EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 3, 2024, 2264-2275 ISSN 1307-5543 – ejpam.com Published by New York Business Global

D-Semiprime Rings

Maram Alosaimi^{1,*}, Ahmad Al Khalaf¹, Rohaidah Masri², Iman Taha¹

¹ Department of Mathematics and Statistic, Faculty of Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh, Riyadh, Saudi Arabia ² Department of Mathematics, Faculty of Sciences and Mathematics, Sultan Idris Universiti, Tanjong Malim, Perak, Malaysia

Abstract. Let R be an associative and 2-torsion-free ring with an identity. in this work, we will generaliz the results of differentially prime rings in [18] by applying the hypotheses in a differentially semiprime rings. In particular, we have proved that if R is a \mathcal{D} -semiprime ring, then either R is a commutative ring or $\mathfrak D$ is a semiprime ring.

2020 Mathematics Subject Classifications: 16W25, 16N60 **Key Words and Phrases:** Derivation, semiprime ring, δ -semiprime ring, δ -ideal

1. Introduction

Let R be an associative ring with an identity element. We say that R is 2-torsionfree if for any $r \in R$ and an integer n, the condition $2r = 0$ holds if and only if $r = 0$. $Z(R)$ is the center of R. $\mathfrak D$ is the set of all derivations in R and $\mathfrak d$ is a non-empty subset of \mathfrak{D} . An additive subgroup A is said to be a Lie ideal of R if $[r, a] \in A$, for all $r \in R$ and $a \in A$. A Lie ideal A of R is called \mathfrak{d} -ideal if $\delta(a) \in A$, for all $a \in A$ and $\delta \in \mathfrak{d}$. $annT = \{x \in R \mid xT = Tx = 0\}$ is the annihilator of T. If $a \in R$, then $\partial_a(x) = [x, a] = ax - xa$ is an inner derivation of R induced by $a \in R$, where $\partial_a \in \mathfrak{D}$. $I_{\mathfrak{D}} = {\partial_a \mid a \in R}$ is an ideal of a ring \mathfrak{D} , see [13].

A ring R is called a \mathfrak{d} -prime (differentilly prime) if for each \mathfrak{d} -ideals A and B of R with $AB = 0$, implies that $A = 0$ or $B = 0$. A ring R is said to be 0-semiprime (differentilly semiprime) if for every **0**-ideal I of R, the condition $I^2 = 0$, implies that $I = 0$. $C(R)$ is the commutator ideal of R and charR is the characteristic of a ring R. By $Z_0(R)$ we denote the ideal of R generated by its central ideals.

The properties of differentially prime rings were studied by Herstein [7, 8] and also in his book [9]. After that, many authors have proved some results about this concept, such

[∗]Corresponding author.

https://www.ejpam.com 2264 © 2024 EJPAM All rights reserved.

DOI: https://doi.org/10.29020/nybg.ejpam.v17i3.5210

Email addresses: mhalosaimi@imamu.edu.sa (M. Alosaimi),

ajalkalaf@imamu.edu.sa (A. Al Khalaf), rohaidah@fsmt.upsi.edu.my (R. Masri), tfaith80@gmail.com (I. Taha)

as Bergen and Herstein [3], Hirano [11], Hongan and Trzepizur [12], Beidar and Mikhalev [2], Chebotar and Lee [6] and could be seen in Lee and Liu [23].

Al Khalaf and others, see [18, 19, 27, 28], have demonstrated the differentially prime rings, simple rings, differentially δ- prime rings and reverse derivation on δ- prime rings. Furthermore, they discussed the differentially semiprime and semiprime gamma rings, see that in [20, 21].

Many authors have investigated Lie rings of differentially semiprime rings as [14], [24] and Jordan in [15–17] and Nowicki [25].

The commutative rings with semiprime Lie rings were studied by Passman [26] and Bresar [4].

Finally, all other definitions and facts are standard, which were be found in [1, 13] and also in [10].

2. Preliminaries

For any associative Lie ring R, the commutator $[R, R]$ is a subgroup of R, which is an additive subgroup generated by all [s, t] with $s, t \in R$.

For what we will prove, we need some lemmas.

Lemma 1. The following conditions are equivalent:

(1) R is \mathfrak{d} - semiprime ring,

(2) For any $\mathfrak{d}\text{-}ideals$ A and B of R, the implication

$$
AB = 0 \Rightarrow A \cap B = 0
$$

is true.

