Convex Roman Dominating Functions on Graphs under some Binary Operations
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i2.5205Keywords:
Roman dominating function, Roman domination number, convex Roman dominating function, convex Roman domination number, corona, edge corona, complementary prism, lexicographic product, and Cartesian productAbstract
Let $G$ be a connected graph. A function $f:V(G)\rightarrow \{0,1,2\}$ is a \textit{convex Roman dominating function} (or CvRDF) if every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$ and $V_1 \cup V_2$ is convex. The weight of a convex Roman dominating function $f$, denoted by $\omega_{G}^{CvR}(f)$, is given by $\omega_{G}^{CvR}(f)=\sum_{v \in V(G)}f(v)$. The minimum weight of a CvRDF on $G$, denoted by $\gamma_{CvR}(G)$, is called the \textit{convex Roman domination number} of $G$. In this paper, we specifically study the concept of convex Roman domination in the corona and edge corona of graphs, complementary prism, lexicographic
product, and Cartesian product of graphs.
Downloads
Published
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.