysisAbstract
It is usually not possible to solve partial differential equations, especially the delay type, with analytical methods. Therefore, in this article, we present an efficient method for solving differential equations of the difference delayed reaction-diffusion type, which can be generalized to other delayed partial differential equations. In the proposed approach, we first convert the delayed equation into an equivalent non-delayed equation by inserting the corresponding delay function with an effective technique. Then, using a pseudo-spectral method, we discretize the obtained equation in the Legendre-Gauss-Lobatto collocation points and present an algebraic system with an equal number of equations and unknowns which can be solved by quasi-Newton methods such as Levenderg-Marquardt algorithm. The approximate solutions can be obtained with exponential accuracy. The convergence analysis of the method is fully discussed and four examples are presented to evaluate the results and compare with one of the conventional methods used to solve partial differential equations, that is, the compact finite difference method.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.