(3) If $a \in R$, such that

$$
a R \delta_1^{m_1} \dots \delta_n^{m_n}(a) = 0,
$$

for any integers $n > 1, m_i > 0$ and any derivation $\delta_i \in \mathfrak{d}$, where $i = 1, ..., n$, then $a=0$.

proof. A simple modification of Proposition 2 from [22].

Lemma 2. [1] Let A be a Lie \mathfrak{d} -ideal of a \mathfrak{d} -semiprime ring R of char $R \neq 2$. If $[A, A] \subseteq$ $Z(R)$, then $A \subseteq Z(R)$.

Lemma 3. [1] Let R be a 2-torsion- free \mathfrak{d} -semiprime ring and A a nonzero Lie \mathfrak{d} -ideal of R and an associative subring. Then $A \subseteq Z(R)$ or A contains a non-central associative $\mathfrak{d}\text{-}ideal$ of R.

Lemma 4. [20] If R is a \mathfrak{D} -semiprime ring, Φ an ideal of D. Then

$$
[\Phi, I_{\mathfrak{D}}] = 0 \Leftrightarrow \Phi \cap I_{\mathfrak{D}} = 0.
$$

3. Lie ideals in D-semiprime rings

Lemma 5. Let R be a 2-torsion-free \mathfrak{d} -semiprime ring, U its nonzero Lie \mathfrak{d} -ideal and an associative subring, where $a \in R$. If

$$
[\delta_1^{m_1} \cdots \delta_k^{m_k}(a), [a, U]] = 0,
$$

for any integers $m_i \geq 0$, $k \geq 1$ and derivations $\delta_i \in \mathfrak{d}$, where $i = 1, \ldots, k$, then $a \in Z(R)$.

proof. Let $X_a = \{[\delta_1^{m_1} \cdots \delta_k^{m_k}(a), x]\}, x, a \in \mathbb{R}, \delta_i \in \mathfrak{d}, m_i \geq 0 \text{ and } x, y \in \mathbb{R}$. From

$$
[b, xy] = [b, x]y + x[b, y], b \in X_a,
$$
\n(1)

we get $a[b, xy] = 0$, then $ax[b, y] = 0$. Hence $ayx[b, y] = 0$ and $yax[b, y] = 0$. Thus, we deduce that

$$
(R[a, y]R)^2 = 0, a \in R.
$$
\n
$$
(2)
$$

In addition

$$
0 = d(a[b, x]) = d(a)[b, x].
$$

Multiply the identity (1) from the left by $d(a)$, then we get $d(a)x[b, y] = 0$. Therefore,

$$
0 = \delta(ax[d(b), y] = \delta(a)x[d(b), y],
$$

and by the similar argument, we have

$$
\delta_1^{m_1} \cdots \delta_k^{m_k}(a) x [\delta_1^{m_1} \cdots \delta_k^{m_k}(a), y] = 0,
$$

for any integers $k \geq 1, m_i \geq 0$ and derivations $\delta_i \in \mathfrak{d}$, where $i = 1, ..., k$. As in the proof of the condition (2), we deduce that $(R[\delta_1^{m_1} \cdots \delta_k^{m_k}(a), y]R)^2 = 0$. Then,

$$
I = \sum_{k=1}^{\infty} \sum_{\delta_i \in \mathfrak{d}} R[\delta_1^{m_1} \cdots \delta_k^{m_k}(a), y]R, y \in R
$$

is a sum of nilpotent ideals, therefore it will be a nil ideal as well. Since I is a \mathfrak{d} -ideal, we get $I = o$, hence $a \in Z(R)$

By the same way, we prove the following Lemma

Lemma 6. Let R be a 2-torsion-free \mathfrak{d} -semiprime ring, U its Lie \mathfrak{d} -ideal. If

$$
a\in C_R([\delta_1^{s_1}\cdots \delta_l^{s_l}(a),U]),
$$

for any integers $s_i \geq 0$, $l \geq 1$ and derivations $\delta_i \in \mathfrak{d}$, where $i = 1, \ldots, l$. Then $a \in C_R(U)$.

