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1. Introduction

The concept of weakly continuous functions was introduced by Levine [26]. Husain
[23] introduced and studied the notion of almost continuous functions. Janković [24] in-
troduced almost weak continuity as a generalization of both weak continuity and almost
continuity. Noiri [27] investigated several characterizations of almost weakly continuous
functions. Rose [34] introduced the notion of subweakly continuous functions and in-
vestigated the relationships between subweak continuity and weak continuity. Popa and
Noiri [32] introduced the concept of weakly (τ,m)-continuous functions as functions from
a topological space into a set satisfying some minimal conditions and investigated several
characterizations of weakly (τ,m)-continuous functions. Ekici et al. [22] introduced and
studied the concept of weakly λ-continuous functions. Duangphui et al. [21] introduced
and investigated the notion of weakly (µ, µ′)(m,n)-continuous functions. Moreover, some
characterizations of almost (Λ, p)-continuous functions, strongly θ(Λ, p)-continuous func-
tions, almost strongly θ(Λ, p)-continuous functions, θ(Λ, p)-continuous functions, weakly
(Λ, b)-continuous functions, θ(⋆)-precontinuous functions, ⋆-continuous functions, θ-I -
continuous functions, almost (g,m)-continuous functions, (Λ, sp)-continuous functions,
δp(Λ, s)-continuous functions, (Λ, p(⋆))-continuous functions, pairwise weaklyM -continuous
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functions, (τ1, τ2)-continuous functions, almost (τ1, τ2)-continuous functions and weakly
(τ1, τ2)-continuous functions were presented in [36], [38], [10], [33], [16], [9], [8], [5], [2],
[40], [37], [7], [3], [17], [15] and [11], respectively.

Popa [29] and Smithson [35] independently introduced the notion of weakly contin-
uous multifunctions. Popa and Noiri [31] introduced a class of multifunctions called
weakly α-continuous multifunctions. Furthermore, Popa and Noiri [30] investigated some
characterizations of upper and lower weakly β-continuous multifunctions. Noiri and
Popa [28] introduced and investigated the notion of weakly m-continuous multifunc-
tions as a multifunction from a set satisfying certain minimal condition into a topolog-
ical space. Boonpok and Viriyapong [19] introduced and studied the concepts upper
and lower almost weakly (τ1, τ2)-continuous multifunctions. Laprom et al. [25] intro-
duced and investigated the notions of upper and lower almost β(τ1, τ2)-continuous mul-
tifunctions. Viriyapong and Boonpok [39] introduced and studied the concepts of upper
and lower weakly (τ1, τ2)α-continuous multifunctions. Moreover, several characterizations
of weakly (τ1, τ2)δ-semicontinuous multifunctions, almost weakly ⋆-continuous multifunc-
tions, weakly ⋆-continuous multifunctions, weakly α-⋆-continuous multifunctions, weakly
ı⋆-continuous multifunctions, weakly quasi (Λ, sp)-continuous multifunctions and weakly
(Λ, sp)-continuous multifunctions were established in [6], [18], [4], [13], [12], [41] and [14],
respectively. In this paper, we introduce the concepts of upper and lower weakly (τ1, τ2)-
continuous multifunctions. In particular, some characterizations of upper and lower weakly
(τ1, τ2)-continuous multifunctions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [20] if
A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. Let A be
a subset of a bitopological space (X, τ1, τ2). The intersection of all τ1τ2-closed sets of X
containing A is called the τ1τ2-closure [20] of A and is denoted by τ1τ2-Cl(A). The union
of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [20] of A and is denoted
by τ1τ2-Int(A).

Lemma 1. [20] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-
closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).
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(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subsetA of a bitopological space (X, τ1, τ2) is called (τ1, τ2)r-open [39] (resp. (τ1, τ2)s-
open [6], (τ1, τ2)p-open [6], (τ1, τ2)β-open [6]) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆
τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). The
complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-open, (τ1, τ2)p-open, (τ1, τ2)β-open) set
is called (τ1, τ2)r-closed, (τ1, τ2)s-closed, (τ1, τ2)p-closed, (τ1, τ2)β-closed. A subset A of a
bitopological space (X, τ1, τ2) is called α(τ1, τ2)-open [42] ifA ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))).
The complement of an α(τ1, τ2)-open set is called α(τ1, τ2)-closed.

