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Abstract. Let G be a simple, undirected and connected graph. A subset S ⊆ V (G) is a geodetic
cover of G if IG[S] = V (G), where IG[S] is the set of all vertices of G lying on any geodesic
between two vertices in S. A geodetic cover S of G is a closed geodetic cover if the vertices in
S are sequentially selected as follows: Select a vertex v1 and let S1 = {v1}. If G is nontrivial,
select a vertex v2 ̸= v1 and let S2 = {v1, v2}. Where possible, for i ≥ 3, successively select vertex
vi /∈ IG[Si−1] and let Si = {v1, v2, ..., vi}. Then there exists a positive integer k such that Sk = S.

A geodetic cover S of G is a geodetic hop dominating set if every vertex in V (G) \S is of distance
2 from a vertex in S. A geodetic hop dominating set S is a closed geodetic hop dominating
set if S is a closed geodetic cover of G. The minimum cardinality of a (closed) geodetic hop
dominating set of G is the (closed) geodetic hop domination number of G. This study initiates
the study of the closed geodetic hop domination. First, it characterizes all graphs G of order n
whose closed geodetic hop domination numbers are 2 or n, and determines the closed geodetic hop
domination number of paths, cycles and multigraphs. Next, it shows that any positive integers
a and b with 2 ≤ a ≤ b are realizable as the closed geodetic number and closed geodetic hop
domination number of a connected graph. Also, every positive integer n,m and k with 4 ≤ m ≤ k
and 2k−m+2 ≤ n are realizable as the order, geodetic hop domination number and closed geodetic
hop domination number, respectively of a connected graph. Furthermore, the study characterizes
the closed geodetic hop dominating sets of graphs resulting from the join, corona and edge corona
of graphs.

2020 Mathematics Subject Classifications: 05C69

Key Words and Phrases: Closed geodetic cover, hop dominating set, geodetic hop dominating
set, closed geodetic hop dominating set, closed geodetic hop domination number, join, corona, edge
corona

∗Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v17i3.5241

Email addresses: ninajeane.adolfo@g.msuiit.edu.ph (N. Adolfo),
imelda.aniversario@g.msuiit.edu.ph (I. Aniversario), ferdinand.jamil@g.msuiit.edu.ph (F. Jamil)

https://www.ejpam.com 1618 © 2024 EJPAM All rights reserved.



A. Adolfo, I. Aniversario, F. Jamil / Eur. J. Pure Appl. Math, 17 (3) (2024), 1618-1636 1619

1. Introduction

F. Harary in [9] introduced two categories of graphical games called the achievement
and avoidance games from which the concept of closed geodetic number evolved. The
closed geodetic sets and closed geodetic numbers of connected graphs, which can find
applications in location theory and convexity theory, have been extensively studied in
[1, 2, 6, 7].

The hop domination in graphs is introduced in [14] by S.K. Ayyaswamy and C.Natarajan.
Accordingly, this graph theoretic concept originated from the second electron affinity in
Inorganic Chemistry. It has attracted relatively much attention and several further studies
including investigations on some of its variations can be found in the existing literature
(see [4, 5, 12–17]).

In this present paper, inspired by the above-mentioned concepts, we introduce and
initiate the study of closed geodetic hop domination in graphs.

All graphs considered in this study are simple, undirected and connected. All graph
terminologies which are not defined but are used here are adopted from [6].

As usual, we write G = (V (G), E(G)) for a graph G where V (G) and E(G) are the
vertex set and edge set, respectively, of G. For S ⊆ V (G), |S| is the cardinality of S. In
particular, |V (G)| is the order of G.

Let G and H be two graphs with disjoint vertex sets. The join of G and H, denoted by
G+H, is the graph with vertex-set V (G+H) = V (G)∪̇V (H) and edge-set E(G+H) =
E(G)∪̇E(H)∪̇ {uv : u ∈ V (G), v ∈ V (H)}. The corona G ◦H of G and H is the graph
obtained by taking one copy of G and |V (G)| copies of H, and then joining the ith vertex
of G to every vertex of the ith copy of H. The edge corona G ⋄ H of G and H is the
graph obtained by taking one copy of G and |E(G)| copies of H and joining each of the
end vertices u and v of each edge uv of G to every vertex of the copy Huv of H.

For vertices u and v in G, the distance dG(u, v) between u and v is the length of a
shortest path in G joining u and v. Any path joining u and v of length dG(u, v) is called
a u-v geodesic. The diameter diam(G) of a graph G is the length of any longest geodesic
of G. For every two vertices u and v of a graph G, the interval IG[u, v] refers the set of all
vertices lying in some u-v geodesic. A vertex is called an end-vertex or a leaf if its degree is
1. The set of all end-vertices of G is denoted by L(G). A vertex v in a connected graph G
is an support vertex if v is adjacent to a leaf vertex of G. A vertex v in a connected graph
G is an extreme vertex if for every pair of distinct vertices u and w with {uv,wv} ⊆ E(G),
uw ∈ E(G). The set of all extreme vertices in G is denoted by Ext(G). A vertex v in a
connected graph G is a dominating vertex if uv ∈ E(G) for all u ∈ V (G) \ {v}. Dom(G)
is the set of all dominating vertices in G.

For S ⊆ V (G), the 2-path closure P2[S]G of S is the set P2[S]G = S∪{w ∈ V (G) : w ∈
IG[u, v] for some u, v ∈ S with dG(u, v) = 2}. A set S is called 2-path closure absorbing
if P2[S]G = V (G) [7]. We denote by ρ2(G) the minimum cardinality of a 2-path closure
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absorbing set of G. A set S ⊆ V (G) is a pointwise non-dominating set of G if for each
v ∈ V (G) \ S, there exists u ∈ S such that uv /∈ E(G). A pointwise non-dominating set
S ⊆ V (G) of a graph G is a 2-path closure absorbing pointwise non-dominating set if it
is a 2-path closure absorbing set. The minimum cardinality of a 2-path closure absorbing
pointwise non-dominating set in G is denoted by ρ2pnd(G)

A clique in G is a complete subgraph of G. A maximal clique is a clique which is not
a proper subgraph of a larger clique. The lower clique number ωL(G) is the minimum size
of all maximal cliques of G.