proof. Let $u, v \in U$, $s_i \geq 0$, $l \geq 1$ be any integers and $\varphi, \delta_i \in \mathfrak{d}$ be any derivation, where $i = 1, \ldots, l$. Since

$$
\varphi(\delta_1^{s_1}\cdots\delta_l^{s_l}(a)[a,x])=\varphi([a,x]\delta_1^{s_1}\cdots\delta_l^{s_l}(a)),
$$

we have that,

$$
\delta_1^{s_1} \cdots \delta_l^{s_l}(a) \in C_R([\delta_1^{s_1} \cdots \delta_l^{s_l}(a),x]).
$$

Then from

$$
\delta_1^{s_1}\cdots\delta_l^{s_l}(a)[\delta_1^{s_1}\cdots\delta_l^{s_l}(a),uv] = [\delta_1^{s_1}\cdots\delta_l^{s_l}(a),uv]\delta_1^{s_1}\cdots\delta_l^{s_l}(a)
$$

it holds that

$$
[\delta_1^{s_1} \cdots \delta_l^{s_l}(a), u][\delta_1^{s_1} \cdots \delta_l^{s_l}(a), v] = 0,
$$

what forces

$$
[\delta_1^{s_1} \cdots \delta_l^{s_l}(a), u]t[\delta_1^{s_1} \cdots \delta_l^{s_l}(a), v] = 0,
$$

where $t \in R$. Thus, the sum of nilpotent idal of R is \mathfrak{d} -ideal. Then $a \in C(R)$. Now, we will extend result given by [8, Theorem 3].

Proposition 1. Let R be a 2-torsion-free \mathfrak{d} -semiprime ring, W its associative \mathfrak{d} -subring and U its Lie $\mathfrak{d}\text{-}ideal.$ If

$$
[W,U]\subseteq W,
$$

then $[W, U] = 0$ or W contains a non-zero associative \mathfrak{d} -ideal of R.

proof. Let $x, y, r \in R$, $t_1, t \in U \cap W$ and $v, w, w_1, s, a, b \in W$. Assume that

 $[W, U] \neq 0.$

By Lemma 2, $[U, U] \neq 0$. Since the subring \overline{U} of R generated by U satisfies that $\delta(\overline{U}) \subseteq \overline{U}$, for all $\delta \in \mathfrak{d}$, then, as in the proof of [8, Theorem 3], we can obtain that

$$
R[a, b]RzR \subseteq \overline{U}zR \subseteq W,
$$

where $z = [s, t][t, w]$. Thus, the sum of nilpotent idal of R is 0-ideal of R contained in W. **Otherwise**

$$
[a, b]RzR = 0,
$$

and consequently

$$
A = \sum_{\substack{s, w \in W \\ t \in U \cap W}} RzR
$$

is a $\mathfrak{d}\text{-ideal}$ such that

$$
[a, b] \in ann_l A.
$$

But A is non-zero and $A \cap ann_l A = 0$, implies that

 $[a, b] = 0.$

Inasmuch $b = z \in \overline{U}$, we have

$$
[z, R] \subseteq \overline{U} \text{ and } \delta_1^{m_1} \cdots \delta_k^{m_k}(z) \in \overline{U},
$$

for any integers $k \ge 1$, $m_i \ge 0$ and derivations $\delta_i \in \mathfrak{d}$ $(i = 1, \ldots, k)$, we conclude that

$$
[\delta_1^{m_1}\cdots\delta_k^{m_k}(z),R]\subseteq\overline{U}
$$

what gives that

$$
z \in C_R([\delta_1^{m_1} \cdots \delta_k^{m_k}(z), R]).
$$

By Lemma 5, $z \in Z(R)$. Then

$$
B = \sum_{\substack{s, w \in W \\ t \in U \cap W}} [s, t][t, w]R \subseteq W
$$

is a $\mathfrak d$ -ideal of R. Therefore, $B = 0$ and, as a consequence, $z = 0$. This means that

$$
[s,t][t,w] = 0.\t\t(3)
$$

Replace w by vw in the identity (3). Then $[s, t]v[t, w] = 0$ and consequently

$$
[s, t]W[t, w] = 0.
$$
\n⁽⁴⁾

Linearize the identity (3) on t and put $s = w = a$; then

$$
[a, t1][a, t] + [a, t][a, t1] = 0.
$$
\n(5)

Since $x := [[a, t_1], r] \in U$ and

$$
2[a, t_1]r[a, t_1] = [x, [a, t_1]] \in W,
$$

we see that, using (5)

$$
2[a,t_1]R[a,t_1] \subseteq W,
$$

and, in view of the identity (4),

$$
[s,t][a,t_1]R[a,t_1][w,t] = 0.
$$
\n(6)

