D-Semiprime Rings
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i3.5210Keywords:
Derivation, semiprime ring, Lie Ideal, Jordan IdealAbstract
Let R be an associative and 2-torsion-free ring with an identity. in this work, we will generalize the results of differentially prime rings in [18] by applying the hypotheses in a differentially semiprime rings. In particular, we have proved that if R is a D-semiprime ring, then either R is a commutative ring or D is a semiprime ring.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.