For S ⊆ V (G), the geodetic closure IG[S] is the union of intervals between all pairs
of vertices from S, that is, IG[S] =

⋃
{IG[u, v] : u, v ∈ S}. S is a geodetic set provided

IG[S] = V (G). The minimum cardinality gn(G) of a geodetic set is the geodetic number
of G. A geodetic set of cardinality gn(G) is a geodetic basis. The introduction and further
studies on geodetic sets and geodetic numbers can be found in [6–10].

A geodetic set S of G is a closed geodetic cover of G if S is obtained as follows:
Choose v1 ∈ V (G) and put S1 = {v1}. Where possible, choose v2 ∈ V (G) \ {v1} and
put S2 = {v1, v2}. For i ≥ 3, choose vi ∈ V (G) \ IG[Si−1], where Sk = {v1, v2, . . . , vi},
and there exists a positive integer k for which Sk = S. The closed geodetic number of G,
denoted cgn(G), is the smallest positive integer k for which IG[Sk] = V (G), where Sk is
obtained as illustrated above. If C∗(G) is the collection of all closed geodetic covers of G,
then cgn(G) = min{|S| : S ∈ C∗(G)}. Any set S ∈ C∗(G) with |S| = cgn(G) is a closed
geodetic basis of G.

A vertex v in G is a hop neighbor of vertex u in G if dG(u, v) = 2. The set N2
G(u) =

{v ∈ V (G) : dG(v, u) = 2} is called the open hop neighborhood of u. The closed hop
neighborhood of u in G is given by N2

G[u] = N2
G(u) ∪ {u}. The open hop neighborhood of

X ⊆ V (G) is the set N2
G(X) =

⋃
u∈X N2

G(u). The closed hop neighborhood of X in G is
the set N2

G[X] = N2
G(X) ∪ X. Let G be a connected graph. A set S ⊆ V (G) is a hop

dominating set of G if for every v ∈ V (G) \ S, there exists u ∈ S such that dG(u, v) = 2.
In particular, a set S ⊆ V (G) is a hop dominating set if N2

G[S] = V (G). The minimum
cardinality of a hop dominating set of G, denoted by γh(G), is called the hop domination
number of G. Any hop dominating set with cardinality equals to γh(G) is called a γh-set
of G.

A subset S of vertex set of G is a geodetic hop dominating set if it is both a geodetic and
a hop dominating set. The geodetic hop domination number γhg(G) of G is the minimum
cardinality among all geodetic hop dominating sets in G. Any geodetic hop dominating
set of G with cardinality γhg(G) is called a γhg-set of G. The geodetic hop dominating set
was first introduced by Anusha et al. in [3]. It is further investigated by Saromines et al.
in [18, 19].

The following results concerning geodetic hop domination on paths and cycles are
found in [19].

Proposition 1. [19] Let n be a positive integer.
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(i) For a path Pn on n vertices,

γhg(Pn) =


n if n = 1, 2,
n+6
3 if n ≡ 0(mod 3) ,

n+2
3 if n ≡ 1(mod 3) ,

n+4
3 if n ≡ 2(mod 3)

(ii) For a cycle Cn on n vertices,

γhg(Cn) =


3 if n = 3, 4, 5,
n
3 if n ≡ 0(mod 3) ,
n+2
3 if n ≡ 1(mod 3) ,

n+4
3 if n ≡ 2(mod 3) .

2. Results

In this section, we introduce and initiate the study of closed geodetic hop domination
in graphs.

2.1. Closed Geodetic Hop Domination

A subset S of vertices of G is a closed geodetic hop dominating set if it is both a
geodetic hop dominating set and a closed geodetic cover of G. The minimum cardinality
among all closed geodetic hop dominating sets in G, denoted by γhcg(G) is called the closed
geodetic hop domination number of G. A closed geodetic hop dominating set S of G with
|S| = γhcg(G) is called a γhcg-set of G.

We remark that not every graph admits a closed geodetic hop dominating set. Con-
sider, for example, the graph G = C12. It is easy to verify that every closed geodetic set
of G is not a hop dominating set.

Observation 1. Let G be a connected graph. If V (G) is a closed geodetic set, then G
admits a closed geodetic hop dominating set.

The following also provides some other conditions under which a graph admits a closed
geodetic hop dominating set.

Proposition 2. If G is a connected graph with diam(G) ≤ 2, then G admits a closed
geodetic hop dominating set.

Proof. If diam(G) = 1, then G is complete so that V (G) is a closed geodetic set.
As observed above, G admits a closed geodetic hop dominating set. Suppose diam(G) =
2. Then G is not complete. Let G1 be a maximal clique of G. Let V (G1) = Sr =
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{u1, u2, ..., ur}. Since G is not complete, r < |V (G)|. For i ≥ 1, choose ur+i ∈ V (G)
such that ur+i /∈ IG[Sr+i−1] where Sr+i−1 = {u1, u2, ..., ur, ur+1, ..., ur+i−1}. Since V (G)
is finite, there exists a smallest positive integer n > r for which IG[Sn] = V (G). If
V (G) \ Sn = ∅ then Sn = V (G). Suppose V (G) \ Sn ̸= ∅, and let a ∈ V (G) \ Sn. By
maximality of G1, there exists b in Sr such that dG(a, b) = 2. Hence Sn is a hop dominating
set of G. Therefore, Sn is a closed geodetic hop dominating set of G.

We denote by C ∗
h the family of all connected graphs that admit a closed geodetic hop

dominating set.

Since closed geodetic hop dominating sets are themselves geodetic hop dominating
sets,

2 ≤ γhg(G) ≤ γhcg(G) ≤ n (1)

for all graphs G ∈ C ∗
h .

Theorem 2. Let G ∈ C ∗
h . Then γhcg(G) = 2 if and only if either G = K2 or G has a

geodetic set S = {u, v} such that dG(u, v) = 3.

Proof. Suppose that γhcg(G) = 2. If G = K2, then we are done. Suppose that
G ̸= K2. Let S = {u, v} be a closed geodetic hop dominating set of G. Since G ̸= K2,
V (G) \ S ̸= ∅ and w ∈ IG(u, v) for every w ∈ V (G) \ S. Let [u = x1, x2, x3, . . . , xk = v]
be a u-v geodesic in G. Then k ≥ 3. Since S is a hop dominating set, in particular,
dG(x2, v) = 2. Necessarily, k = 4 and dG(u, v) = 3.