In the identity (6), put $s = a = w$; we get

$$
[a, t][a, t_1]R[a, t][a, t_1] = 0.
$$

This means that

$$
(R[a, t][a, t_1]R)^2 = 0.
$$

Since

$$
C = \sum_{\substack{a \in W \\ t, t_1 \in U \cap W}} R[a, t][a, t_1]R
$$

is a $\mathfrak d$ -ideal, which is a sum of nilpotent ideals, we deduce that $C = 0$ and so

$$
[a, t][a, t_1] = 0. \t\t(7)
$$

We linearize the identity (7) on a to get

$$
[a, t][b, t_1] + [b, t][a, t_1] = 0.
$$

Using the previous relation in the identity (6) with $w = b$, we obtain

$$
[s,t][a,t_1]R[b,t_1][a,t] = 0.
$$
\n(8)

By linearization the identity (3) for t, we have

$$
[s,t][t_1,w] + [s,t_1][t,w] = 0.
$$

In view of it, from the identity (8) , by replacing b instead of s and w by a, it follows that

$$
[s, t][a, t_1]R[s, t][a, t_1] = 0.
$$

Then

$$
D = \sum_{\substack{a,s \in W \\ t, t_1 \in U \cap W}} R[s, t][a, t_1]R
$$

is a $\mathfrak d$ -ideal. Then $D=0$ and

$$
[s,t][a,t_1]=0.
$$

Denote $[W, [U, W]]$ by W_1 . Then W_1 is a Lie 0-ideal of R and

$$
[s, t]W_1 = 0.
$$

Furthermore, $[U, W_1] \subseteq W_1$, $[s, t]UW_1 = 0$ and $[s, t] \overline{U}W_1 = 0$. From the equation $R[a, b]R \subseteq \overline{U}$, we deduce that

$$
[s, t]R[a, b]RW1 = 0.
$$

Assume that $p, q \in U \cap W$, then we get

$$
[p,q]R[p,q]RW_1 = 0.
$$

Therefore,

$$
(R[s,t]R)^3 = 0.
$$

Then

$$
E = \sum_{p,q \in U \cap W} R[p,q]R
$$

is a nil \mathfrak{d} -ideal of R, hence $[p, q] = 0$. As a consequence, $t \in [U, W]$ is commuting with [U, [U, W]]. By Lemma 3, $t \in C_R(U)$. Then

$$
t \in C_R([\delta_1^{m_1} \cdots \delta_k^{m_k}(t), U]),
$$

for any integers $k \geq 1$, $m_i \geq 0$ and derivations $\delta_i \in \mathfrak{d}$, where $i = 1, \ldots, k$ and $t \in Z(R)$. This means that $[U, W] \subseteq Z(R)$.

Since $u \in U$ is commuting with

$$
[\delta_1^{m_1}\cdots \delta_k^{m_k}(u),w],
$$

for any $w \in W$, we deduce that

$$
[U,W]=0,
$$

is a contradiction.

Lemma 7. Let R be a 2-torsion-free \mathfrak{d} -semiprime ring, U its Lie \mathfrak{d} -ideal. If $A \subseteq U$ and satisfies that $\delta(A) \subseteq A$ for all $\delta \in \mathfrak{d}$ and it is an additive subgroup such that $[U, A] \subseteq A$ and $[A, A] \subseteq Z(R)$, then $[A, U] = 0$.

proof. Let $u \in U$ and $x \in R$. If $[A, A] = 0$, then $[a, u] \in A \cap C_R(a)$. By Lemma 5, $[A, U] = 0$. Therefore, we assume that $0 \neq [a, b] \in Z(R)$ for some $a, b \in A$. As in the proof of [8, Lemma 4], we can obtain that

$$
[a,b]^4 = 0.
$$

Since $[A, A] \subseteq Z(R)$, we deduce that

$$
I = \sum_{a,b \in A} [a,b]R
$$

is a nil \mathfrak{d} -ideal. Then $I = 0$, which is a contradiction.

