EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 17, No. 2, 2024, 1335-1351
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Convex Roman Dominating Functions on Graphs under some Binary Operations

Rona Jane G. Fortosa ${ }^{1, *}$, Ferdinand P. Jamil ${ }^{1,2}$, Sergio R. Canoy, Jr. ${ }^{1,2}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, MSU-Iligan Institute of Technology, 9200 Iligan City, Philippines
${ }^{2}$ Center of Mathematical and Theoretical Physical Sciences- PRISM, MSU-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

Let G be a connected graph. A function $f: V(G) \rightarrow\{0,1,2\}$ is a convex Roman dominating function (or CvRDF) if every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$ and $V_{1} \cup V_{2}$ is convex. The weight of a convex Roman dominating function f, denoted by $\omega_{G}^{C v R}(f)$, is given by $\omega_{G}^{G v R}(f)=\sum_{v \in V(G)} f(v)$. The minimum weight of a CvRDF on G, denoted by $\gamma_{C v R}(G)$, is called the convex Roman domination number of G. In this paper, we specifically study the concept of convex Roman domination in the corona and edge corona of graphs, complementary prism, lexicographic product, and Cartesian product of graphs.

2020 Mathematics Subject Classifications: 05C69
Key Words and Phrases: Convex set, Roman dominating function, Roman domination number, convex Roman dominating function, convex Roman domination number, corona, edge corona, complementary prism, lexicographic product, Cartesian product

1. Introduction

Roman domination was first introduced by Cockayne, Dreyer and Hedetnieme in [8] which was inspired by the defense strategy of the Roman emperor Constantine the Great during the 4th Century AD (see [23] and [24]). After several years, lots of variations on this concept have been introduced and studied (see [1], [2], [3], [4], [5], [7], [13], [16], [19], [20], and [22]).

The concept of convex domination in graphs was first introduced by Lemanska in 2004 [18]. Convex domination is a concept in graph theory that combines the notions of convexity and domination. Studies related on convexity and dominaton in graphs can be found in [14], [15], [6], [9], [11], [12], and [21]. A subset of vertices in a graph is said to be a convex dominating set if it is both a convex set and a dominating set, which means

[^0]that every vertex on the shortest path between any two vertices in the set is also in the set and every vertex in the graph is either in the set or adjacent to a vertex in the set.

The convex Roman domination was introduced and initially investigated in [10] where properties of convex Roman dominating functions and convex Roman domination number of some graphs and the join of two graphs have been obtained.

In this present paper, authors continued the study of convex Roman domination, specifically on the corona, edge corona, complementary prism, lexicographic product, and Cartesian product of graphs.

Let G be a connected graph. For vertices u and v in G, a $u-v$ geodesic is any shortest path in G joining u and v. The length of a $u-v$ geodesic is called the distance $d_{G}(u, v)$ between u and v. For every two vertices u and v of G, the symbol $I_{G}[u, v]$ is used to denote the set of vertices lying on any of the $u-v$ geodesics.

The set of neighbors of a vertex $u \in G$, denoted by $N_{G}(u)$, is called the open neighborhood of u. The closed neighborhood of u is the set $N_{G}[u]=N_{G}(u) \cup\{u\}$. The degree of a vertex v denoted $\operatorname{deg}_{G}(v)$ in a graph G is the number of vertices in G that are adjacent to v. Hence, $\operatorname{deg}_{G}(v)=|N(v)|$. The largest degree among the vertices of G is called the maximum degree of G and is denoted by $\triangle(G)$. The minimum degree of G is denoted by $\delta(G)$. A graph G is connected if every pair of its vertices can be joined by a path.

A set $S \subseteq V(G)$ is said to be a dominating set of a graph G if every vertex $v \in V(G)$ is either an element of S or is adjacent to an element of S. Thus, $N[S]=V(G)$. The smallest cardinality of a dominating set S is called the domination number of G and is denoted by $\gamma(G)$. That is $\gamma(G)=\min \{|S|: S$ is a dominating set of $G\}$. Any dominating set S of G with $|S|=\gamma(G)$ is called a γ-set of G.

If S is a clique (the induced graph $\langle S\rangle$ is complete) and a dominating set, then S is called a clique dominating set in G. A clique domination number $\gamma_{c l}(G)$ of G is the smallest cardinality of a clique dominating set in G.

A set $S \subseteq V(G)$ is convex if for every two vertices $x, y \in S, I_{G}[x, y] \subseteq S$. The largest cardinality of a proper convex set in G, denoted by $\operatorname{con}(G)$, is called the convexity number of G. A set $S \subseteq V(G)$ is convex dominating if S is both convex and dominating. The minimum cardinality among all convex dominating sets in G, denoted by $\gamma_{c o n}(G)$ is called the convex domination number of G. Any convex dominating set S of G with $|S|=\gamma_{c o n}(G)$ is called a $\gamma_{c o n}$-set of G.

A function $f: V(G) \rightarrow\{0,1,2\}$ is a Roman dominating function (or just RDF) if every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an RDF f is given by $\omega_{G}(f)=\sum_{v \in V(G)} f(v)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, is the minimum weight of an RDF on G. Any RDF f on G with $\omega_{G}(f)=\gamma_{R}(G)$ is called a γ_{R}-function. If f is an RDF on G and $V_{i}=\{v \in V(G): f(v)=i\}$ for $i \in\{0,1,2\}$, then we denote f by $f=\left(V_{0}, V_{1}, V_{2}\right)$. In this case, $\omega_{G}(f)=\left|V_{1}\right|+2\left|V_{2}\right|$.

A Roman dominating function $f=\left(V_{0}, V_{1}, V_{2}\right)$ on G is a convex Roman dominating function (or CvRDF) if $V_{1} \cup V_{2}$ is convex. The weight of a convex Roman dominating function $f=\left(V_{0}, V_{1}, V_{2}\right)$ on G is given by $\omega_{G}^{C v R}(f)=\left|V_{1}\right|+2\left|V_{2}\right|$. The minimum weight
of a CvRDF on G, denoted by $\gamma_{C v R}(G)$, is called the convex Roman domination number of G. Any CvRDF f on G with $\omega_{G}^{C v R}(f)=\gamma_{C v R}(G)$ is called a $\gamma_{C v R^{-}}$function.

2. Known Results

The following results are useful in this study.
Proposition 1. [10] Let n be a positive integer. Then

$$
\gamma_{C v R}\left(P_{n}\right)= \begin{cases}1, & n=1 \\ 2, & n=2,3 \\ n, & n \geq 4\end{cases}
$$

Proposition 2. [10] Let G be a non-trivial connected graph and let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{C v R}$-function on G. Then the following hold:
(i) If $\left|V_{0}\right|=0$, then $\left|V_{2}\right|=0$.
(ii) If $\left|V_{0}\right|=1$, then $\left|V_{2}\right|=1$.
(iii) $\left|V_{1}\right|=0$ if and only if V_{2} is a $\gamma_{c o n}$-set in G

Theorem 1. [15] Let G be a connected graph and K_{m} the complete graph of order m. Then a proper subset $C=S_{1} \cup S_{2}$ of $V\left(G+K_{m}\right)$, where $S_{1} \subseteq V(G)$ and $S_{2} \subseteq V\left(K_{m}\right)$, is convex in $G+K_{m}$ if and only if either
(i) S_{1} induces a complete subgraph of G, or
(ii) $S_{1}=V(G) \backslash S$ and $S_{2}=V\left(K_{m}\right)$ for some non-connecting set S in G.

Theorem 2. [14] Let G be a connected graph and K_{m} the complete graph of order $n \geq 2$. A subset $C=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right)$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$, is a convex set in $G\left[K_{m}\right]$ if and only if S is a convex set in G and $T_{x}=V\left(K_{m}\right)$ for each $x \in S^{0}=I(S) \cap S$.

Theorem 3. [15] Let G and H be connected non-complete graphs. A subset $C=$ $\bigcup_{x \in S}\left(\{x\} \times T_{x}\right)$ of $V(G[H])$ is a convex set in $G[H]$ if and only if S is a clique set in G and T_{x} is a clique in H for each $x \in S$.

Theorem 4. [17] Let G and H be connected non-complete graphs. A subset $C=\bigcup_{x \in S}(\{x\} \times$ $\left.T_{x}\right)$ of $V(G[H])$ is a convex dominating set in $G[H]$ if and only if S is a clique dominating set in G and T_{x} is a clique in H for each $x \in S$.

Theorem 5. [15] Let G and H be two connected graphs. A set $C \in V(G \square H)$ is a convex set in $G \square H$ if and only if $C=C_{G} \times C_{H}$, where C_{G} and C_{H} are convex sets in G and H respectively.

Theorem 6. [17] Let G and H be connected graphs. A subset C of $V(G \square H)$ is a convex dominating set in $G \square H$ if and only if $C=C_{1} \times C_{2}$ and one of the following conditions holds:
(i) C_{1} is a convex dominating set in G and $C_{2}=V(H)$, or
(ii) C_{2} is a convex dominating set in H and $C_{1}=V(G)$.

Theorem 7. [10] Let G be a connected graph on n vertices. Then each of the the following statements holds.
(i) $\gamma_{C v R}(G)=1$ if and only if $G=K_{1}$
(ii) $\gamma_{C v R}(G)=2$ if and only if $G=K_{2}$ or $G=K_{1}+H$ for some graph H

Corollary 1. [10] For any connected graph G of order $n, \gamma_{C v R}(G)=2$ if and only if $G \neq K_{1}$ and $\gamma(G)=1$.