Clearly, if G = K2, then γhcg(G) = 2. Suppose that G has a geodesic set S = {u, v}
with dG(u, v) = 3. Then S is a closed geodetic set of G. Let w ∈ V (G) \ S. Being
a geodetic set, there exists a u-v geodesic [u, x, y, v] on which w lies. If w = x, then
dG(w, v) = 2. If w = y, then dG(u,w) = 2. Accordingly, S is a hop dominating set of G.
Thus, γhcg(G) ≤ |S| = 2. Equation 1 completes the desired equality.

Lemma 1. Let G ∈ C ∗
h of order n. If γhcg(G) = n, then G has a dominating vertex.

Proof. This is clear for n = 1, 2. Let n ≥ 3. Assume that γhcg(G) = n. Suppose
that G does not contain a dominating vertex. The assumption implies that there exists
a sequence of sets of vertices of G, say Sk = {v1, v2, . . . , vk}, k = 1, 2, . . . , n, such that
v1 ̸= v2 and vk /∈ IG[Sk−1] for all k ≥ 3.

Now, since G is not complete and n ≥ 3, G has vertices u and v such that dG(u, v) = 2.
Let [u,w, v] be a u-v geodesic in G. For some distinct i, j, k ∈ {1, 2, . . . , n}, we have u = vi,
w = vj and vk = v. Without loss of generality, assume i < k. Since w ∈ IG[u, v] and
vj /∈ IG[Sj−1], j < k. Define Tl = {x1, x2, . . . , xl} for l = 1, 2, . . . ,m with k ≤ m ≤ n − 1
such that

• xl = vl for all l ∈ {1, 2, . . . , j − 1};

• xl = vl+1 for all l ∈ {j, j + 1, . . . ,m}.
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Then

• IG[Tl] = IG[Sl] = Sl = Tl for all l ∈ {1, 2, . . . , k − 2};

• IG[Tk−1] = Tk−1 ∪ {w} = Sk; and

• IG[Tl] = Sl+1 for all l ∈ {k, k + 1, . . . ,m}.

This means that Tm = V (G) \ {w} is a closed geodetic set of G. Finally, since w is not
a dominating vertex of G, there exists z ∈ V (G) \ {w} = Tm such that dG(w, z) = 2.
Thus, Tm is a hop dominating set of G. Hence, γhcg(G) ≤ |Tm| = m < n, a contradiction.
Therefore, G contains a dominating vertex.

If G ∈ C ∗
h , then a closed geodetic hop dominating set of G contains the extreme

vertices. It also contains all dominating vertices.

Theorem 3. Let G ∈ C ∗
h of order n. Then γhcg(G) = n if and only if either

(i) G = Kn; or

(ii) G ̸= Kn such that the set S of dominating vertices is nonempty and each of the
components of ⟨V (G) \ S⟩ is complete.

Proof. If G = Kn, then V (G) is the unique closed geodetic hop dominating set of G.
Thus, γhcg(G) = n. Suppose that G ̸= Kn. First, assume γhcg(G) = n. By Lemma 1, the
set S of dominating vertices of G is nonempty. Let C be a component of ⟨V (G) \ S⟩. We
claim that C is complete. Let x ∈ V (C) and let u, v ∈ NC(x). Suppose, to the contrary,
that uv /∈ E(C). Following a similar proof to that of Lemma 1, T = V (G)\{x} is a closed
geodetic hop dominating set of G, a contradiction. Thus, uv ∈ E(G), showing that C is
complete. Conversely, suppose that G is as described in condition (ii). Let T ⊆ V (G)
be a closed geodetic hop dominating set of G. By the preceding remark, S ⊆ T . Let C
be a component of G∗ = ⟨V (G) \ S⟩. Let x ∈ V (C) and u, v ∈ NG(x). If u, v ∈ V (C),
then uv ∈ E(G) since C is complete. Suppose that u /∈ V (C). Then u ∈ S, i.e., u is a
dominating vertex in G. Thus, uv ∈ E(G). This shows that x ∈ Ext(G) ⊆ T . Thus,
V (C) ⊆ T . Since C is arbitrary,

V (G) = S ∪ (∪C component of G∗ V (C)) = T.

Since T is arbitrary, γhcg(G) = |V (G)| = n.

The star graph K1,n is an example of the infinite family of graphs described in Theorem
3(ii).
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2.2. For Paths Pn, Cycles Cn and Multipartite Graphs

Since every geodetic hop dominating set of Pn is a closed geodetic hop dominating set
of Pn, we have the following:

Proposition 3. For a path Pn on n vertices,

γhcg(Pn) =


n if n = 1, 2,
n+6
3 if n ≡ 0(mod 3) ,

n+2
3 if n ≡ 1(mod 3) ,

n+4
3 if n ≡ 2(mod 3)

Proposition 4. A cycle graph Cn of order n admits a closed geodetic hop dominating set
if and only if n < 12. Moreover precisely,

γhcg(Cn) =


3 if n = 3, 4, 5
n
3 if n = 6, 9
n+2
3 if n = 7, 10

n+4
3 if n = 8, 11

(2)

Proof. The case where 3 ≤ n ≤ 11 can be readily verified. Suppose that n ≥ 12.
Let P = [x1, x2, ..., xk], k = ⌈n2 ⌉, be a path in Cn and v ∈ V (Cn) \ V (P ). Then M =
{x1, x2, ..., xk, v} is a closed geodetic cover of Cn with |M | = ⌈n2 ⌉ + 1. Since n ≥ 12,
|V (Cn)\V (P )| ≥ 6. Thus, Cn has at least 2 adjacent vertices which are not hop dominated
by V (P ). Consequently, Cn has at least one vertex which is not hop dominated by M .
This means that M is not a hop dominating set of Cn (see, for example, Figure 1).