Corollary 1. Let R be a 2-torsion-free o -semiprime ring, U its Lie o -ideal and V satisfies that $\delta(V) \subseteq V$ for all $\delta \in \mathfrak{d}$ and it is an additive subgroup of R such that $[V, U] \subseteq V$. Then either $[V, U] = 0$ or there exists a **0**-ideal M of R such that

$$
0 \neq [M, R] \subseteq V
$$

(in particular, in the second case, V contains a non-zero Lie \mathfrak{d} -ideal of R).

proof. Clearly that $A = [V, U] \subseteq V \cap U$, where $\delta(A) \subseteq A$ for all $\delta \in \mathfrak{d}$ and $[A, U] \subseteq$ $[V, U]$. Then

$$
T = \{ x \in R \mid [x, R] \subseteq U \}
$$

is a 0-subring of R. Let T_0 be a subring of T generated by $[A, A]$. Then T_0 satisfies that $\delta(T) \subseteq T$ for all $\delta \in \mathfrak{d}$. Inasmuch

$$
[[A, A], U] \subseteq [A, A],
$$

we have $[T_0, U] \subseteq T_0$. By Lemma 3, $[T_0, U] = 0$ or T_0 contains a non-zero **0**-ideal of R. a) If $[T_0, U] = 0$, then using the fact that $[A, A] \subseteq T_0$ we have

$$
[[A,A],U]=0.
$$

Since $[A, A]$ satisfies $\delta([A, A]) \subseteq [A, A]$ for all $\delta \in \mathfrak{d}$, we conclude that for $a \in [A, A]$ we have

$$
[\delta_1^{m_1} \cdots \delta_k^{m_k}(a), [a, R]] = 0.
$$

By Lemma 5, a will be from $Z(R)$. This means that $[A, A] \subseteq Z(R)$. By Lemma 7, $[A, U] = 0$. Hence by Lemma 3 $A \subseteq Z(R)$ and $[v, u] \in A$ for any $v \in V$ and $u \in U$. Then

$$
[\delta_1^{m_1} \cdots \delta_k^{m_k}(v), [v, u]] = 0
$$

for any integers $k \ge 1$, $m_i \ge 0$ and derivations $\delta_i \in \mathfrak{d}$ where $i = 1, \ldots, k$, and by Lemma 5,

$$
v \in C_R(U)
$$

what forces that

$$
[V, U] = 0.
$$

b) Assume that T_0 contains a non-zero **0**-ideal M of R. Then $[M, R] \neq 0$ or $[M, R] = 0$. In the last case

$$
MC(R) = 0
$$

and $MT_0 = 0$. As a consequence, $M^2 = 0$. By the **b**-semiprimeness of R, $M = 0$, which is a contradiction.

Now we extended [5, Theorem 1] in the next proposition

Proposition 2. Let R be a 2-torsion-free δ -semiprime ring, U its δ -ideal, where $0 \neq \delta \in$ $\mathfrak{D}.$ If $\delta^2(U) = 0$, then $\delta(U) \subseteq Z(R)$.

proof. Let $a, b, u, v \in U$ and $x, r \in R$. From

$$
0 = \delta^2([u, v]) = 2[\delta(u), \delta(v)],
$$

we deduced U is commutative. Since

$$
u[u,r] = u(ur - ru) = u(ur) - (ur)u = [u, ur] \in U
$$

it follows that

$$
0 = \delta^2(u[u, r]) = 2\delta(u)\delta([u, r])
$$

and therefore,

$$
\delta(u)\delta([u,r])=0.
$$

Multiplying

$$
[\delta(u), rx] = [\delta(u), r]x + r[\delta(u), x],
$$

by $\delta(u)$ on left we get

$$
\delta(u)r[\delta(u),x] = 0.
$$

Since

$$
\delta(u)xr[\delta(u),x] = 0, \ x\delta(u)r[\delta(u),x] = 0,
$$

we obtain that

$$
[\delta(u),x]R[\delta(u),x] = 0.
$$

This means that

$$
I_{ux} = R[\delta(u), x]R
$$

is a nilpotent ideal. Inasmuch

$$
I = \sum_{u \in U, x \in R} I_{ux}
$$

is a nil δ-ideal, hence we conclude that $I = 0$. This means that $\delta(U) \subseteq Z(R)$.

Now we will investigate the inverse problem and prove the main result.