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y ,
following [1] we shall denote the upper and lower inverse of a set B of Y by F+(B) and
F−(B), respectively, that is, F+(B) = {x ∈ X | F (x) ⊆ B} and

F−(B) = {x ∈ X | F (x) ∩B ̸= ∅}.

In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x).

3. Upper and lower weakly (τ1, τ2)-continuous multifunctions

In this section, we introduce the notions of upper and lower weakly (τ1, τ2)-continuous
multifunctions. Moreover, some characterizations of upper and lower weakly (τ1, τ2)-
continuous multifunctions are discussed.

Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper weakly
(τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open set V of Y containing F (x),
there exists a τ1τ2-open set U of X containing x such that F (U) ⊆ σ1σ2-Cl(V ).

Theorem 1. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper weakly (τ1, τ2)-continuous;

(2) F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(K) for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y ;

(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(σ1σ2-Int(B)))) for every subset B of Y ;

(6) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open set V of

Y ;

(7) τ1τ2-Cl(F
−(V )) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y ;

(8) τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(K) for every (σ1, σ2)r-closed set K of Y .
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Proof. (1) ⇒ (2): Let V be any σ1σ2-open set of Y such that x ∈ F+(V ). Then,
F (x) ⊆ V . There exists a τ1τ2-open set U ofX containing x such that F (U) ⊆ σ1σ2-Cl(V ).
Thus, U ⊆ F+(σ1σ2-Cl(V )). Since U is τ1τ2-open, we have x ∈ τ1τ2-Int(F

+(σ1σ2-Cl(V )))
and hence F+(V ) ⊆ τ1τ2-Int(F

+(σ1σ2-Cl(V ))).
(2) ⇒ (3): Let K be any σ1σ2-closed set of Y . Then, Y −K is σ1σ2-open in Y and by

(2),

X − F−(K) = F+(Y −K)

⊆ τ1τ2-Int(F
+(σ1σ2-Cl(Y −K)))

= X − τ1τ2-Cl(F
−(σ1σ2-Int(K))).

Thus, τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(K).

(3) ⇒ (4): Let B be any subset of Y . Then, σ1σ2-Cl(B) is a σ1σ2-closed set of Y and
by (3), τ1τ2-Cl(F

−(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F−(σ1σ2-Cl(B)).
(4) ⇒ (5): Let B be any subset of Y . By (4), we have

X − τ1τ2-Int(F
+(σ1σ2-Cl(σ1σ2-Int(B)))) = τ1τ2-Cl(X − F+(σ1σ2-Cl(σ1σ2-Int(B))))

= τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(Y −B))))

⊆ F−(σ1σ2-Cl(Y −B))

= X − F+(σ1σ2-Int(B))

and hence F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(σ1σ2-Int(B)))).

(5) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y such that F (x) ⊆ V . Then,
x ∈ F+(V ) ⊆ τ1τ2-Int(F

+(σ1σ2-Cl(V ))) and there exists a τ1τ2-open set U ofX containing
x such that U ⊆ F+(σ1σ2-Cl(V )). Thus, F (U) ⊆ σ1σ2-Cl(V ) and hence F is upper weakly
(τ1, τ2)-continuous.

(4) ⇒ (6) and (6) ⇒ (7): The proofs are obvious.
(7) ⇒ (8): Let K be any (σ1, σ2)r-closed set of Y . Thus by (7),

τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(σ1σ2-Cl(σ1σ2-Int(K)))

= F−(K).

(8) ⇒ (3): LetK be any σ1σ2-closed set of Y . Then, σ1σ2-Cl(σ1σ2-Int(K)) is (σ1, σ2)r-
closed in Y and σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K))) = σ1σ2-Int(σ1σ2-Cl(K)) = σ1σ2-Int(K).
By (8),

τ1τ2-Cl(F
−(σ1σ2-Int(K))) = τ1τ2-Cl(F

−(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K)))))

⊆ F−(σ1σ2-Cl(σ1σ2-Int(K)))

⊆ F−(K).