We claim that every closed geodetic cover S of Cn is contained in a closed geodetic
cover M of Cn as constructed above with |M | = ⌈n2 ⌉+ 1. Let S = Sk = {v1, v2, ..., vk} be
a closed geodetic cover of Cn. Note that here, IG[Sj ] ̸= V (Cn) for all j ∈ {1, ..., k − 1}
and IG[Sk] = V (Cn). If k = ⌈n2 ⌉+1, then by relabelling of vertices where necessary, Sk is
the desired M . If k = 2, then dCn(v1, vk) = ⌈n2 ⌉. Take M = {x1, x2, ..., xj}, j = ⌈n2 ⌉ + 1
where P = [x1, x2, ..., xj ] is a v1-vk geodesic in Cn. Then M is a closed geodetic cover of
Cn with |M | = ⌈n2 ⌉+1 and S ⊆ M . Now assume 2 < k < ⌈n2 ⌉+1. Choose v ∈ V (Cn) and
a v-vk−1 geodesic P = [x1, x2, ..., xm], where m = ⌈n2 ⌉ such that dCn(v, vk−1) = ⌈n2 ⌉ − 1
and vk /∈ V (P ). Define M = {x1, x2, ..., xm, vk}. Consequently, M is a closed geodetic
cover of Cn with |M | = ⌈n2 ⌉ + 1 as described above. Now, let j ∈ {1, 2, ..., k − 1}. Then
dCn(vj , vk−1) ≤ ⌈n2 ⌉ − 1. By the choice of P , vj ∈ V (P ). Thus, S ⊆ M .

Therefore, being a subset of a non-hop dominating set, any closed geodetic set S is not
a hop dominating set of Cn. Thus, Cn does not admit a closed geodetic hop dominating
set.



A. Adolfo, I. Aniversario, F. Jamil / Eur. J. Pure Appl. Math, 17 (3) (2024), 1618-1636 1625

.................................... ........................................................................
....................................
....................................

..................
.................
. ......
..............................

....................................

....................................

...........
..........
..........
.....
....................................

....................................

....................................

.........

........

........

........

...
....................................

..........
.........
.........
........
.................................... ....................................

....................................
.............
............
...........

.................................... ....................................

......................................................................
.. ........................................................................
........................................................................••

•
•
•
•

• • .................................... ........................................................................
....................................
....................................

..................
.................
. ......
..............................

....................................

....................................

...........
..........
..........
.....
....................................

....................................

....................................

.........

........

........

........

...
....................................

..........
.........
.........
........
.................................... ....................................

....................................
.............
............
...........

.................................... ....................................

......................................................................
.. ........................................................................
........................................................................••

•
•
•
•

•
•

.................................... ........................................................................
....................................
....................................

..................
.................
. ......
..............................

....................................

....................................

...........
..........
..........
.....
....................................

....................................

....................................

.........

........

........

........

...
....................................

..........
.........
.........
........
.................................... ....................................

....................................
.............
............
...........

.................................... ....................................

......................................................................
.. ........................................................................
........................................................................••

•
•
•
•

•

•
.................................... ........................................................................

....................................

....................................
..................
.................
. ......
..............................

....................................

....................................

...........
..........
..........
.....
....................................

....................................

....................................

.........

........

........

........

...
....................................

..........
.........
.........
........
.................................... ....................................

....................................
.............
............
...........

.................................... ....................................

......................................................................
.. ........................................................................
........................................................................••

•
•
•
•

•

•

.................................... ........................................................................
....................................
....................................

..................
.................
. ......
..............................

....................................

....................................

...........
..........
..........
.....
....................................

....................................

....................................

.........

........

........

........

...
....................................

..........
.........
.........
........
.................................... ....................................

....................................
.............
............
...........

.................................... ....................................

......................................................................
.. ........................................................................
........................................................................••

•
•
•
•

•

•

Figure 1: Cycle graph C13 illustrating the first part of proof of Proposition 4

Proposition 5. Let p ≥ 2, 2 ≤ n1 ≤ n2 ≤ ... ≤ np and G = Kn1,n2,...,np with partite sets
Uni, i = 1, 2, . . . , p. Then S ⊆ V (G) is a closed geodetic hop dominating set of G if and
only if for some i,

S = Uni ∪
(
∪p
k=1;k ̸=i{xnk

}
)
, (3)

where xnk
∈ Unk

. Consequently, γhcg(Kn1,n2,...,np) = n1+p−1. In particular, γhcg(Km,n) =
1 +min{m,n} for m,n ≥ 2.

Proof. Clearly, if S ⊆ V (G) satisfies Equation 3, then S is a closed geodetic hop
dominating set of G. Conversely, let S be a closed geodetic hop dominating set of G.
Since S is a hop dominating set, S ∩ Unj ̸= ∅ for all j = 1, 2, ..., p. Since S is a closed
geodetic set, Uni ⊆ S for some i and |S ∩ Unk

| = 1 for all k ̸= i.

The remaining statements follow immediately.

2.3. Realization Problems

Theorem 4. Let a and b be positive integers such that 2 ≤ a ≤ b. Then there exists a
connected graph G such that cgn(G) = a and γhcg(G) = b.

Proof. Let m = b − a + 1. Consider the tree G in Figure 2 below obtained from
the P3m = [y1, y2, . . . , y3m] on 3m vertices by adding (a − 1) pendant edges xky1, k =
1, 2, . . . , a− 1.

x1

x2

x3

xa−1

y1 y2 y3 y4 y5 y6

y3(m−1)

y3m−2

y3m−1

y3m

G :

Figure 2: Graph G complying with the specifications of Theorem 4
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Then set Ext(G) = {x1, x2, ..., xa−1, y3m} is a closed geodetic basis of G. Hence cgn(G) =
a − 1 + 1 = a. On the other hand, the set {x1, x2, ..., xa−1, y3, y6, ..., y3m} is a γhcg-set of
G. Hence γhcg(G) = a− 1 +m = b.

Theorem 5. If n, m, and k are integers with 4 ≤ m ≤ k and 2k−m+ 2 ≤ n, then there
exists a connected graph G such that |V (G)| = n, γhg(G) = m and γhcg(G) = k.

Proof. Let r = k − m + 3 and s = n − k + 1. Let U = {u1, u2, . . . , ur} and W =
{v1, v2, . . . , vs} be the partite sets ofKr,s. ObtainG as in Figure 3 by adding toKr,s (m−4)
new pendant edges wjv1, j = 1, 2, . . . ,m − 4. Then |V (G)| = r + s + (m − 4) = n. The

v1

v2 v3 v4 vs−2 vs−1 vs

u1 u2 u3 ur−1 ur

w1

w2 w3

wm−4

Figure 3: Graph G complying with the specifications of Theorem 5

vertices w1, w2, ..., wm−4 are extreme vertices, thus are in any geodetic cover of G. Since
the set {w1, w2, ..., wm−4, u1, ur, v1, vs} is a γhg-set of G, it follows that γhg(G) = m. Since
the set {v1, w1, w2, ..., wm−4, u1, ..., ur} is a γhcg-set of G, we have γhcg(G) = 1+m−4+r =
1 +m− 4 + k −m+ 3 = k.