Theorem 1. Let R be a 2-torsion-free ring. If R is a \mathfrak{D} -semiprime ring then one of the following holds:

- (1) R is a commutative ring,
- (2) $\mathfrak D$ is a semiprime ring.

proof. Assume that R is not commutative, then $C(R) \neq 0$. By the \mathfrak{D} -semiprimeness of R, $C(R)^2 \neq 0$. Suppose that B is a non-zero ideal of \mathfrak{D} , where $[B, B] = 0$. Let $J = B \cap I_{\mathfrak{D}}$ and $x, y, r, t \in R$.

(a) If $J = 0$, then, for any $d \in B$,

$$
\partial_{d(x)}=[d,\partial_x]=0
$$

that is $d(x) \in Z(R)$. Then, for any $z \in C_R(x)$, we obtain that

 $d([x, y]) = [d(x), y] + [x, d(y)] = 0,$

$$
d(z)[x, y] = d(z[x, y]) = d([x, zy]) = 0 = d([x, y]z) = [x, y]d(z)
$$

and

$$
rd(z)t = rt d(z) + r[d(z), t] = rt d(z).
$$

Assume that $x \notin Z(R)$. The ideal A_x generated by all $d(z)$, where $d \in \mathfrak{D}$ and $z \in \mathfrak{D}$ $C_R(x)$, is a \mathfrak{D} -ideal of R. If $A_x \neq 0$, then, using the non commutativity of a ring R and the definition of the annihilator, we see that $annA_x$ is a non-zero $\mathfrak{D}\text{-ideal}$, which is a contradiction. Hence, $d(C_R(x)) = 0$. If $d(Z(R)) = 0$, then $d(R) = 0$ and so $d = 0$. Therefore, we assume that $d(Z(R)) \neq 0$. If $a \in Z(R)$, then $aC_R(x) \subseteq C_R(x)$ and then

$$
d(C_R(x)a) = C_R(x)d(a) = 0 = d(aC_R(x)) = d(a)C_R(x)
$$

and consequently

$$
d(R) \subseteq annC_R(x).
$$

In view of Lemma 4, $d(R) \subseteq Z(R)$ for $d \in B$. Let $\mathfrak{D}_B(R)$ by the ideal of R generated by all $d(R)$, where $d \in B$. Then $u \in C_R(u) \subseteq annD_B(R)$ for any $u \in \mathfrak{D}_B(R)$ and so $u \in \mathfrak{D}_B(R) \cap ann \mathfrak{D}_B(R) = 0$. This means that $\mathfrak{D}_B(R) = 0$, which leads to a contradiction. (b) Assume that $J \neq 0$. Then $I = \{t \in R \mid \partial_t \in J\}$ is a non-zero $\mathfrak{D}\text{-ideal of }R$ and

$$
\partial_{[t_1,t_2]} = [\partial_{t_1}, \partial_{t_2}] \in [J,J] = 0
$$

for any $t_i \in J$ and, as a consequence,

$$
[I, I] \subseteq Z(R). \tag{9}
$$

Let

$$
T(I) = \{ w \in R \mid [w, R] \subseteq I \}.
$$

Then $I \subseteq T(I)$ and $T(B)$ is an associative subring and a Lie ideal of R (see [7, Lemma 3]). Since

$$
[I, T(I)] \subseteq I,
$$

we deduce that

$$
0 = \partial_{t_1}([t_1, t_2^2]) = 2\partial_{t_1}(t_2)^2.
$$

From this and the condition in the equation (9) it holds that

$$
\partial_{t_1}(t_2) \in \mathbb{P}(R) \cap Z(R).
$$

Then

$$
\sum_{t_1,t_2 \in I} [t_1, t_2]R
$$

is a nil $\mathfrak{D}\text{-ideal}$ of R, which is a contradiction.

4. Conclusion

Through this work, firstly, we found some properties of Lie ideals in \mathfrak{D} -semiprime ring, then we demonstrated when a commutator of a composite derivation for an element and Lie ideal in a $\mathfrak D$ -semiprime ring equal to zero, implies the element belongs to center of this ring. Also, we investigated the relationship between an element of Lie \mathfrak{d} - ideal and the center (the commutator ideal) of a ring. After that, we showed that for any an ideal contained in Lie $\mathfrak d$ -ideal of a $\mathfrak d$ -semiprime ring, their commutator must be contained in the ideal itself. Furthermore, we related between the commutator of \mathfrak{d} -ideal and every associative subgroup of it under specific conditions. In addition, if any δ -ideal of a δ semiprime ring satisfies $\delta^2(U) = 0$, this gives $\delta(U)$ is contained in the center of ring. Finally, we proved that every a 2-torsion-free D-semiprime with an identity ring is either commutative or a $\mathfrak D$ is a semiprime ring.