Proposition 3. [10] There exists no connected graph G with $\gamma_{C v R}(G)=3$.
Proposition 4. [10] For any connected graph G of order n,

$$
1 \leq \gamma_{c o n}(G) \leq \gamma_{C v R}(G) \leq \min \left\{n, 2 \gamma_{c o n}(G)\right\}
$$

3. Results

Let G and H be connected graphs. The corona of G and H is the graph $G \circ H$ obtained by taking one copy of G and $|V(G)|$ copies of H, and then joining the $i t h$ vertex of G to every vertices of the ith copy of H. For convenience, we write H^{v} to denote the copy of H joined to v and write $H^{v}+v=H^{v}+\langle v\rangle$.

Let G be a graph. A non-empty subset S of $V(G)$ is a non-connecting set in G if it satisfies the following condition: For every pair of vertices $u, v \in V(G) \backslash S$ with $d_{G}(u, v)=2$, we have $N_{G}(u) \cap N_{G}(v) \cap S=\varnothing$. A non-connecting set with minimum cardinality is called a minimum non-connecting set.

Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a CvRDF on $G \circ H$. For each $v \in V(G)$, let $S_{k}^{v}=V_{k} \cap V\left(H^{v}\right)$ where $k=0,1,2$.

Theorem 8. Let G be a non-trivial connected graph and let H be any graphs. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a $C v R D F$ on $G \circ H$ if and only if each of the following conditions hold:
(i) $V_{0} \cap V(G)=\varnothing$
(ii) For each $v \in V_{2} \cap V(G), S_{1}^{v} \cup S_{2}^{v}$ induces a complete subgraph of H^{v} or $V\left(H^{v}\right) \backslash\left(S_{1}^{v} \cup S_{2}^{v}\right)$ is a non-connecting set in H^{v}.
(iii) For each $v \in V_{1} \cap V(G)$ such that $S_{1}^{v} \neq V\left(H^{v}\right), S_{2}^{v} \neq \varnothing, S_{0}^{v} \subseteq N_{H^{v}}\left(S_{2}^{v}\right)$, and $S_{1}^{v} \cup S_{2}^{v}$ induces a complete subgraph of H^{v} or $V\left(H^{v}\right) \backslash\left(S_{1}^{v} \cup S_{2}^{v}\right)$ is a non-connecting set in H^{v} and

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a CvRDF of $G \circ H$. Since $V_{1} \cup V_{2}$ is a dominating set of $G \circ H$,

$$
\begin{equation*}
V\left(v+H^{v}\right) \cap\left(V_{1} \cup V_{2}\right) \neq \varnothing \tag{1}
\end{equation*}
$$

for each $v \in V(G)$. Suppose that there exists $v \in V_{0} \cap V(G)$. Then (1) implies that $S_{1}^{v} \cup S_{2}^{v} \neq \varnothing$. Pick $w \in V(G) \backslash\{v\}$. If $w \in V_{1} \cup V_{2}$, then the convexity of $V_{1} \cup V_{2}$ implies that $v \in I_{G \circ H}[z, w] \subseteq V_{1} \cup V_{2}$ for all $z \in S_{1}^{v} \cup S_{2}^{v}$. Suppose that $w \in V_{0}$. Then by (1), $S_{1}^{w} \cup S_{2}^{w} \neq \varnothing$, and $w, v \in I_{G \circ H}[a, b] \subseteq V_{1} \cup V_{2}$, for all $a \in S_{1}^{v} \cup S_{2}^{v}$ and $b \in S_{1}^{w} \cup S_{2}^{w}$. In any case, we get a contradiction. Thus, $V_{0} \cap V(G)=\varnothing$, showing that (i) holds.

Next, let $v \in V_{2} \cap V(G)$. By Theorem 1, convexity of $V_{1} \cup V_{2}$ implies that $S_{1}^{v} \cup S_{2}^{v}$ induces a complete subgraph of H^{v} or $V\left(H^{v}\right) \backslash\left(S_{1}^{v} \cup S_{2}^{v}\right)$ is a non-connecting set in H^{v}. Hence, (ii) holds. Suppose $v \in V_{1} \cap V(G)$ such that $S_{1}^{v} \neq V\left(H^{v}\right)$. Then $S_{2}^{v} \neq \varnothing$ and $S_{0}^{v} \subseteq N_{H^{v}}\left(S_{2}^{v}\right)$ because f is an RDF on $G \circ H$. Again, by Theorem $1, S_{1}^{v} \cup S_{2}^{v}$ induces a complete subgraph of H^{v} or $V\left(H^{v}\right) \backslash\left(S_{1}^{v} \cup S_{2}^{v}\right)$ is a non-connecting set in H^{v}, showing that (iii) holds.

Conversely, suppose that (i), (ii) and (iii) hold. Let $x \in V_{0}$. By (i), $x \in S_{0}^{v}$ for some $v \in V(G)$. If $v \in V_{2}$, then $x \in N_{G \circ H}(v)$. Suppose $v \in V_{1}$. By (iii), $S_{2}^{v} \neq \varnothing$ and $x \in N_{G \circ H}\left(S_{2}^{v}\right)$. Thus $f=\left(V_{0}, V_{1}, V_{2}\right)$ is an RDF on $G \circ H$. Now, let $p, q \in V_{1} \cup V_{2}$ and let $v, w \in V(G)$ such that $p \in V\left(v+H^{v}\right)$ and $q \in V\left(w+H^{w}\right)$. Consider the following cases. Case 1. $v=w$.
If $p=v$ or $q=v$, then $I_{G \circ H}[p, q]=\{p, q\} \subseteq V_{1} \cup V_{2}$. Suppose $p, q \in V\left(H^{v}\right)$. If $d_{H^{v}}(p, q)=1$, then $I_{G \circ H}[p, q]=\{p, q\} \subseteq V_{1} \cup V_{2}$. If $d_{H^{v}}(p, q)=2$, then

$$
I_{G \circ H}[p, q]=\{p, q, v\} \cup\left(N_{H^{v}}(p) \cap N_{H^{v}}(q)\right) \subseteq S_{1}^{v} \cup S_{2}^{v} \cup\{v\} \subseteq V_{1} \cup V_{2}
$$

since $V\left(H^{v}\right) \backslash\left(S_{1}^{v} \cup S_{2}^{v}\right)$ is a non-connecting set in H^{v} (by (ii) and (iii)). If $d_{H^{v}}(p, q)>2$, then $I_{G \circ H}[p, q]=\{p, q, v\} \subseteq V_{1} \cup V_{2}$.
Case 2. $v \neq w$.
Consider the following subcases.
Subcase 1. $p=v$ and $q=w$.
Then $V(G) \subseteq V_{1} \cup V_{2}$ by (i). Since every $p-q$ geodesic in $G \circ H$ is a $p-q$ geodesic in G, it follows that $I_{G \circ H}[p, q]=I_{G}[p, q] \subseteq\left(V_{1} \cup V_{2}\right)$.
Subcase 2. $p=v$ and $q \in V\left(H^{w}\right)$ (or $q=w$ and $p \in V\left(H^{v}\right)$).
Then $I_{G \circ H}[p, q]=I_{G}[v, w] \cup\{q\} \subseteq\left(V_{1} \cup V_{2}\right)$.
Subcase 3. $p \in V\left(H^{v}\right)$ and $q \in V\left(H^{w}\right)$.
Then $I_{G \circ H}[p, q]=I_{G}[v, w] \cup\{p, q\} \subseteq V_{1} \cup V_{2}$.
Therefore, $V_{1} \cup V_{2}$ is a convex set in $G \circ H$. Accordingly, f is a CvRDF on $G \circ H$.
Corollary 2. Let G be a non-trivial connected graph of order n and let H be any graph. Then

$$
\gamma_{C v R}(G \circ H)=2 n .
$$

Proof. Let $V_{2}^{\prime}=V(G), V_{0}^{\prime}=\bigcup_{v \in V(G)} V\left(H^{v}\right)$, and $V_{1}^{\prime}=\varnothing$. By Theorem 8, $g=\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ is a CvRDF on $G \circ H$. Thus, $\gamma_{C v R}(G \circ H) \leq \omega_{G \circ H}^{C v R}(g)=\left|V_{1}^{\prime}\right|+2\left|V_{2}^{\prime}\right|=2 n$.

Next, let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{C v R}$-function on $G \circ H$. Let $V_{1}^{*}=V_{1} \cap V(G)$ and $V_{2}^{*}=V_{2} \cap V(G)$ and let $\left|V_{1}^{*}\right|=k$. Then $\left|V_{2}^{*}\right|=n-k$. Let $D=\left\{v \in V_{1}^{*}: S_{1}^{v} \neq \varnothing\right\}$. Then $S_{2}^{v} \neq \varnothing$ for all $v \in V_{1} \backslash D$ by (iii). Hence,

$$
\gamma_{C v R}(G \circ H)=\omega_{G \circ H}^{C v R}(f)
$$

$$
\begin{aligned}
& =\left|V_{1}\right|+2\left|V_{2}\right| \\
& =k+\sum_{v \in V(G)}\left|S_{1}^{v}\right|+2\left[(n-k)+\sum_{v \in V(G)}\left|S_{2}^{v}\right|\right] \\
& =2 n-k+\sum_{v \in V(G)}\left|S_{1}^{v}\right|+2 \sum_{v \in V(G)}\left|S_{2}^{v}\right| \\
& \geq 2 n-k+\sum_{v \in D}\left|S_{1}^{v}\right|+2 \sum_{v \in V_{1} \backslash D}\left|S_{2}^{v}\right| \\
& \geq 2 n-k+|D|+2\left|V_{1}\right|-2|D| \\
& =2 n+k-|D| \\
& \geq 2 n
\end{aligned}
$$

This proves the desired equality.
Given graphs G and H we write $H^{u v}$ to denote that copy of H that is being joined with the end vertices of the edge $u v \in E(G)$ in the edge corona $G \diamond H$. If $H=\{x\}$, then we write $V\left(H^{u v}\right)=\left\{x^{u v}\right\}$.