Definition 2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower weakly
(τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open set V of Y such that F (x)∩V ̸= ∅,
there exists a τ1τ2-open set U of X containing x such that σ1σ2-Cl(V )∩F (z) ̸= ∅ for each
z ∈ U .
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Theorem 2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower weakly (τ1, τ2)-continuous;

(2) F−(V ) ⊆ τ1τ2-Int(F
−(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-Cl(F
+(σ1σ2-Int(K))) ⊆ F+(K) for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F+(σ1σ2-Cl(B)) for every subset B of Y ;

(5) F−(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
−(σ1σ2-Cl(σ1σ2-Int(B)))) for every subset B of Y ;

(6) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open set V of

Y ;

(7) τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y ;

(8) τ1τ2-Cl(F
+(σ1σ2-Int(K))) ⊆ F+(K) for every (σ1, σ2)r-closed set K of Y .

Proof. The proof is similar to that of Theorem 1.

Definition 3. [11] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be weakly (τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-open set V of Y containing f(x), there
exists a τ1τ2-open set U of X containing x such that f(U) ⊆ σ1σ2-Cl(V ). A function
f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be weakly (τ1, τ2)-continuous if f has this property
at each point of X.

Corollary 1. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) f is weakly (τ1, τ2)-continuous;

(2) f−1(V ) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-Cl(f
−1(σ1σ2-Int(K))) ⊆ f−1(K) for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ f−1(σ1σ2-Cl(B)) for every subset B of Y ;

(5) f−1(σ1σ2-Int(B)) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(σ1σ2-Int(B)))) for every subset B of Y ;

(6) τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ f−1(σ1σ2-Cl(V )) for every σ1σ2-open set V

of Y ;

(7) τ1τ2-Cl(f
−1(V )) ⊆ f−1(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y ;

(8) τ1τ2-Cl(f
−1(σ1σ2-Int(K))) ⊆ f−1(K) for every (σ1, σ2)r-closed set K of Y .

Theorem 3. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:
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(1) F is upper weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)β-open set

V of Y ;

(3) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)s-open set

V of Y .

Proof. (1) ⇒ (2): This follows from (4) of Theorem 1.
(2) ⇒ (3): The proof is obvious since every (σ1, σ2)s-open set is (σ1, σ2)β-open.
(3) ⇒ (1): Since every σ1σ2-open set is (σ1, σ2)s-open, the proof is obvious by (7) of

Theorem 1.

Theorem 4. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)β-open set

V of Y ;

(3) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)s-open set

V of Y .

Proof. The proof is similar to that of Theorem 3.

Corollary 2. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) f is weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)β-open set

V of Y ;

(3) τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)s-open set

V of Y .

Theorem 5. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set

V of Y ;

(3) τ1τ2-Cl(F
−(V )) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V of Y ;

(4) F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(V ))) for every (σ1, σ2)p-open set V of Y .



M. Thongmoon, S. Sompong, C. Boonpok / Eur. J. Pure Appl. Math, 17 (3) (2024), 1705-1716 1711

Proof. (1) ⇒ (2): Let V be any (σ1, σ2)p-open set of Y . Since σ1σ2-Int(σ1σ2-Cl(V ))
is σ1σ2-open, by Theorem 1(7)

τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V ))))

⊆ F−(σ1σ2-Cl(V )).

(2) ⇒ (3): Let V be any (σ1, σ2)p-open set of Y . By (2), we have

τ1τ2-Cl(F
−(V )) ⊆ τ1τ2-Cl(F

−(σ1σ2-Int(σ1σ2-Cl(V ))))

⊆ F−(σ1σ2-Cl(V )).