2.4. In the Join of Graphs

Since diam(G+H) ≤ 2, G+H ∈ C ∗
h for any graphs G and H.

A set S ⊆ V (G) is a closed 2-path closure absorbing set of G if P2[S] = V (G) and
S = Sk = {v1, v2, ..., vk} where v1 ̸= v2 and vi /∈ P2[Si−1] for 3 ≤ i ≤ k. The minimum
cardinality of a closed 2-path closure absorbing set in G is denoted by ρc2(G). A 2-path
closure absorbing set of G with cardinality ρc2(G) is called ρc2-set. A set S ⊆ V (G) is
a closed 2-path closure absorbing pointwise non-dominating set of G provided S
is a closed 2-path closure absorbing set and at the same time pointwise non-dominating
set of G. The minimum cardinality of a closed 2-path closure absorbing pointwise non-
dominating set of G is denoted by ρc2pnd(G). A closed 2-path closure absorbing pointwise
non-dominating set of G with cardinality ρc2pnd(G) is called ρc2pnd-set.
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Since any closed 2-path closure absorbing pointwise non-dominating set is a 2-path
closure absorbing pointwise non-dominating set and a closed 2-path closure absorbing set,
ρ2pnd(G) ≤ ρc2pnd(G) and ρc2(G) ≤ ρc2pnd(G)for all connected graphs.

Example 1. Consider the graph K5,6 in Figure 4, the sets {v1, v2, v3, v4, v5}, {v1, v3, u1, u2},
and {u1, v1, v2, v3, v4, v5} are ρ2c-set, ρ2pnd-set and ρc2pnd-set of K5,6, respectively. There-
fore, ρc2(K5,6) = 5 ρ2pnd(K5,6) = 4 and ρc2pnd(K5,6) = 6.

K5,6 :

v1

v2

v3

v4

v5

u1

u2

u3

u4

u5

u6
Figure 4: The bipartite graph K5,6

Observation 6. Let n be a positive integer. Then

(i) ρc2pnd(Kn) = n and ρc2(Kn) = n;

(ii) ρc2pnd(Pn) =

{
n if n = 1, 2, 3,

⌈n+1
2 ⌉ if n ≥ 4,

and ρc2(Pn) =

{
2 if n = 3,

⌈n+1
2 ⌉ if n ≥ 4;

(iii) ρc2pnd(Cn) =

{
3 if n = 3, 4,

⌈n2 ⌉ if n ≥ 5
and ρc2(Cn) =

{
3 if n = 3,

⌈n2 ⌉ if n ≥ 4;

(iv) ρc2pnd(Km,n) =

{
m+ n if m = 1 or n = 1

min{m,n}+ 1 if m,n ≥ 2

Lemma 2. [11] Let G be a connected noncomplete graph, and let S ⊆ V (G). If S is a
2-path closure absorbing set of G, then ⟨S⟩ is not complete.

Theorem 7. Let G be a noncomplete connected graph and n ≥ 1. Then S ⊆ V (G+Kn)
is a closed geodetic hop dominating set of G+Kn if and only if

S = V (Kn) ∪ C,

where C ⊆ V (G) and is a closed 2-path closure absorbing pointwise non-dominating set in
G.
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Proof. Let S ⊆ V (G + Kn). Suppose that S is a closed geodetic hop dominat-
ing set of G + Kn, say S = Sk = {x1, x2, . . . , xk} with x1 ̸= x2 and for k ≥ 3, xk /∈
IG+Kn [Sk−1]. Since V (Kn) ⊆ Dom(G + Kn), V (Kn) ⊆ S. Let j = |S ∩ V (H)|. Write
Ai = {xn1 , xn2 , . . . , xni} for i = 1, 2, . . . , j such that n1 < n2 < · · · < nj . First, we
claim that C = Aj is a closed 2-path closure absorbing set of G. Suppose that for
some 3 ≤ l ≤ j, xnl

∈ P2[Al−1]. This means that there exist r < s < l such that
[xnr , xnl

, xns ] is a geodesic in G. Since diam(G+Kn) = 2, [xnr , xnl
, xns ] is also a geodesic

in G+Kn. Thus, xnl
∈ IG+Kn [Snl−1], a contradiction to the definition of S = Sk. Hence,

xnl
/∈ P2[Al−1] for each 3 ≤ l ≤ j. Let x ∈ V (G) \ Aj . There exist a, b ∈ {1, 2, . . . , k}

such that x ∈ IG+Kn(xa, xb). Necessarily, xa, xb ∈ V (G)∩S = Aj and each xa-xb geodesic
containing x lies entirely in G. Since diam(G + Kn) = 2, dG(xa, xb) = 2. Therefore,
P2[Aj ] = V (G), and the first claim is done. We next claim that C is a pointwise non-
dominating set of G. Let x ∈ V (G) \C. Since S is a hop dominating set of G+Kn, there
exists v ∈ S such that dG+Kn(x, v) = 2. Clearly, v ∈ V (G) ∩ S = C and dG(x, v) = 2.
This shows that the second claim holds.

Conversely, suppose that S = V (Kn) ∪ C, where C ⊆ V (G) and is a closed 2-path
closure absorbing pointwise non-dominating set in G. Let k = |C|. Being a closed 2-path
closure absorbing set, there is a sequence of sets Aj = {v1, v2, . . . , vj} (j = 1, 2, . . . , k) such
that v1 ̸= v2, vj /∈ P2[Aj−1] for 2 ≤ j ≤ k and P2[Ak] = V (G). For i = 1, 2, . . . , n+k, write
Si = {x1, x2, . . . , xi}, where V (Kn) = {x1, x2, . . . , xn} and xn+j = vj for all j = 1, 2, . . . , k.
Observe that

• IG+Kn [Si] = Si for all i = 1, 2, . . . , n;

• xn+1 /∈ IG+Kn [Sn] and xn+2 /∈ IG+Kn [Sn−1];

• xn+i /∈ IG+Kn [Sn+i−1] = V (Kn) ∪ P2[Ai−1] for all i = 1, 2, . . . , k; and

• IG+Kn [S] = V (G+Kn).