References

- [1] O Artemovych and M Lukashenko. Lie and Jordan structures of differentially semiprime rings. Algebra and discrete mathematics, 20(1), 2015.
- [2] K Beidar and A Mikhalev. Orthogonal completeness and minimal prime ideals. Journal of Soviet Mathematics, 35:2876–2882, 1986.
- [3] J Bergen, I Herstein, and W Jeanne. Lie ideals and derivations of prime rings. Journal of Algebra, 71(1):259–267, 1981.
- [4] M Brešar, M Chebotar, and W Martindale. *Functional identities*. Springer Science & Business Media, 2007.
- [5] M Chebotar and A Giambruno. Lie ideals and nil derivations. Bollettino Dell'unione Mathmatica Italiana., 4(3):497–503, 1985.
- [6] M Chebotar and P Lee. Prime Lie rings of derivations of commutative rings. Communications in Algebraregistered, 34(12):4339–4344, 2006.
- [7] I Herstein. On the Lie and Jordan rings of a simple associative ring. American Journal of Mathematics, 77(2):279–285, 1955.
- [8] I Herstein. On the Lie structure of an associative ring. *Journal of Algebra*, 14(4):561– 571, 1970.
- [9] I Herstein. Noncommutative rings., volume 15. American Mathematical Soc., 1994.
- [10] I Herstein. Topics in ring theory. Springer, 2011.
- [11] Y Hirano, H Tominaga, and A Trzepizur. On a theorem of posner. Math. J. Okayama Univ, 27:25–32, 1985.
- [12] M Hongan and A Trzepizur. On generalization of a theorem of posner. Mathematical Journal of Okayama University, 27(1):19–23, 1985.
- [13] N Jacobson. Abstract derivation and Lie algebras. Transactions of the American Mathematical Society, 42(2):206–224, 1937.
- [14] N Jacobson. Lie algebras. Number 10. Courier Corporation., 1979.
- [15] A Jordan. Noetherian Ore extensions and Jacobson rings. Journal of the London Mathematical Society, 2(3):281–291, 1975.
- [16] C Jordan and D Jordan. Lie rings of derivations of associative rings. Journal of the London Mathematical Society, 2(1):33–41, 1978.
- [17] C Jordan and D Jordan. The Lie structure of a commutative ring with derivation. Journal of the London Mathematical Society, 2(18):39–49, 1978.
- [18] A Al Khalaf, O Artemovych, and I Taha. Derivations in differentially prime rings. Journal of Algebra and Its Applications, 17(7):1850129, 2018.
- [19] A Al Khalaf, O Artemovych, and I Taha. Rings with simple Lie rings of Lie and Jordan derivations. Journal of Algebra and Its Applications, 17(4):1850078, 2018.
- [20] A Al Khalaf, O Artemovych, and I Taha. Derivations of differentially semiprime rings. Asian-European Journal of Mathematics, 12(5):1950079, 2019.
- [21] A Al Khalaf, O Artemovych, and I Taha. Commutators in semiprime gamma rings. Asian-European Journal of Mathematics, 13(4):2050078, 2020.
- [22] J Lambek. Lectures on rings and modules., volume 28. American Mathematical Soc., 2009.
- [23] P Lee and C Liu. Prime Lie rings of derivations of commutative rings II. Communications in $Algebra(R, 35(4):39-49, 2007.$
- [24] C Liu. Semiprime lie rings of derivations of commutative rings. Contemporary Mathematics, 420:259–268, 2007.
- [25] A Nowicki. The lie structure of a commutative ring with a derivation. Archiv der Mathematik, 45:328–335, 1985.
- [26] D Passman. Simple Lie algebras of Witt type. Journal of Algebra, 206(2):682–692, 1998.
- [27] I Taha, R Masri, and A Al Khalaf. Derivations in differentially δ -prime rings. *Euro*pean Journal of Pure and Applied Mathematics, 15(2):454–466, 2022.
- [28] I Taha, R Masri, and A Al Khalaf. Reverse Derivations on δ -prime rings. *European* Journal of Pure and Applied Mathematics, 15(4):2032–2042, 2022.