(3) ⇒ (4): Let V be any (σ1, σ2)p-open set of Y . Thus by (3),

X − τ1τ2-Int(F
+(σ1σ2-Cl(V )) = τ1τ2-Cl(X − F+(σ1σ2-Cl(V )))

= τ1τ2-Cl(F
−(Y − σ1σ2-Cl(V )))

⊆ F−(σ1σ2-Cl(Y − σ1σ2-Cl(V )))

= X − F+(σ1σ2-Int(σ1σ2-Cl(V )))

⊆ X − F+(V )

and hence F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(V ))).

(4) ⇒ (1): Let V be any σ1σ2-open set of Y . Then, V is (σ1, σ2)p-open and by
(4), F+(V ) ⊆ τ1τ2-Int(F

+(σ1σ2-Cl(V ))). By Theorem 1(2), F is upper weakly (τ1, τ2)-
continuous.

Theorem 6. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set

V of Y ;

(3) τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V of Y ;

(4) F−(V ) ⊆ τ1τ2-Int(F
−(σ1σ2-Cl(V ))) for every (σ1, σ2)p-open set V of Y .

Proof. The proof is similar to that of Theorem 5.

Corollary 3. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) f is weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set

V of Y ;

(3) τ1τ2-Cl(f
−1(V )) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V of Y ;

(4) f−1(V ) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(V ))) for every (σ1, σ2)p-open set V of Y .



M. Thongmoon, S. Sompong, C. Boonpok / Eur. J. Pure Appl. Math, 17 (3) (2024), 1705-1716 1712

4. Several characterizations

Recall that a bitopological space (X, τ1, τ2) is said to be τ1τ2-compact [20] if every
cover of X by τ1τ2-open sets of X has a finite subcover.

Definition 4. A bitopological space (X, τ1, τ2) is said to be quasi (τ1, τ2)-H -closed if every
τ1τ2-open cover {Uγ | γ ∈ Γ}, there exists a finite subset Γ0 of Γ such that

X = ∪{τ1τ2-Cl(Uγ) | γ ∈ Γ0}.

Theorem 7. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be an upper weakly (τ1, τ2)-continuous sur-
jective multifunction such that F (x) is σ1σ2-compact for each x ∈ X. If (X, τ1, τ2) is
τ1τ2-compact, then (Y, σ1, σ2) is quasi (σ1, σ2)-H -closed.

Proof. Let {Vγ | γ ∈ Γ} be any σ1σ2-open cover of Y . For each x ∈ X, F (x) is σ1σ2-
compact and there exists a finite subset Γ(x) of Γ such that F (x) ⊆ ∪{Vγ | γ ∈ Γ(x)}.
Now, set V (x) = ∪{Vγ | γ ∈ Γ(x)}. Since F is upper weakly (τ1, τ2)-continuous, there
exists a τ1τ2-open set U(x) of X containing x such that F (U(x)) ⊆ σ1σ2-Cl(V (x)). The
family {U(x) | x ∈ X} is a τ1τ2-open cover of X by τ1τ2-open sets. Since (X, τ1, τ2)
is τ1τ2-compact, there exists a finite number of points, say, x1, x2, ..., xn in X such that
X = ∪{U(xi) | 1 ≤ i ≤ n}. Thus,

Y = F (X) = ∪{F (U(xi)) | 1 ≤ i ≤ n}
⊆ ∪{σ1σ2-Cl(V (xi)) | 1 ≤ i ≤ n}
⊆ ∪{σ1σ2-Cl(Vγ) | γ ∈ Γ(xi), 1 ≤ i ≤ n}.

This shows that (Y, σ1, σ2) is quasi (σ1, σ2)-H -closed.

The τ1τ2-frontier [17] of a subset A of a bitopological space (X, τ1, τ2), denoted by
τ1τ2-fr(A), is defined by

τ1τ2-fr(A) = τ1τ2-Cl(A) ∩ τ1τ2-Cl(X −A) = τ1τ2-Cl(A)− τ1τ2-Int(A).

Theorem 8. The set of all points x of X at which a multifunction

F : (X, τ1, τ2) → (Y, σ1, σ2)

is not upper weakly (τ1, τ2)-continuous is identical with the union of the τ1τ2-frontier of
the upper inverse images of the σ1σ2-closures of σ1σ2-open sets containing F (x).