This means that S is a closed geodetic set of G + Kn. Finally, let x ∈ V (G + Kn) \ S.
Then x /∈ C. Since C is a pointwise non-dominating set, there exists y ∈ C ⊆ S such
that dG+Kn(x, y) = dG(x, y) = 2. Therefore, S is a closed geodetic hop dominating set of
G+Kn.

Corollary 1. Let G be a noncomplete connected graph and n ≥ 1. Then

γhcg(G+Kn) = n+ ρc2pnd(G).

Example 2.

(i) γhcg(Pn +Kp) =

{
p+ 3 if n = 3,

p+ ⌈n+1
2 ⌉ if n ≥ 4,

(ii) γhcg(Cn +Kp) =

{
p+ 3 if n = 3, 4,

p+ ⌈n2 ⌉ if n ≥ 5.
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Theorem 8. [18, Theorem 4] Let G and H be any graphs. A set S ⊆ V (G+H) is geodetic
hop dominating set of G+H if and only if S = SG ∪SH , where SG and SH are pointwise
non-dominating sets of G and H, respectively, such that

(i) SG is a 2-path closure absorbing set in G whenever ⟨SH⟩ is a complete subgraph of
H and

(ii) SH is a 2-path closure absorbing set in H whenever ⟨SG⟩ is a complete subgraph of
G.

Part of Theorem 9 asserts that under the same condition, S is a hop dominating set of
G+H if and only if SG and SH are pointwise non-dominating sets of G andH, respectively.

Theorem 9. Let G and H be connected noncomplete graphs. Then S is a closed geodetic
hop dominating set of G if and only if S = SG ∪ SH where SG and SH are pointwise
non-dominating sets of G and H, respectively, such that either

(i) ⟨SG⟩ is complete and SH is a closed 2-path closure absorbing set of H; or

(ii) ⟨SH⟩ is complete and SG is a closed 2-path closure absorbing set of G.

Proof. Suppose that S is a closed geodetic hop dominating set of G + H. Then SG

and SH are pointwise non-dominating sets of G and H, respectively. Since S is a closed
geodetic set of G+H, there is a positive integer k and sequence of sets Sj = {x1, x2, . . . , xj}
(j = 1, 2, . . . , k) such that x1 ̸= x2, IG+H [Sk] = IG+H [S] = V (G) and xj /∈ IG+H [Sj−1] for
3 ≤ j ≤ k. First, we claim that ⟨SG⟩ is a complete subgraph of G or ⟨SH⟩ is a complete
subgraph of H. Suppose this claim is false. If ⟨SG⟩ and ⟨SH⟩ are noncomplete, then there
exist distinct integers i, j, l, r such that xi, xj ∈ SG with dG(xi, xj) = 2 and xl, xr ∈ SH

with dG(xl, xr) = 2. Without loss of generality, assume that l = max{i, j, l, r}. Since
xl ∈ IG+H(xi, xj), xl ∈ IG+H [Sl−1], a contradiction. The claim, therefore, is true. Next,
suppose ⟨SG⟩ is a complete subgraph of G. Write SH = {xn1 , xn2 , . . . , xnl

} ⊆ Sk with
n1 < n2 < · · · < nl, and let Aj = {xn1 , xn2 , . . . , xnj} for each j = 1, 2, . . . , l. As shown in
the proof of Theorem 7, xnj /∈ P2[Aj−1] for 3 ≤ j ≤ l, and P2[Al] = V (H). Therefore, SH

is a closed 2-path closure absorbing set of H. Similarly, if ⟨SH⟩ is complete, then SG is
a closed 2-path closure absorbing set of G. In view of Lemma 2, conditions (i) and (ii)
cannot hold at the same time.

Conversely, suppose that SG and SH are pointwise non-dominating sets of G and H,
respectively. Then S = SG ∪ SH is a hop dominating set of G+H. Suppose further that
condition (i) holds, i.e., ⟨SG⟩ is complete and SH is a closed 2-path closure absorbing set
of H. Let k = |SG| = k and j = |SH |. There is a sequence of sets Ci = {v1, v2, . . . , vi}
(i = 1, 2, . . . , j) such that v1 ̸= v2, vi /∈ P2[Ci−1] for 2 ≤ i ≤ j and P2[Cj ] = V (H). For
i = 1, 2, . . . , k + j, write Si = {x1, x2, . . . , xi}, where SG = {x1, x2, . . . , xk} and xk+i = vi
for all i = 1, 2, . . . , j. As observed in the proof of Theorem 7, S is a closed geodetic set of
G+H. Similarly, if condition (ii) holds, then S is a closed geodetic set of G+H.
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Lemma 3. Let G be a connected noncomplete graph and S ⊆ V (G) such that ⟨S⟩ is
complete. Then ⟨S⟩ is a maximal clique if and only if S is a pointwise non-dominating
set of G.

Proof. Assume that ⟨S⟩ is a maximal clique of G. Let v ∈ V (G) \ S. Suppose that
uv ∈ E(G) for all u ∈ S. Then ⟨S ∪ {u}⟩ is a complete subgraph of G, contradicting the
maximality of ⟨S⟩. Thus, there exists u ∈ S for which dG(u, v) ≥ 2. Since v is arbitrary,
S is pointwise non-dominating.

Conversely, suppose that S is pointwise non-dominating set of G. Let C ⊆ V (G) for
which ⟨C⟩ is a complete subgraph of G and S ⊆ C. Suppose that C \S ̸= ∅, say x ∈ C \S.
Since S is pointwise non-dominating, there exists y ∈ S such that xy /∈ E(G). However,
y ∈ C since S ⊆ C. This is a contradiction since ⟨C⟩ is complete.

In view of Lemma 3, Theorem 9 can be rephrased as follows:

Theorem 10. Let G and H be connected noncomplete graphs. Then S is a closed geodetic
hop dominating set of G if and only if S = SG ∪ SH where SG ⊆ V (G) and SH ⊆ V (H)
such that either

(i) ⟨SG⟩ is a maximal clique of G and SH is a closed 2-path closure absorbing pointwise
non-dominating set of H; or

(ii) ⟨SH⟩ is maximal clique of H and SG is a closed 2-path closure absorbing pointwoise
non-dominating set of G.

Corollary 2. Let G and H be connected noncomplete graphs. Then

γhcg(G+H) = min{ρc2pnd(G) + ωL(H), ρc2pnd(H) + ωL(G)}. (4)

Example 3.