Recall that for subsets A and B of $V(G)$, we have $d_{G}(A, B)=\min \left\{d_{G}(a, b): a \in\right.$ A and $b \in B\}$.

Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a CvRDF on $G \diamond H$. For each $v \in V(G)$, let $S_{1}^{u v}=V_{1} \cap V\left(H^{u v}\right)$ and $S_{2}^{u v}=V_{2} \cap V\left(H^{u v}\right)$. Denote $V_{G}^{0}=V(G) \cap V_{0}, V_{G}^{1}=V(G) \cap V_{1}$, and $V_{G}^{2}=V(G) \cap V_{2}$.

Note that since $\gamma\left(K_{2} \diamond H\right)=1$ for any graph H, it follows from Corollary 1 that $\gamma_{C v R}\left(K_{2} \diamond H\right)=2$.

Theorem 9. Let G be a non-trivial connected graph such that $G \neq K_{2}$ and let H be any graph. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a CvRDF on $G \diamond H$ if and only if each of the following conditions holds.
(i) $\left|\{u, v\} \cap\left(V_{G}^{1} \cup V_{G}^{2}\right)\right| \neq 0$ for each $u v \in E(G)$.
(ii) For each pair of distinct edges $u v$ and $z w$ of $G, I_{G}(x, y) \subseteq V_{G}^{1} \cup V_{G}^{2}$ whenever $x \in\{u, v\} \cap\left(V_{G}^{1} \cup V_{G}^{2}\right)$ and $y \in\{z, w\} \cap\left(V_{G}^{1} \cup V_{G}^{2}\right)$.
(iii) For every pair of distinct edges e and e^{\prime} of G with $S_{1}^{e} \cup S_{2}^{e} \neq \varnothing$ and $S_{1}^{e^{\prime}} \cup S_{2}^{e^{\prime}} \neq \varnothing$, $v, z \in V_{G}^{1} \cup V_{G}^{2}$ whenever v and z are incident with e and e^{\prime}, respectively, with $d_{G}(v, z)=d_{G}(\{u, v\},\{z, w\})$.
(iv) For each $u v \in E(G)$ such that $\{u, v\} \cap\left(V_{1} \cup V_{2}\right)=\{v\}$, it holds that
(a) $S_{1}^{u v} \cup S_{2}^{u v}$ a clique in $H^{u v}$ whenever $S_{1}^{u v} \cup S_{2}^{u v} \neq \varnothing$ and
(b) $v \in V_{G}^{2}$ or $S_{2}^{u v} \neq \varnothing$ and $S_{0}^{u v} \subseteq N_{H^{u v}}\left(S_{2}^{u v}\right)$.
(v) For each $u v \in E(G)$ such that $\{u, v\} \subseteq\left(V_{1} \cup V_{2}\right)$ and $S_{1}^{u v} \cup S_{2}^{u v} \neq V\left(H^{u v}\right)$, it holds that
(c) $V\left(H^{u v}\right) \backslash\left(S_{1}^{u v} \cup S_{2}^{u v}\right)$ is a non-connecting set in $H^{u v}$ and
(d) $\{u, v\} \cap V_{G}^{2} \neq \varnothing$ or $S_{2}^{u v} \neq \varnothing$ and $S_{0}^{u v} \subseteq N_{H^{u v}}\left(S_{2}^{u v}\right)$.

Proof. Let $u, v \in V(G)$ such that $u v \in E(G)$. Then $\left|\{u, v\} \cap\left(V_{G}^{1} \cup V_{G}^{2}\right)\right| \neq 0$ because $V_{1} \cup V_{2}$ is convex in $G \diamond H$ and $G \neq K_{2}$. Thus, (i) holds.

Let $u v$ and $z w$ be distinct edges of G and let $x \in\{u, v\} \cap\left(V_{G}^{1} \cup V_{G}^{2}\right)$ and $y \in\{z, w\} \cap\left(V_{G}^{1} \cup V_{G}^{2}\right)$. Since $V_{1} \cup V_{2}$ is convex in $G \diamond H$, it follows that $I_{G}(x, y)=I_{G \odot H}(x, y) \subseteq V_{1} \cup V_{2}$. Therefore, $I_{G}(x, y) \subseteq V_{G}^{1} \cup V_{G}^{2}$, showing that (ii) holds.

Let e and e^{\prime} be distinct edges of G with $S_{1}^{e} \cup S_{2}^{e} \neq \varnothing$ and $S_{1}^{e^{\prime}} \cup S_{2}^{e^{\prime}} \neq \varnothing$ and suppose that v and z are incident with e and e^{\prime}, respectively, with $d_{G}(v, z)=d_{G}(\{u, v\},\{z, w\})$. Let $x \in S_{1}^{e} \cup S_{2}^{e}$ and $y \in S_{1}^{e^{\prime}} \cup S_{2}^{e^{\prime}}$. Then $I_{G}[v, z] \subseteq I_{G \diamond H}[x, y]$. Since $V_{1} \cup V_{2}$ is convex, $I_{G \diamond H}[x, y] \subseteq V_{1} \cup V_{2}$. Hence, $v, z \in V_{G}^{1} \cup V_{G}^{2}$. This shows that (iii) holds.

Now, let $u v \in E(G)$ such that $\{u, v\} \cap\left(V_{1} \cup V_{2}\right)=\{v\}$. Since $V_{1} \cup V_{2}$ is convex, (a) holds. Also, (b) holds since f is a CvRDF on $G \diamond H$. Thus, (iv) holds.

Next, let $u v \in E(G)$ such that $\{u, v\} \subseteq\left(V_{1} \cup V_{2}\right)$ and $S_{1}^{u v} \cup S_{2}^{u v} \neq V\left(H^{u v}\right)$. By Theorem 1, (c) holds. Since f is CvRDF on $G \diamond H,(d)$ also holds. Hence, (v) holds.

Conversely, assume that (i), (ii), (iii), and (iv) hold. Let $x \in V_{0}$ and let $u v \in E(G)$ such that $x \in V\left(\{u, v\}+H^{u v}\right)$. Consider the following cases:

Case 1. Suppose that $x \in V_{G}^{0}$, say $x=u$.
Suppose $v \notin V_{G}^{2}$. Then $S_{2}^{u v} \neq \varnothing$ by $(i v)(b)$. Let $p \in S_{2}^{u v}$. Then $p \in V_{2} \cap N_{G \odot H}(u)$.
Case 2. Suppose that $x \in S_{0}^{u v}$.
If $u \in V_{2}$ or $v \in V_{2}$, then $x u \in E(G \diamond H)$ or $x v \in E(G \diamond H)$. Suppose $u, v \notin V_{2}$. Then, by $(i v)(b)$, there exists $q \in S_{2}^{u v} \cap N_{H^{u v}}(x)$. Hence, $q \in V_{2} \cap N_{G \curvearrowright H}(x)$.

Thus, by Case 1 and Case $2, f=\left(V_{0}, V_{1}, V_{2}\right)$ is an RDF on $G \diamond H$.
Next, let $x, y \in V_{1} \cup V_{2}(x \neq y)$ and $u v, z w \in E(G)$ such that $x \in V\left(\{u, v\}+H^{u v}\right)$ and $y \in V\left(\{z, w\}+H^{z w}\right)$. Consider the following cases:

Case 1. $u v=z w$.
If $x=u$ and $y=v$, then $I_{G \diamond H}[x, y]=\{x, y\} \subseteq V_{1} \cup V_{2}$. Suppose that $x, y \in S_{1}^{u v} \cup$ $S_{2}^{u v}$. If $\left|\{u, v\} \cap\left(V_{1} \cup V_{2}\right)\right|=1$, then $S_{1}^{u v} \cup S_{2}^{u v}$ induces a complete subgraph of $H^{u v}$ by $(i v)(a)$. Therefore, $I_{G \odot H}[x, y]=\{x, y\} \subseteq V_{1} \cup V_{2}$. Suppose that $\mid\{u, v\} \cap\left(V_{1} \cup\right.$ $\left.V_{2}\right) \mid=2$. Clearly, $I_{G \diamond H}[x, y] \subseteq V_{1} \cup V_{2}$ if $S_{1}^{u v} \cup S_{2}^{u v}=V\left(H^{u v}\right)$. Suppose $S_{1}^{u v} \cup S_{2}^{u v} \neq$ $V\left(H^{u v}\right)$. Then $V\left(H^{u v}\right) \backslash S_{1}^{u v} \cup S_{2}^{u v}$ is a non-connecting set in $H^{u v}$ by $(v)(c)$. Hence, $N_{H^{u v}}(x) \cap N_{H^{u v}}(y) \subseteq S_{1}^{u v} \cup S_{2}^{u v}$. Therefore, $I_{G \diamond H}[x, y] \subseteq V_{1} \cup V_{2}$.
Case 2. $u v \neq z w$.
Suppose that $x \in\{u, v\}$ and $y \in\{z, w\}$. By $(i i), I_{G \diamond H}[x, y]=I_{G}[x, y] \subseteq V_{G}^{1} \cup V_{G}^{2}$. Suppose that $x \in S_{1}^{u v} \cup S_{2}^{u v}$ and $y \in S_{1}^{z w} \cup S_{2}^{z w}$. Suppose $u v$ and $z w$ are adjacent, say $v=z$. Then $v \in V_{G}^{1} \cup V_{G}^{2}$ by $(i i i)$. Hence, $I_{G \curvearrowright H}[x, y]=\{x, v, y\} \subseteq V_{1} \cup V_{2}$. Next, suppose that $u v$ and $z w$ are non-adjacent. Let a and b be incident with $e=u v$ and $e^{\prime}=z w$, respectively, with $d_{G}(a, b)=d_{G}(\{u, v\},\{z, w\})$. Then $a, b \in V_{G}^{1} \cup V_{G}^{2}$, by (iii). Moreover, $I_{G}[a, b] \subseteq V_{G}^{1} \cup V_{G}^{2}$, by (ii). Therefore, $I_{G \diamond H}(x, y)=I_{G}[a, b] \subseteq V_{1} \cup V_{2}$. Finally, suppose that $x \in S_{1}^{u v} \cup S_{2}^{u v}$ and $y \in\{z, w\}$. Suppose that a and b are the vertices described earlier. If $b=y$, then
$I_{G \curvearrowright H}(x, y)=I_{G}(a, b) \cup\{a\} \subseteq V_{1} \cup V_{2}$, by (ii). Again, by $(i i), I_{G \curvearrowright H}(x, y)=I_{G}[a, b] \subseteq V_{1} \cup V_{2}$ if $b \neq y$.