Proof. Let x be a point of X at which F is not upper weakly (τ1, τ2)-continuous. Then,
there exists a σ1σ2-open set V containing F (x) such that U ∩ (X − F+(σ1σ2-Cl(V ))) ̸= ∅
for every τ1τ2-open set U containing x. Then, we have x ∈ τ1τ2-Cl(X −F+(σ1σ2-Cl(V ))).
Since x ∈ F+(V ), x ∈ τ1τ2-Cl(F

+(σ1σ2-Cl(V ))) and hence x ∈ τ1τ2-fr(F
+(σ1σ2-Cl(V ))).

Conversely, suppose that V is a σ1σ2-open set of Y containing F (x) such that

x ∈ τ1τ2-fr(F
+(σ1σ2-Cl(V ))).
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If F is upper weakly (τ1, τ2)-continuous at x, there exists a τ1τ2-open set U of X con-
taining x such that U ⊆ F+(σ1σ2-Cl(V )); hence x ∈ τ1τ2-Int(F

+(σ1σ2-Cl(V ))). This is a
contradiction and hence F is not upper weakly (τ1, τ2)-continuous at x.

Theorem 9. The set of all points of X at which a multifunction

F : (X, τ1, τ2) → (Y, σ1, σ2)

is not lower weakly (τ1, τ2)-continuous is identical with the union of the τ1τ2-frontier of
the lower inverse images of the σ1σ2-closures of σ1σ2-open sets meeting F (x).

Proof. The proof is similar to that of Theorem 8.

Definition 5. [20] A bitopological space (X, τ1, τ2) is said to be τ1τ2-connected if X cannot
be written as the union of two nonempty disjoint τ1τ2-open sets.

Recall that a subset A of a bitopological space (X, τ1, τ2) is said to be τ1τ2-clopen [20]
if A is both τ1τ2-open and τ1τ2-closed.

Theorem 10. If F : (X, τ1, τ2) → (Y, σ1, σ2) is an upper or lower weakly (τ1, τ2)-continuous
surjective multifunction such that F (x) is σ1σ2-connected for each x ∈ X and (X, τ1, τ2)
is τ1τ2-connected, then (Y, σ1, σ2) is σ1σ2-connected.

Proof. Suppose that (Y, σ1, σ2) is not σ1σ2-connected. There exist non-empty σ1σ2-
open sets U and V of Y such that U ∩V = ∅ and U ∪V = Y . Since F (x) is σ1σ2-connected
for each x ∈ X, either F (x) ⊆ U or F (x) ⊆ V . If x ∈ F+(U ∪V ), then F (x) ⊆ U ∪V and
hence x ∈ F+(U)∪F+(V ). Moreover, since F is surjective, there exist x and y in X such
that F (x) ⊆ U and F (y) ⊆ V ; hence x ∈ F+(U) and y ∈ F+(V ). Therefore, we obtain
the following:

(1) F+(U) ∪ F+(V ) = F+(U ∪ V ) = X;

(2) F+(U) ∩ F+(V ) = F+(U ∩ V ) = ∅;

(3) F+(U) ̸= ∅ and F+(V ) ̸= ∅.

Next, we show that F+(U) and F+(V ) are τ1τ2-open in X. (i) Let F be upper weakly
(τ1, τ2)-continuous. By Theorem 1, F+(V ) ⊆ τ1τ2-Int(F

+(σ1σ2-Cl(V ))) = τ1τ2-Int(F
+(V ))

since V is σ1σ2-clopen. Thus, F+(V ) = τ1τ2-Int(F
+(V )) and hence F+(V ) is τ1τ2-open

in X. Similarly, we obtain F+(U) is τ1τ2-open in X. Consequently, this shows that
(X, τ1, τ2) is not τ1τ2-connected. (ii) Let F be lower weakly (τ1, τ2)-continuous. By The-
orem 2, τ1τ2-Cl(F

+(V )) ⊆ F+(σ1σ2-Cl(V )) = F+(V ) since V is σ1σ2-clopen. Therefore,
F+(V ) = τ1τ2-Cl(F

+(V )) and so F+(V ) is τ1τ2-closed in X. Thus, we have F+(U) is
τ1τ2-open in X. Similarly, we obtain F+(V ) is τ1τ2-open in X. Consequently, this shows
that (X, τ1, τ2) is not τ1τ2-connected. This completes the proof.