(i) γhcg(Pr+Km,n) =


5 if r = 3 and m,n ≥ 2

min{5,m+ n+ 2} if r = 3 and m = 1 or n = 1

min{⌈ r+1
2 ⌉+ 2,m+ n+ 2} if r ≥ 4 and m = 1 or n = 1

min{⌈ r+1
2 ⌉+ 2,min{m,n}+ 3} if r ≥ 4 and m,n ≥ 2,

(ii) γhcg(Cr +Km,n) =


5 if r = 4 and m,n ≥ 2

min{5,m+ n+ 2} if r = 4 and m = 1 or n = 1

min{⌈ r2⌉+ 2,m+ n+ 2} if r ≥ 5 and m = 1 or n = 1

min{⌈ r2⌉+ 2,min{m,n}+ 3} if r ≥ 5 and m,n ≥ 2

.
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2.5. In the Corona and Edge Corona of Graphs

For the purpose of this section, a sequence of subsets Sk = {v1, v2, . . . , xk} (k =
1, 2, . . . , n) of V (G) is said to be a closed geodetic sequence of sets if v1 ̸= v2 and
vk /∈ IG[Sk−1] for 3 ≤ k ≤ n. A closed geodetic sequence of sets Sk = {v1, v2, . . . , xk}
(k = 1, 2, . . . , n) is a maximal closed geodetic sequence if IG[Sn] = V (G). More
precisely, S ⊆ V (G) is a closed geodetic set of G if and only if there exists a positive integer
n and a maximal closed geodetic sequence of sets Sk = {v1, v2, . . . , xk} (k = 1, 2, . . . , n)
such that S = Sn. Parallel definitions are adopted for a closed 2-path closure absorbing
sequence of sets and maximal closed 2-path closure absorbing sequence of sets.

Theorem 11. Let G and H be connected graphs where G is nontrivial, and let S ⊆
V (G ◦H). Then S is a closed geodetic hop dominating set of G ◦H if and only if

S = A ∪
(
∪v∈V (G)Sv

)
, (5)

where A ⊆ V (G) and Sv ⊆ V (Hv) satisfying the following conditions:

(i) Sv is a pointwise non-dominating set of Hv for each v ∈ V (G) \NG(A);

(ii) Sv is a closed 2-path closure absorbing set of Hv; and

(iii) The vertices in A constitute a closed geodetic sequence of sets of G

Proof. Assume S is a closed geodetic hop dominating set of G ◦H. Let A = S ∩ V (G)
and Sv = S∩V (Hv) for each v ∈ V (G). Then S = A∪

(
∪v∈V (G)Sv

)
. Let v ∈ V (G)\NG(A),

and let u ∈ V (Hv) \ Sv. Since S is a hop dominating set of G ◦ H, there exists w ∈ S
such that dG◦H(u,w) = 2. If w ∈ V (G), then w ∈ A and wv ∈ E(G), which is impossible.
Thus, w /∈ V (G) so that w ∈ Sv. In this case, dG◦H(u,w) = dHv(u,w) = 2. This means
that Sv is pointwise non-dominating in Hv, showing (i).

To show, (ii), let v ∈ V (G). Let n = |S|. There exists a closed geodetic sequence
of sets Sk = {x1, x2, . . . , xk}, 3 ≤ k ≤ n, such that IG◦H [Sn] = V (G ◦ H). Write
Sv = {xn1 , xn2 , . . . , xnj} with n1 < n2 < · · · < nj . Define Ti = {xn1 , xn2 , . . . , xni} for
i = 1, 2, . . . , j. Suppose that for a < b < c, [xna , xnc , xnb

] is a geodesic in Hv. Then
[xna , xnc , xnb

] is a geodesic in G ◦H so that xnc ∈ IG◦H [Snb
], a contradiction. Therefore,

xni /∈ P2[Ti−1] for 3 ≤ i ≤ j, and therefore, Ti = {xn1 , xn2 , . . . , xni}, i = 1, 2, . . . , j, is
a closed 2-path closure absorbing sequence of sets in Hv. Let x ∈ V (Hv) \ Tj . Since
IG◦H [Sn] = V (G ◦ H), there exist 1 ≤ a, b ≤ n such that x ∈ IG◦H(xa, xb). Because
yv ∈ E(G ◦ H for all y ∈ V (Hv), any xa-xb geodesic lies completely in V (Hv). Thus,
a, b ∈ {n1, n2, . . . , nj}. This means that P2[Tj ] = V (Hv) and Tj = Sv is a closed 2-path
closure absorbing set of Hv.

Statement (iii) is done similarly. The sequence Ai = {xk1 , xk2 , . . . , xki}, i = 1, 2, . . . , j,
such that Aj = A is a closed geodetic sequence of sets of G.

To prove the converse, assume that Equation 3 holds for S together with conditions (i),
(ii) and (iii). Let n = |S|, j = |A|, and for each v ∈ V (G), let Sj

v = {x1v, x2v, . . . , x
j
v} ⊆ Sv,
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j = 1, 2, . . . , kv, be a maximal closed 2-path closure absorbing sequence of sets in Hv.
Define for each k = 1, 2, . . . , n, Sk = {x1, x2, . . . , xk} ⊆ S such that

• A = {x1, x2, . . . , xj};

• If for i < k, xi, xk ∈ Sv, say xi = xsv and xk = xrv, then s < r.

Then Sk = {x1, x2, . . . , xk} (k = 1, 2, . . . , n) is a closed geodetic sequence of sets in G ◦H.
Let w ∈ V (G ◦H) \ S, and let v ∈ V (G) for which w ∈ V (Hv + v). If w ∈ V (Hv), then
w ∈ P2[Sv] = IG◦H [Sv]. Suppose that w = v. Let z ∈ V (G) ∩ NG(v). Pick u ∈ Sv and
y ∈ Sz. Then w ∈ IG◦H [u, z] ⊆ IG◦H [S]. Hence, S is a closed geodetic set of G ◦H.

Finally, we show S is a hop dominating set of G ◦H. Let w ∈ V (G ◦H) \ S, and let
v ∈ V (G) for which w ∈ V (Hv + v). If w = v, then for any z ∈ NG(v), dG◦H(w, y) = 2
for all y ∈ Sz. Suppose that w ∈ V (Hv). If v ∈ NG(A), then dG◦H(w, y) = 2 for all
y ∈ A ∩ NG(v). If v /∈ NG(A), then since Sv is pointwise non-dominating, there exists
y ∈ Sv for which wy /∈ E(Hv). Then dG◦H(w, y) = 2.