Therefore, $V_{1} \cup V_{2}$ is convex in $G \diamond H$. Accordingly, f is a CvRDF on $G \diamond H$.
Lemma 1. Let G be a non-complete connected graph and H be any graph of order n. If $W_{0}=\operatorname{Ext}(G), W_{1} \cup W_{2}=V(G) \backslash \operatorname{Ext}(G)$ and $\{u, v\} \cap W_{2} \neq \varnothing$ for each $u v \in E(G)$ such that $|\{u, v\} \cap \operatorname{Ext}(G)| \neq 2$, then $\left.f\right|_{G}=\left(W_{0}, W_{1}, W_{2}\right)$ is a CvRDF on G.

Proof. Let $x \in W_{0}$. Since G is non-complete, there exists $y \in(V(G) \backslash \operatorname{Ext}(G)) \cap N_{G}(x)$. By assumption, this implies that $y \in W_{2}$, showing that f is an RDF on G. Moreover, since $V(G) \backslash \operatorname{Ext}(G)$ is convex in G, it follows that f is a CvRDF on G.

Henceforth, we refer f in Lemma 1 as a CvRDF* on G.
Corollary 3. Let G be a non-complete connected graph and H any graph of order n. Then

$$
\gamma_{C v R}(G \diamond H) \leq \min \left\{\omega_{G}^{C v R}(f): f=\left(W_{0}, W_{1}, W_{2}\right) \text { is a } C v R D F^{*} \text { on } G\right\} .
$$

Proof. Let $k=\min \left\{\omega_{G}^{C v R}(f): f=\left(W_{0}, W_{1}, W_{2}\right)\right.$ is a CvRDF* on $\left.G\right\}$. Let $g=\left(W_{0}, W_{1}, W_{2}\right)$ be a CvRDF* on G such that $\omega_{G}^{C v R}(g)=k$. Let $V_{0}=\operatorname{Ext}(G) \cup\left(\bigcup_{e \in E(G)} V\left(H^{e}\right)\right), V_{1}=W_{1}, V_{2}=W_{2}$, and let $h=\left(V_{0}, V_{1}, V_{2}\right)$. Clearly, $\left.h\right|_{G}=g$. Hence, h satisfies (i). Also, (ii), (iii) and (iv) of Theorem 9 hold. Thus, by Theorem $9, h$ is a CvRDF on $G \diamond H$. Moreover,

$$
\gamma_{C v R}(G \diamond H) \leq \omega_{G \diamond H}(h)=\left|V_{1}\right|+2\left|V_{2}\right|=\left|W_{1}\right|+2\left|W_{2}\right|=\gamma_{C v R}^{*}(G) .
$$

Remark 1. The bound given in Corollary 3 is sharp. It can be verified that for any graph H and positive integer $n \geq 3$, the following holds:

$$
\begin{aligned}
\gamma_{C v R}\left(P_{n} \diamond H\right) & =\min \left\{\omega_{P_{n}}^{C v R}(f): f \text { is a } C v R D F^{*} \text { on } P_{n}\right\} \\
& = \begin{cases}\frac{3 n-4}{2}, & \text { if } n \text { is even } \\
\frac{3 n-5}{2}, & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

For a graph G, the complementary prism, denoted $G \bar{G}$, is formed from the disjoint union of G and its complement \bar{G} by adding a perfect matching between corresponding vertices of G and \bar{G}. For each $v \in V(G)$, let \bar{v} denote the vertex corresponding to v in \bar{G}. Formally, the graph $G \bar{G}$ is formed from $G \cup G$ by adding the edge $v \bar{v}$ for every $v \in V(G)$.

Proposition 5. Let G be a graph on n vertices. Then each of the following holds.
(i) $\gamma_{C v R}(G \bar{G})=2$ if and only if $G=K_{1}$.
(i) $\gamma_{C v R}(G \bar{G})=4$ if and only if $G=K_{2}$ or \bar{K}_{2}.

Proof. (i) Suppose that $G=K_{1}$. Then $G \bar{G}=K_{2}$. By Theorem 7, we are done.
(ii) Suppose that $G=K_{2}$ or $G=\bar{K}_{2}$. Then $G=P_{4}$ and by Theorem 1, $\gamma_{C v R}(G \bar{G})=\gamma_{C v R}\left(P_{4}\right)=4$. Conversely, suppose that $\gamma_{C v R}(G \bar{G})=4$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{C v R}$-function. Then $\omega_{G G}^{C v R}(f)=\left|V_{1}\right|+2\left|V_{2}\right|=4$. Then $\left|V_{2}\right| \leq 2$. If
$\left|V_{2}\right|=0$, then $V_{1}=V(G \bar{G})$. Hence, $G \bar{G}=P_{4}$. This implies that $G \in\left\{K_{2}, \bar{K}_{2}\right\}$. Suppose that $\left|V_{2}\right|=1$, say $V_{2}=\{u\}$. Then $\left|V_{1}\right|=2$. WLOG, asssume that $u \in V(G)$. Suppose $|V(G)| \geq 3$ and let $v, w \in V(G) \backslash\{u\}$. Since $\bar{v}, \bar{w} \notin N_{G \bar{G}}(u), V_{1}=\{\bar{v}, \bar{w}\}$. Because $V_{1} \cup V_{2}$ is convex, one of the following holds:

$$
\begin{aligned}
\bar{u} \in I_{G \bar{G}}[u, z] & \subseteq V_{1} \cup V_{2}, \text { where } z \in\{\bar{v}, \bar{w}\}, \\
v \in I_{G \bar{G}}[u, z] & \subseteq V_{1} \cup V_{2} \text {, where } z \in\{\bar{v}, \bar{w}\}, \\
w \in I_{G \bar{G}}[u, z] & \subseteq V_{1} \cup V_{2} \text {, where } z \in\{\bar{v}, \bar{w}\} .
\end{aligned}
$$

In any case, we have a contradiction. Thus, $|V(G)| \leq 2$. But by statement (i), $|V(G)|=2$. This means that $G \in\left\{K_{2}, \overline{K_{2}}\right\}$. If $\left|V_{2}\right|=2$, then $\left|V_{1}\right|=0$. By Proposition $2, V_{2}$ is a $\gamma_{c o n}$-set in $G \bar{G}$. Let $V_{2}=\{x, y\}$. WLOG, assume that $x \in V(G)$. If $\bar{x}=y$, then $N_{G}[x]=V(G)$ and $N_{\bar{G}}[y]=V(\bar{G})$. This is possible only if $G=K_{1}$, a contradiction. Thus $y \in V(G)$ and $x y \in E(G)$. Now, for each $z \in V_{0}=V(G) \backslash\{x, y\}, x \bar{z} \notin E(G \bar{G})$ and $y \bar{z} \notin E(G \bar{G})$. Hence, $V(G) \backslash\{x, y\}=\varnothing$. Therefore, $G \in\left\{K_{2}, \bar{K}_{2}\right\}$.

Proposition 6. For any connected graph G of order n,

$$
2 \leq \gamma_{C v R}(G \bar{G}) \leq 2 \min \left\{\gamma_{c o n}(G \bar{G}), n\right\} .
$$

In particular,
(i) $\gamma_{C v R}(G \bar{G})=2 \gamma_{c o n}(G \bar{G})$ if there exists a $\gamma_{C v R}-f u n c t i o n ~ f=\left(V_{0}, V_{1}, V_{2}\right)$ with $V_{1}=\varnothing$.
(ii) If $G=K_{n}$, then $\gamma_{C v R}(G \bar{G})=2 n$.

Proof. By Proposition 4, $\gamma_{C v R}(G \bar{G}) \leq 2 \gamma_{c o n}(G \bar{G})$. Define $f=\left(V_{0}, V_{1}, V_{2}\right)$, where $V_{2}=V(G), V_{1}=\varnothing$, and $V_{0}=V(\bar{G})$. Then f is a CvRDF of $G \bar{G}$. Thus $\gamma_{C v R}(G \bar{G}) \leq 2\left|V_{2}\right|=2 n$.

It is worth noting that if $G=P_{4}, \gamma_{\text {con }}(G \bar{G})=8>4$. If $G=P_{5}, \gamma_{\text {con }}(G \bar{G})=4<5$.
The lexicographic product of two graphs G and H is the graph $G[H]$ with $V(G[H])=V(G) \times V(H)$ and $\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in E(G[H])$ if and only if either $u_{1} v_{1} \in E(G)$ or $u_{1}=v_{1}$ and $u_{2} v_{2} \in E(H)$.