REFERENCES 1714

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

[1] C. Berge. Espaces topologiques fonctions multivoques. Dunod, Paris, 1959.

[2] C. Boonpok. Almost (g,m)-continuous functions. International Journal of Mathe-
matical Analysis, 4(40):1957–1964, 2010.

[3] C. Boonpok. M -continuous functions in biminimal structure spaces. Far East Journal
of Mathematical Sciences, 43(1):41–58, 2010.

[4] C. Boonpok. On continuous multifunctions in ideal topological spaces. Lobachevskii
Journal of Mathematics, 40(1):24–35, 2019.

[5] C. Boonpok. On characterizations of ⋆-hyperconnected ideal topological spaces. Jour-
nal of Mathematics, 2020:9387601, 2020.

[6] C. Boonpok. (τ1, τ2)δ-semicontinuous multifunctions. Heliyon, 6:e05367, 2020.

[7] C. Boonpok. On some closed sets and low separation axioms via topological ideals.
European Journal of Pure and Applied Mathematics, 15(3):300–309, 2022.

[8] C. Boonpok. On some spaces via topological ideals. Open Mathematics, 21:20230118,
2023.

[9] C. Boonpok. θ(⋆)-precontinuity. Mathematica, 65(1):31–42, 2023.

[10] C. Boonpok and J. Khampakdee. Almost strong θ(Λ, p)-continuity for functions.
European Journal of Pure and Applied Mathematics, 17(1):300–309, 2024.

[11] C. Boonpok and C. Klanarong. On weakly (τ1, τ2)-continuous functions. European
Journal of Pure and Applied Mathematics, 17(1):416–425, 2024.

[12] C. Boonpok and P. Pue-on. Continuity for multifunctions in ideal topological spaces.
WSEAS Transactions on Mathematics, 19:624–631, 2020.

[13] C. Boonpok and P. Pue-on. Upper and lower weakly α-⋆-continuous multifunctions.
International Journal of Analysis and Applications, 21:90, 2023.

[14] C. Boonpok and P. Pue-on. Upper and lower weakly (Λ, sp)-continuous multifunc-
tions. European Journal of Pure and Applied Mathematics, 16(2):1047–1058, 2023.

[15] C. Boonpok and P. Pue-on. Characterizations of almost (τ1, τ2)-continuous functions.
International Journal of Analysis and Applications, 22:33, 2024.



REFERENCES 1715

[16] C. Boonpok and N. Srisarakham. Weak forms of (Λ, b)-open sets and weak (Λ, b)-
continuity. European Journal of Pure and Applied Mathematics, 16(1):29–43, 2023.

[17] C. Boonpok and N. Srisarakham. (τ1, τ2)-continuity for functions. Asia Pacific Jour-
nal of Mathematics, 11:21, 2024.

[18] C. Boonpok and C. Viriyapong. Almost weak continuity for multifunctions in ideal
topological spaces. WSEAS Transactions on Mathematics, 19:367–372, 2020.

[19] C. Boonpok and C. Viriyapong. Upper and lower almost weak (τ1, τ2)-continuity.
European Journal of Pure and Applied Mathematics, 14(4):1212–1225, 2021.

[20] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ1, τ2)-
precontinuous multifunctions. Journal of Mathematics and Computer Science,
18:282–293, 2018.

[21] T. Duangphui, C. Boonpok, and C. Viriyapong. Continuous functions on bigeneral-
ized topological spaces. International Journal of Mathematical Analysis, 5(24):1165–
1174, 2011.

[22] E. Ekici, S. Jafari, M. Caldas, and T. Noiri. Weakly λ-continuous functions. Novi
Sad Journal of Mathematics, 38:47–56, 2008.

[23] T. Husain. Almost continuous mappings. Prace Matematyczne, 10:1–7, 1966.
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