For $S \subseteq V(G[H])$, we write

$$
S_{G}=\{x \in V(G):(x, a) \in S \text { for some } a \in V(H)\} .
$$

S_{G} is referred to as the G-projection of S in $G[H]$.
Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a CvRDF on $G[H]$. We write

$$
\begin{aligned}
S_{G}^{0} & =\left\{x \in V(G):(x, a) \in V_{0} \text { for some } a \in V(H)\right\}, \\
S_{G}^{1} & =\left\{x \in V(G):(x, a) \in V_{1} \text { for some } a \in V(H)\right\}, \\
S_{G}^{2} & =\left\{x \in V(G):(x, a) \in V_{2} \text { for some } a \in V(H)\right\}, \\
V_{G}^{0} & =S_{G}^{0} \backslash\left(S_{G}^{1} \cup S_{G}^{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
V_{G}^{1} & =S_{G}^{1} \backslash\left(S_{G}^{0} \cup S_{G}^{2}\right), \\
V_{G}^{2} & =V(G) \backslash\left(V_{G}^{0} \cup V_{G}^{1}\right), \text { and } \\
S_{f}^{0} & =I\left(S_{G}^{1} \cup S_{G}^{2}\right) \cap\left(S_{G}^{1} \cup S_{G}^{2}\right) .
\end{aligned}
$$

Note that if $V_{G}^{1} \neq V(G)$, then $V_{G}^{2} \neq \varnothing$ because f is a Roman dominating function on $G[H]$.

Theorem 10. Let G be a non-trivial connected graph and K_{m} a complete graph. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a CvRDF on $G\left[K_{m}\right]$ if and only if each of the following conditions hold:
(i) $\left.g\right|_{f}=\left(V_{G}^{0}, V_{G}^{1}, V_{G}^{2}\right)$ is a CvRDF on G.
(ii) $S_{G}^{1} \cup S_{G}^{2}$ is convex in G.
(iii) $\{x\} \times V\left(K_{m}\right) \subseteq V_{1} \cup V_{2}$ for $x \in S_{f}^{0}$.
(iv) For each $v \in\left(S_{G}^{0} \backslash S_{G}^{2}\right) \cap S_{G}^{1}$, there exists $w \in S_{G}^{2} \cap N_{G}(v)$.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a CvRDF on $G\left[K_{m}\right]$. Consider the function $g_{f}=\left(V_{G}^{0}, V_{G}^{1}, V_{G}^{2}\right)$ on G. Let $x \in V_{G}^{0}$ and let $q \in V\left(K_{m}\right)$. Then $(x, q) \in V_{0}$. Since f is a CvRDF on $G\left[K_{m}\right]$, there exists $(y, t) \in V_{2}$ such that $(x, q)(y, t) \in E\left(G\left[K_{m}\right]\right)$. This implies that $x y \in E(G)$ and $y \in V_{G}^{2}$. Thus, $\left.g\right|_{f}$ is an RDF on G. Let $u, v \in V_{G}^{1} \cup V_{G}^{2}$ such that $u \neq v$. Let $x \in I_{G}(u, v)$. Let $P(u, v)=\left[u, u_{1}, u_{2}, \ldots, u_{k}, v\right]$ be a $u-v$ geodesic in G with $x=u_{r}$ for some $1 \leq r \leq k$. Consider the following cases:

Case 1. $u, v \in V_{G}^{1}\left(\right.$ or $\left.u, v \in V_{G}^{2}\right)$
Pick any $t \in V\left(K_{m}\right)$. Then $(u, t) \in V_{1}$. Then $P\left((u, t),(v, t)=\left[(u, t),\left(u_{1}, t\right), \ldots,\left(u_{r-1}, t\right),\left(u_{r}, t\right), \ldots,\left(u_{k}, t\right),(v, t)\right]\right.$ is a $(u, t)-(v, t)$ geodesic in $G\left[K_{m}\right]$. Since $V_{1} \cup V_{2}$ is a convex set in $G\left[K_{m}\right]$, it follows that $\left(u_{r}, t\right) \in V_{1} \cup V_{2}$. This implies that $x=u_{r} \in V_{G}^{1} \cup V_{G}^{2}$. A similar argument is used to show that $x \in V_{G}^{1} \cup V_{G}^{2}$ whenever $u, v \in V_{G}^{2}$.
Case 2. $u \in V_{G}^{1}$ and $v \in V_{G}^{2}$
Pick any $s \in V\left(K_{m}\right)$ such that $(v, s) \in V_{2}$. Then $(u, s) \in V_{1}$ and $P((u, s),(v, s))=\left[(u, s),\left(u_{1}, s\right), \ldots,\left(u_{r-1}, s\right),\left(u_{r}, s\right), \ldots,\left(u_{k}, s\right),(v, s)\right]$ is a $(u, s)-(v, s)$ geodesic in $G\left[K_{m}\right]$. Since $V_{1} \cup V_{2}$ is a convex set in $G\left[K_{m}\right]$, it follows that $\left(u_{r}, s\right) \in V_{1} \cup V_{2}$. This implies that $x=u_{r} \in V_{G}^{1} \cup V_{G}^{2}$.

Therefore, g is a CvRDF on G, showing that (i) holds.
Let $x, y \in S_{G}^{1} \cup S_{G}^{2}$ with $x \neq y$ and let $z \in I_{G}(x, y)$. Let $P(x, y)=\left[x, x_{1}, x_{2}, \ldots, x_{k}, y\right]$ be an $x-y$ geodesic in G where $z=x_{j}$ for some $1 \leq j \leq k$. Let $a, b \in V\left(K_{m}\right)$ such that $(x, a),(y, b) \in V_{1} \cup V_{2}$. Then $P((x, a),(y, b))=\left[(x, a),\left(x_{1}, a\right),\left(x_{2}, a\right), \ldots,\left(x_{k}, a\right),(y, b)\right]$ is an $(x, a)-(y, b)$ geodesic in $G\left[K_{m}\right]$. Since $V_{1} \cup V_{2}$ is a convex set in $G\left[K_{m}\right],\left(x_{j}, a\right) \in V_{1} \cup V_{2}$. Hence, $x_{j} \in S_{G}^{1} \cup S_{G}^{2}$. This shows that $S_{G}^{1} \cup S_{G}^{2}$ is convex in G, i.e., (ii) holds.

Next, let $x \in S_{f}^{0}$ and let $p \in V\left(K_{m}\right)$. Then $x \in S_{G}^{1} \cup S_{G}^{2}$ and there exists $y, z \in S_{G}^{1} \cup S_{G}^{2}$ such that $x \in I_{G}(y, z)$. Again, by convexity of $V_{1} \cup V_{2},(x, p) \in V_{1} \cup V_{2}$. This shows that (iii) holds.

Finally, let $v \in\left(S_{G}^{0} \backslash S_{G}^{2}\right) \cap S_{G}^{1}$ and let $a \in V\left(K_{m}\right)$ such that $(v, a) \in V_{0}$. Since f is a CvRDF on $G\left[K_{m}\right]$, there exists $(w, b) \in V_{2}$ such that $(v, a)(w, b) \in E\left(G\left[K_{m}\right]\right)$. Hence, $w \in S_{G}^{2}$ and $v \in N_{G}(w)$. Hence, (iv) holds.

Conversely, assume that $(i),(i i),(i i i)$, and (iv) hold. Let $(v, p) \in V_{0}$. Then $v \in S_{G}^{0}$. If $v \in S_{G}^{2}$, then $(v, q) \in V_{2}$ for some $q \in V\left(K_{m}\right)$ and $(v, p)(v, q) \in E\left(G\left[K_{m}\right]\right)$. Suppose $v \notin S_{G}^{2}$. Suppose further that $v \in S_{G}^{1}$. Then by (iv), there exists $w \in S_{G}^{2}$ such that $v \in N_{G}(w)$. Let $c \in V\left(K_{m}\right)$ such that $(w, c) \in V_{2}$. Then $(v, p)(w, c) \in E(G[H])$. Next, suppose that $v \notin S_{G}^{1} \cup S_{G}^{2}$. Then $v \in V_{G}^{0}$. By (i), there exists $z \in V_{G}^{2}$ such that $v z \in E(G)$. Let $d \in V\left(K_{m}\right)$ such that $(z, d) \in V_{2}$. Then $(v, p)(z, d) \in E\left(G\left[K_{m}\right]\right)$. Thus f is an RDF on $G\left[K_{m}\right]$.

Now, let $V_{1} \cup V_{2}=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$. Then $S=S_{G}^{1} \cup S_{G}^{2}$ and $T_{x} \subseteq V\left(K_{m}\right)$ for each $x \in S$. Morever, by (iii), $T_{x}=V\left(K_{m}\right)$ for each $x \in I_{G}(S) \cap S$. Thus, by Theorem 2, $V_{1} \cup V_{2}$ is convex in $G\left[K_{m}\right]$. Therefore, f is a CvRDF on $G\left[K_{m}\right]$.

Lemma 2. Let G be a non-trivial connected graph with $G \neq K_{2}$ and let m be any positive integer. If $h=\left(W_{0}, W_{1}, W_{2}\right)$ is a CvRDF on G such that

$$
k=\omega_{C v R}(h)+(m-1)\left|S_{h}^{0}\right|=\min \left\{\omega_{G}^{C v R}\left(h^{\prime}\right)+(m-1) \mid S_{h^{\prime}}^{0}\right\},
$$

then $W_{1} \subseteq S_{h}^{0}$.
Proof. Suppose there exists $x \in W_{1} \backslash S_{h}^{0}$. Suppose $x \in N_{G}\left(W_{0}\right)$, say $y \in W_{0} \cap N_{G}(x)$. Since h is an RDF on G, there exists $v \in W_{2}$ such that $y \in N_{G}(v)$. By convexity of $W_{1} \cup W_{2}, x v \in E(G)$. Let $W_{0}^{\prime}=W_{0} \cup\{x\}, W_{1}^{\prime}=W_{1} \backslash\{x\}$, and $W_{2}^{\prime}=W_{2}$. Then $h^{\prime}=\left(W_{0}^{\prime}, W_{1}^{\prime}, W_{2}^{\prime}\right)$ is an RDF on G. Let $p, q \in W_{1}^{\prime} \cup W_{2}^{\prime}$ such that $p \neq q$. Then $p, q \in W_{1} \cup W_{2}$ and $I_{G}(p, q) \subseteq W_{1} \cup W_{2}$ since $W_{1} \cup W_{2}$ is convex. Let $z \in I_{G}(p, q)$. Since $x \in W_{1} \backslash S_{h}^{0}, x \notin I_{G}\left(W_{1} \cup W_{2}\right)$. Thus, $z \neq x$. Hence, $z \in W_{1}^{\prime} \cup W_{2}^{\prime}$, i.e., $I_{G}(p, q) \subseteq W_{1}^{\prime} \cup W_{2}^{\prime}$, showing that $W_{1}^{\prime} \cup W_{2}^{\prime}$ is convex in G. Therefore, h^{\prime} is a CvRDF on G and $\omega_{G}^{C v R}\left(h^{\prime}\right)=\left|W_{1}^{\prime}\right|+2\left|W_{2}^{\prime}\right|=\left|W_{1}\right|-1+2\left|W_{2}\right|<\omega_{G}^{C v R}(h)$, a contradiction. Thus, $x \notin N_{G}\left(W_{0}\right)$. Next, suppose $x \in N_{G}\left(W_{2}\right)$, say $\{z\} \in W_{2} \cap N_{G}(x)$. Following the argument above, this is also not possible. Thus, $x \notin N_{G}\left(W_{2}\right)$. Therefore, $N_{G}(x) \subseteq W_{1}$. Suppose that $N_{G}(x) \subseteq W_{1} \backslash S_{h}^{0}$. Suppose there exists $y \in N_{G}(x) \cap\left(W_{1} \backslash S_{h}^{0}\right)$. Since $|V(G)| \geq 3$, there exists $z \in N_{G}(x) \cup N_{G}(y)$. Moreover, since $x, y \notin S_{h}^{0}$, $z \in N_{G}(x) \cap N_{G}(y)$. It follows that $y, z \in W_{1} \backslash S_{h}^{0}$. Let $W_{0}^{*}=W_{0} \cup\{x, z\}$, $W_{1}^{*}=W_{1} \backslash\{x, z, y\}$, and $W_{2}^{*}=W_{2} \cup\{y\}$. Then $h^{*}=\left(W_{0}^{*}, W_{1}^{*}, W_{2}^{*}\right)$ is a CvRDF on G and $\omega_{G}^{C v R}\left(h^{*}\right)<\omega_{G}^{C v R}(h)$. Since $S_{h^{*}}^{0} \subseteq S_{h}^{0}$, it follows that $\omega_{G}^{C v R}\left(h^{*}\right)+(m-1)\left|S_{h^{*}}^{0}\right|<k$, a contradiction. Therefore, $N_{G}(x) \cap\left(W_{1} \cap S_{h}^{0}\right) \neq \varnothing$. Let $v_{x} \in N_{G}(x) \cap\left(W_{1} \cap S_{h}^{0}\right)$. Let $V_{0}=W_{0} \cup\{x\}, V_{1}=W_{1} \backslash\left\{x, v_{x}\right\}$ and $V_{2}=W_{2} \cup\left\{v_{x}\right\}$. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a CvRDF on G and $\omega_{G}^{C v R}(f)=\omega_{G}^{C v R}(h)$. Since $x \notin S_{f}^{0},\left|S_{f}^{0}\right|<\left|S_{h}^{0}\right|$. Thus, $\omega_{G}^{C v R}(f)+(m-1)\left|S_{f}^{0}\right|<k$, a contradiction. Therefore, $W_{1} \backslash S_{h}^{0}=\varnothing$, i.e, $W_{1} \subseteq S_{h}^{0}$.

Corollary 4. Let G be a non-trivial connected graph and K_{m} be a complete graph of order $m \geq 1$. Then

$$
\gamma_{C v R}\left(G\left[K_{m}\right]\right)=\min \left\{\omega_{G}^{C v R}(g)+(m-1)\left|S_{g}^{0}\right|: g \text { is a CvRDF on } G\right\} .
$$

Proof. Let $k=\min \left\{\omega_{G}^{C v R}(g)+(m-1)\left|S_{g}^{0}\right|: g\right.$ is a CvRDF on $\left.G\right\}$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{C v R}$-function on $G\left[K_{m}\right]$. Then $g=\left(V_{G}^{0}, V_{G}^{1}, V_{G}^{2}\right)$ is a CvRDF on G, by Theorem 10 (i). For each $x \in S_{G}^{1}$, let $D_{x}=\left\{(x, p) \in V_{1}: p \in V\left(K_{m}\right)\right\}$. For each $y \in S_{G}^{2}$, let $R_{y}=\left\{(y, q) \in V_{2}: q \in V\left(K_{m}\right)\right\}$. Since f is a $\gamma_{C v R}$-function, $S_{f}^{0} \subseteq V_{G}^{1}$. Hence, $S_{f}^{0} \cap S_{G}^{1}=S_{f}^{0}$ and $S_{f}^{0} \cap S_{G}^{2}=\varnothing$. Consequently,

$$
\begin{aligned}
\gamma_{C v R}\left(G\left[K_{m}\right]\right) & =\omega_{G\left[K_{m}\right]}(f) \\
& =\left|V_{1}\right|+2\left|V_{2}\right| \\
& =\sum_{x \in S_{G}^{1} \backslash S_{f}^{0}}\left|D_{x}\right|+\sum_{x \in S_{f}^{0}}\left|D_{x}\right|+2 \sum_{y \in S_{G}^{2}}\left|R_{y}\right| \\
& \geq\left|S_{G}^{1} \backslash S_{f}^{0}\right|+m\left|S_{f}^{0}\right|+2\left|S_{G}^{2}\right| \\
& =\left|S_{G}^{1}\right|+2\left|S_{G}^{2}\right|+(m-1)\left|S_{f}^{0}\right| \\
& \geq\left|V_{G}^{1}\right|+2\left|V_{G}^{2}\right|+(m-1)\left|S_{g}^{0}\right| \\
& =\omega^{C v R}(g)+(m-1)\left|S_{g}^{0}\right| \geq k .
\end{aligned}
$$

Let $h=\left(W_{0}, W_{1}, W_{2}\right)$ be a CvRDF on G such that $k=\min \left\{\omega_{G}^{C v R}(g)+(m-1)\left|S_{q}^{0}\right|: g\right.$ is a CvRDF on $\left.G\right\}$. By Lemma 2, $W_{1} \subseteq S_{g}^{0}$. Let $p \in V\left(K_{m}\right)$. Set $V_{1}=\left(W_{1} \times\{p\}\right) \cup\left[\left(\left(W_{1} \cup W_{2}\right) \cap S_{g}^{0}\right) \times\left(V\left(K_{m}\right) \backslash\{p\}\right)\right], V_{2}=W_{2} \times\{p\}$, and $V_{0}=\left(W_{0} \times V\left(K_{m}\right)\right) \cup\left(\left(W_{1} \backslash S_{g}^{0}\right) \times V\left(K_{m}\right)\right)$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$. Then $V_{G}^{0}=W_{0}$, $V_{G}^{1}=W_{1}$, and $V_{G}^{2}=W_{2}$. Hence, $g=h$ is a CvRDF on G. Also, $S_{G}^{1} \cup S_{G}^{2}=W_{1} \cup W_{2}$ is convex in G since h is a CvRDF on G. Clearly, (iii) and (iv) of Theorem 10 is satisfied. Hence, f is a CvRDF on $G\left[K_{m}\right]$ and

$$
\begin{aligned}
\gamma_{C v R}\left(G\left[K_{m}\right]\right) \leq \omega_{G\left[K_{m}\right]}(f) & =\left|V_{1}\right|+2\left|V_{2}\right| \\
& =\left|W_{1}\right|+(m-1)\left|\left(W_{1} \cup W_{2}\right) \cap S_{g}^{0}\right|+2\left|W_{2}\right| \\
& \leq\left|W_{1}\right|+2\left|W_{2}\right|+(m-1)\left|S_{g}^{0}\right| \\
& =\omega_{G}^{C v R}(g)+(m-1)\left|S_{g}^{0}\right|=k .
\end{aligned}
$$

This proves the desired equality.
For each $x \in S_{G}^{1} \cup S_{G}^{2}$, we write

$$
\begin{aligned}
& T_{x}^{0}=\left\{p \in V(H):(x, p) \in V_{0}\right\}, \\
& T_{x}^{1}=\left\{p \in V(H):(x, p) \in V_{1}\right\}, \text { and } \\
& T_{x}^{2}=\left\{p \in V(H):(x, p) \in V_{2}\right\} .
\end{aligned}
$$

Theorem 11. Let G and H be connected non-complete graphs with $\gamma_{c l}(G) \geq 2$. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is CvRDF on $G[H]$ if and only if each of the following conditions hold:
(i) $S_{G}^{1} \cup S_{G}^{2}$ is a clique dominating set in G.
(ii) $T_{x}^{1} \cup T_{x}^{2}$ is a clique in H for each $x \in S_{G}^{1} \cup S_{G}^{2}$.
(iii) T_{x}^{2} is a (clique) dominating set in H for each $x \in S_{G}^{0} \backslash N_{G}\left(S_{G}^{2}\right)$.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a CvRDF on $G[H]$ such that $\gamma_{c l}(G) \geq 2$. Then (i) and $(i i)$ hold by Theorem 4. Now, let $x \in S_{G}^{0} \backslash N_{G}\left(S_{G}^{2}\right)$ and let $p \in V(H) \backslash\left(T_{x}^{1} \cup T_{x}^{2}\right)$. Since f is a CvRDF on $G[H]$, there exists $(x, q) \in V_{2}$ such that $(x, p)(x, q) \in E(G[H])$. Hence, $x \in S_{G}^{2}$ and there exists $q \in T_{x}^{2}$ such that $p q \in E(H)$. It follows that T_{x}^{2} is a dominating set in H, showing that (iii) holds.

For the converse, suppose that (i), (ii), and (iii) hold. Let $(x, p) \in V_{0}$. Then $x \in S_{G}^{0}$. If $x \in\left(N_{G}\left(S_{G}^{2}\right)\right)$, then there exists $y \in S_{G}^{2} \cap N_{G}(x)$. Let $r \in T_{y}^{2}$. Then $(y, r) \in V_{2} \cap N_{G[H]}((x, p))$. If $x \notin\left(N_{G}\left(S_{G}^{2}\right)\right)$, then there exists $q \in T_{x}^{2} \cap N_{H}(p)$ by (iii). Hence, $(x, q) \in V_{2} \cap N_{G[H]}((x, p))$, Therefore, f is an RDF on $G[H]$.

Now, let $V_{1} \cup V_{2}=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$. Then $S=S_{G}^{1} \cup S_{G}^{2}$ and $T_{x}=T_{x}^{1} \cup T_{x}^{2}$. By (i), (ii) and Theorem $3, V_{1} \cup V_{2}$ is convex in $G[H]$. Therefore, f is a CvRDF on $G[H]$.

Corollary 5. Let G and H be connected non-complete graphs with $\gamma_{c l}(G) \geq 2$. Then

$$
\gamma_{C v R}(G[H])=2 \gamma_{c l}(G)
$$

Proof. Let D be a $\gamma_{c l}$-set in G and let $p \in V(H)$. Let $V_{1}=\varnothing, V_{2}=D \times\{p\}$, and $V_{0}=[(V(G) \backslash D) \times V(H)] \cup[D \times(V(H) \backslash\{p\})]$. Then $S_{G}^{0}=V(G) \backslash D, S_{G}^{1}=\varnothing$, and $S_{G}^{2}=D$. By assumption, $S_{G}^{1} \cup S_{G}^{2}=D$ is a clique dominating set in G. Also, $T_{x}^{2}=\{p\}$ is a clique set in H for each $x \in S_{G}^{2}$. Moreover, $S_{G}^{0} \backslash N_{G}\left(S_{G}^{2}\right)=\varnothing$. Hence, (i), (ii), and (iii) of Theorem 11 hold. Therefore, $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a CvRDF on $G[H]$ and

$$
\begin{aligned}
\gamma_{C v R}(G[H]) & \leq \omega_{G[H]}^{C v R}(f) \\
& =2\left|V_{2}\right| \\
& =2 \gamma_{c l}(G)
\end{aligned}
$$

Now, let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{C v R}$-function on $G[H]$. By Theorem 11, $S_{G}^{1} \cup S_{G}^{2}$ is a clique dominating set in G. Since G is non-complete and $\gamma_{c l}(G) \geq 2,\left|S_{G}^{2}\right| \geq 2$. Furthermore, S_{G}^{2} is a clique dominating set in G. Therefore,

$$
\begin{aligned}
\gamma_{C v R}(G[H])=\omega_{G[H]}^{C v R}(f) & =\left|V_{1}\right|+2\left|V_{2}\right| \\
& =\sum_{x \in S_{G}^{1}}\left|T_{x}^{1}\right|+2 \sum_{x \in S_{G}^{2}}\left|T_{x}^{2}\right| \\
& \geq\left|S_{G}^{1}\right|+2\left|S_{G}^{2}\right| \\
& \geq 2 \gamma_{c l}(G) .
\end{aligned}
$$

This proves the desired equality.
Theorem 12. Let G and H be non-complete connected graphs with $\gamma(G)=1$. Then

$$
\gamma_{C v R}(G[H])= \begin{cases}2, & \text { if } \gamma(H)=1 \\ 4, & \text { if } \gamma(H) \neq 1\end{cases}
$$

Proof. If $\gamma(H)=1$, then $\gamma(G[H])=1$. By Corollary $1, \gamma_{C v R}(G[H])=2$. Next, let $\gamma(H) \neq$ 2. Let v be a dominating vertex of G. Pick any $w \in N_{G}(v)$ and $p \in V(H)$. Let $V_{0}=[V(G) \backslash$ $\{v, w\} \times V(H)] \cup[\{v, w\} \times V(H) \backslash\{p\}], \quad V_{1}=\varnothing$, and $V_{2}=\{v, w\} \times\{p\}$. Let $(x, q) \in V_{0}$. If $x \in V(G) \backslash\{v, w\}$, then $x v \in E(G)$. Hence, $(v, p) \in V_{2}$ and $(x, q)(v, p) \in E(G[H])$. If $x=v$, then $(w, p) \in V_{2} \cap N_{G[H]}((x, q))$ and if $x=w$, then $(v, p) \in V_{2} \cap N_{G[H]}((x, q))$. Therefore, $g=\left(V_{0}, V_{1}, V_{2}\right)$ is an RDF on $G[H]$. Now, $V_{1} \cup V_{2}=V_{2}$ and $\left\langle V_{2}\right\rangle \cong K_{2}$. Hence, $V_{1} \cup V_{2}$ is convex in $G[H]$. This shows that g is a CvRDF on $G[H]$. Since $\omega_{G[H]}^{C v R}(g)=2\left|V_{2}\right|=4, \gamma_{C v R}(G[H])=4$ by Proposition 3.

The Cartesian product $G \times H$ of two graphs G and H is the graph with $V(G \times H)=V(G) \times V(H)$ and $\left(u, u^{\prime}\right)\left(v, v^{\prime}\right) \in E(G \times H)$ if and only if either $u v \in E(G)$ and $u^{\prime}=v^{\prime}$ or $u=v$ and $u^{\prime} v^{\prime} \in E(H)$.

Lemma 3. Let G and H be a connected graphs. If $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a CvRDF on $G \square H$ then $V_{1} \cup V_{2}=\left(S_{G}^{1} \cup S_{G}^{2}\right) \times\left(S_{H}^{1} \cup S_{H}^{2}\right)$.

Proof. If $(x, p) \in V_{1}$, then $x \in S_{G}^{1}$ and $p \in S_{H}^{1}$. Thus $(x, p) \in S_{G}^{1} \times S_{H}^{1}$. Also, if $(x, p) \in V_{2}, x \in S_{G}^{2}$ and $p \in S_{H}^{2}$. Thus $(x, p) \in S_{G}^{2} \times S_{H}^{2}$. Hence, $V_{1} \cup V_{2} \subseteq\left(S_{G}^{1} \cup S_{G}^{2}\right) \times\left(S_{H}^{1} \cup S_{H}^{2}\right)$.

Now, let $(z, q) \in\left(S_{G}^{1} \cup S_{G}^{2}\right) \times\left(S_{H}^{1} \cup S_{H}^{2}\right)$. Suppose that $(z, q) \in V_{0}$. Suppose $z \in S_{G}^{1}$ and $q \in S_{H}^{1}$. Since f is an RDF, there exists $(w, t) \in V_{2} \cap N_{G[H]}((z, q))$. Suppose $w=z$. Then $t q \in E(H)$. Let $y \in V(G)$ such that $(y, q) \in V_{1}$. Let $P(y, z)=\left[y_{1}, y_{2}, \ldots, y_{k}\right]$ where $y_{1}=y$ and $y_{k}=z$ be a $y-z$ geodesic in G for some $k \geq 1$. Then, $P((y, q),(z, t))=\left[\left(y_{1}, q\right),\left(y_{2}, q\right), \ldots,\left(y_{k}, q\right),(z, t)\right]$ is also $(y, q)-(z, t)$ geodesic in $G \square H$, a contradiction to our assumption that $V_{1} \cup V_{2}$ is convex. Suppose $w \neq z$. Then $w z \in E(G)$ and $t=q$. Since $z \in S_{G}^{1}$, there exists $r \in V(H)$ such that $(z, r) \in V_{1}$. Let $P(q, r)=\left[q_{1}, q_{2}, \ldots, q_{m}, z\right]$ where $q_{1}=q$ and $q_{m}=r$ be a $q-r$ geodesic in H. Then $P((w, q)(z, r))=\left[(w, q),\left(z, q_{1}\right),\left(z, q_{2}\right), \ldots,\left(z, q_{m}\right)\right]$ is a $(w, q)-(z, r)$ geodesic in $G \square H$, a contradiction to our assumption that $V_{1} \cup V_{2}$ is convex. Similar arguments can be used to show that a contradiction is obtained when $z \in S_{G}^{1}, q \in S_{H}^{2}$ or $z \in S_{G}^{2}, q \in S_{H}^{1}$ or $z \in S_{G}^{1}$, $q \in S_{H}^{2}$.

Therefore $(z, q) \in V_{1} \cup V_{2}$ showing that $\left(S_{G}^{1} \cup S_{G}^{2}\right) \times\left(S_{H}^{1} \cup S_{H}^{2}\right) \subseteq V_{1} \cup V_{2}$. This proves the desired equality.

Theorem 13. Let G and H be a connected graphs. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a CvRDF on $G \square H$ if and only if the following conditions hold:
(i) for each $x \in S_{G}^{0}$ and $p \in T_{x}^{0}$, there exists $q \in T_{x}^{2} \cap N_{H}(p)$ or $y \in S_{G}^{2} \cap N_{G}(x)$ with $q=p \in T_{y}^{2}$
(ii) $V_{1} \cup V_{2}=\left(S_{G}^{1} \cup S_{G}^{2}\right) \times\left(S_{H}^{1} \cup S_{H}^{2}\right)$ and
(a) $S_{G}^{1} \cup S_{G}^{2}$ is a convex dominating set in G and $S_{H}^{1} \cup S_{H}^{2}=V(H)$ or
(b) $S_{H}^{1} \cup S_{H}^{2}$ is a convex dominating set in G and $S_{G}^{1} \cup S_{G}^{2}=V(G)$.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a CvRDF on $G \square H$ and let $x \in S_{G}^{0}$ and $p \in T_{x}^{0}$. Then $(x, p) \in V_{0}$. This shows that (i) holds. By Lemma 3, $V_{1} \cup V_{2}=\left(S_{G}^{1} \cup S_{G}^{2}\right) \times\left(S_{H}^{1} \cup S_{H}^{2}\right)$. Hence, by Theorem 6, (ii) holds.

Conversely, suppose that (i) and (ii) hold. By (i). Let $(x, p) \in V_{0}$. Then $x \in S_{G}^{0}$ and $p \in T_{x}^{0}$. By (i), there exists $(y, q) \in N_{G \square H}((x, p))$. This implies that f is an RDF on $G \square H$. By (a) and $(b), S_{G}^{1} \cup S_{G}^{2}$ and $S_{H}^{1} \cup S_{H}^{2}$ are convex sets in G and H, respectively. Hence, by Theorem 5, $V_{1} \cup V_{2}$ is convex in $G \square H$. Therefore, f is a CvRDF on $G \square H$.

Corollary 6. Let G and H be connected graphs of orders m and n, respectively. Then

$$
\gamma_{C v R}(G \square H) \leq \min \left\{n \cdot \gamma_{C v R}(G), m \cdot \gamma_{C v R}(H)\right\} .
$$

Proof. Let $g=\left(W_{0}, W_{1}, W_{2}\right)$ be a $\gamma_{C v R}$-function on G. Set $V_{0}=W_{0} \times V(H)$, $V_{1}=W_{1} \times V(H)$, and $V_{2}=W_{2} \times V(H)$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$. Then $S_{G}^{0}=W_{0}$, $S_{G}^{1}=W_{1}$, and $S_{G}^{2}=W_{2}$. Hence, $S_{G}^{1} \cup S_{G}^{2}=W_{1} \cup W_{2}$ is a convex dominating set in G and $S_{H}^{1} \cup S_{H}^{2}=V(H)$. Hence, by Theorem 13, $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a CvRDF on $G \square H$ and

$$
\begin{aligned}
\gamma_{C v R}(G \square H) & \leq \omega_{G \square R}^{C v R}(f) \\
& =\left|V_{1}\right|+2\left|V_{2}\right| \\
& =\left|W_{1} \times V(H)\right|+2\left|W_{2} \times V(H)\right| \\
& =|V(H)| \times\left(\left|W_{1}\right|+2\left|W_{2}\right|\right) \\
& =n\left(\left|W_{1}\right|+2\left|W_{2}\right|\right) \\
& =n \cdot \gamma_{C v R}(G) .
\end{aligned}
$$

A similar argument is used to show that $\gamma_{C v R}(G \square H) \leq m \cdot \gamma_{C v R}(H)$. Hence, $\gamma_{C v R}(G \square H) \leq \min \left\{n \cdot \gamma_{C v R}(G), m \cdot \gamma_{C v R}(H)\right\}$.

Remark 2. The bound given in Corollary 6 is sharp. It can be verified that for any connected graph H of order $m, \gamma_{C v R}\left(K_{n} \square H\right)=2 m=\gamma_{C v R}\left(K_{n}\right) \cdot m$.

4. Conclusion

The concept of convex Roman domination in a graph has been investigated further in this study. Specifically, convex Roman dominating functions on graphs resulting from the corona, edge corona, complementary prism, lexicographic, and Cartesian product of graphs have been characterized. These characterizations have been utilized to derive bounds or exact values for the convex Roman domination number of each of these graphs. Interested researchers may investigate this concept for other graphs not considered in this paper. Moreover, it may be interesting to investigate the complexity of the convex Roman domination problem and explore some relationships, if any, of this newly defined parameter with other existing and related parameters to it.

Acknowledgements

The authors would like to thank the referees for the invaluable comments and suggestions they gave us which led to the improvement of the paper. The authors are also grateful to the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP)- Philippines and MSU-Iligan Institute of Technology for funding this research.

References

[1] M. Adabi, E. Ebrahimi Targhi, N. Jafari Rad, and M. Saied Moradi. Properties of independent Roman domination in graphs. Australasian Journal of Combinatorics, 52:11-18, 2012.
[2] H.A. Ahangar, M.A. Henning, V. Samodivkin, and I.G. Yero. Total Roman domination in graphs. Applicable Analysis and Discrete Mathematics, 10(2):501-517, 2016.
[3] M.P. Alvarez-Ruiz, T. Mediavilla-Gradolph, S.M. Sheikholeslami, J.C. ValenzuelaTripodoro, and I.G. Yero. On the strong Roman domination number of graphs. Discrete Applied Mathematics, 231:44-59, 2017.
[4] S. Banerjee, J.M. Keil, and D. Pradhan. Perfect Roman domination in graphs. Theoritical Computer Science, 796:1-21, 2019.
[5] R.A. Beeler, T.W. Haynes, and S.T. Hedetnieme. Double Roman domination. Discrete Applied Mathematics, 211:23-29, 2016.
[6] G. Chartrand, J. Fink, and P. Zhang. Convexity in Graphs. Discrete Applied Mathematics, (116):115-126, 2002.
[7] M. Chellali, T.W. Haynes, and S.T. Hedetnieme. Roman $\{2\}$ domination. Discrete Applied Math, 204:22-28, 2016.
[8] E.J. Cockayne, P.A. Deryer, S.M. Hedetnieme, and S.T. Hedetnieme. Roman Domination in Graphs. Discrete Mathematics, 278(13):11-22, 2004.
[9] E.L. Enriquez and S.R. Canoy Jr. On a variant of convex domination in a graph. International Journal of Mathematical Analysis, 9(32):1585-1592, 2015.
[10] R.J. Fortosa and S.R. Canoy Jr. Convex Roman dominating function in graphs. European Journal of Pure and Applied Mathematics, 16(3):1705-1716, 2023.
[11] F. Harary and J. Nieminen. Convexity in graphs. Journal of Differential Geometry, 16(2):185-190, 1981.
[12] T.W. Haynes, S.T. Hedetneme, and P.J. Slater. Distance in Graphs. Marcel Dekker, New York, 1980.
[13] M.A. Henning, W.F. Klostermeyer, and G. MacGillivray. Perfect Roman domination in trees. Discrete Applied Mathematics, 236:235-245, 2018.
[14] S.R. Canoy Jr. A short note on convexity and convex domination in $G\left[K_{m}\right]$. Applied Mathematical Sciences, 8(115):5737-5741, 2014.
[15] S.R. Canoy Jr and I.J.L. Garces. Convex sets under some graph operations. Graphs and Combinatorics, 18(4):787-793, 2002.
[16] K. Kammerling and L. Volkman. Roman k-domination in graphs. Journal of the Korean Mathematical Society, 46(6):1309-1318, 2009.
[17] M.A. Labendia and S.R. Canoy Jr. Convex Dominatioin in the composition and Cartesian product of graphs. Czechoslovak Mathematical Journal, 62:1003-1009, 2012.
[18] M. Lemanska. Weakly convex and convex domination numbers. Opuscula Mathematica, 24(2):181-188, 2004.
[19] M.H. Muddebiha and Sumangaladevi. Connected Roman domination in graphs. International Journal of Research and Engineering Technology, 2(10):333-340, 2013.
[20] L.M. Paleta and F.P. Jamil. On perfect Italian domination in graphs. Discrete Mathematics, Algorithms and Applications, page 2350085, 2023.
[21] I.M. Pelayo. On convexity in graphs. Technical report, Online: http://www. ma3. upc. es/users/pelayo/research/Definitions. pdf., pages 1-21, 2004.
[22] P.R.L. Pushpam and T.N.M. Malini Mai. Edge Roman domination in graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 69:175-182, 2009.
[23] C.S. ReVelle and K.E. Rosing. Defendens imperium romanum: a classical problem in military strategy. Amerrican Mathematical Monthly, 107(7):585-594, 2000.
[24] I. Stewart. Defend the Roman Empire! Scientific American, 281(6):136-138, 1999.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v17i2.5205
 Email addresses: ronajane.fortosa@g.msuiit.edu.ph (R.J. Fortosa),
 sergio.canoy@g.msuiit.edu.ph (S. Canoy), ferdinand.jamil@g.msuiit.edu.ph (F. Jamil)