Corollary 3. Let G and H be connected graphs where G is nontrivial of order n. Then

n · ρ2(H) ≤ γhcg(G ◦H) ≤ n · ρc2pnd(H),

and these bounds are sharp.

Proof. Let S ⊆ V (G◦H) be a γhcg-set of G◦H. By Theorem 11, S = A∪
(
∪v∈V (G)Sv

)
,

where Sv is a closed 2-path closure absorbing set of Hv. Thus,

n · ρ2(H) ≤
∑

v∈V (G)

|Sv| ≤ |S| = γhcg(G ◦H).

To get the other inequality, for each v ∈ V (G), let Sv ⊆ V (Hv) be a closed 2-path closure
absorbing pointwise non-dominating set of Hv. By Theorem 11, S = ∪v∈V (G)Sv is a closed
geodetic hop dominating set of G ◦H. Hence,

γhcg(G ◦H) ≤ |S| = n · ρc2pnd(H).

For a graph G, let τ(G) be the set of all support vertices v of G for which NG(x) = {v}
for all x ∈ NG(v)}. In particular, if G = K1,n with central vertex v, then τ(G) = {v}.

Theorem 12. Let G be a nontrivial connected graph and n ≥ 1, and let S ⊆ V (G ⋄Kn).
Then S is a closed geodetic hop dominating set of G ⋄Kn if and only if

S = A ∪
(
∪uv∈E(G)V (Huv)

)
, (6)

where A ⊆ V (G) such that L(G) ∪ τ(G) ⊆ A and the elements of A constitute a closed
geodetic sequence of sets of G.
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Proof. Put H = Kn. Suppose that S is a closed geodetic hop dominating set of G ⋄H.
Since L(G) ∪ V (Huv) ⊆ Ext(G ⋄ H), L(G) ∪ V (Huv) ⊆ S for each uv ∈ E(G). Let
A = S ∩ V (G). Since the vertices in S constitute a closed geodetic sequence of sets in
G ⋄H, it follows that the vertices in A constitute a closed geodetic sequence of sets in G.
Let w ∈ τ(G). Suppose that w /∈ A. Since S is a hop dominating set, there exists x ∈ S
such that dG⋄H(w, x) = 2. If x ∈ V (G), then dG(x,w) = 2. Thus, G contains a geodesic
[x, v, w]. This means that there exists v ∈ NG(w) with NG(v) ̸= {w}, a contradiction since
w ∈ τ(G). Suppose there exist uv ∈ E(G) such that x ∈ Suv. Then either wu ∈ E(G)
or wv ∈ E(G). Assume wv ∈ E(G). Then there exists v ∈ NG(w) with NG(v) ̸= {w}, a
contradiction. Hence, τ(G) ⊆ A.

Conversely, suppose that S is as described in Equation 3 together with the indicated
properties. Let n = |S| and |A| = k. For each j = 1, 2, . . . , k, let Aj = {x1, x2, . . . , xj} ⊆ A
be a closed geodetic sequence inG. Extend the sequence by defining for each i = 1, 2, . . . , n,

Si = {x1, x2, . . . , xk, xk+1, . . . , xi} ⊆ S.

This means that Sn \ Ak = ∪uv∈E(G)V (Huv). Thus, Si = {x1, x2, . . . , xk, xk+1, . . . , xi}
(i = 1, 2, . . . , n) is a closed geodetic sequence in G ⋄ H. Let w ∈ V (G) \ A. Since
w /∈ L(G), there exist distinct x, y ∈ V (G) ∩NG(w). Pick z ∈ V (Hxw) and t ∈ V (Hyw).
Then z, t ∈ S and w ∈ IG⋄H(z, y). Since w is arbitrary, IG⋄H [S] = V (G ⋄H) and S is a
closed geodetic set of G ⋄H. To show that S is a hop dominating set, let w ∈ V (G) \ A.
Since w /∈ τ(G), there exists v ∈ NG(w) such that NG(v) \ {w} ≠ ∅, say u ∈ NG(v) \ {w}.
Pick z ∈ Suv. Then z ∈ S and dG⋄H(w, z) = 2. Accordingly, S is a hop dominating set of
G ⋄H.

Corollary 4. Let G be a nontrivial connected graph of size n and p ≥ 1. Then

γhcg(G ⋄Kp) = np+ |L(G)|+ |τ(G)|. (7)

In particular, if L(G) = ∅ and τ(G) = ∅, then

γhcg(G ⋄Kp) = np. (8)

If G = K2, then G ⋄H = K2 +H. This case is taken in Theorem 7. In what follows,
we consider G of order n ≥ 3.

Theorem 13. Let G and H be connected graphs where |V (G)| ≥ 3 and H is not complete,
and let S ⊆ V (G ⋄ H). Then S is a closed geodetic hop dominating set of G ⋄ H if and
only if

S = A ∪
(
∪uv∈E(G)Suv

)
, (9)

where A ⊆ V (G) and Suv ⊆ V (Huv) satisfying the following:

(i) The elements in A constitute a closed geodetic sequence of sets of G and τ(G) ⊆ A;

(ii) Suv is a closed 2-path closure absorbing set of Huv for each uv ∈ E(G).
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Proof. Assume S is a closed geodetic set of G ◦ H. Let A = S ∩ V (G), and Suv =
S ∩ V (Huv) for each uv ∈ E(G). Then S = A ∪

(
∪uv∈E(G)Suv

)
. At this far, showing that

the elements of A and Suv constitute a closed geodetic sequence and a closed 2-path closure
absorbing sequence of sets in G and Huv, respectively, for each uv ∈ E(G), is already a
routine. Since S is a hop dominating set, τ(G) ⊆ A. Thus, (i) holds. To completely show
(ii), observe that for each z ∈ V (Huv), every x-y geodesic (with x ̸= z ̸= y) in G ⋄ H
containing z lies entirely in Huv. Thus, since IG⋄H [S] = V (G ⋄ H), P2[Suv] = V (Huv).
This makes Suv a closed 2-path absorbing set of Huv.

Conversely, suppose that S is as given in Equation 4 and satisfies conditions (i) and
(ii). Assume |S| = n. Obtain from S a closed geodetic sequence of sets in G⋄H as follows:
Construct Sk = {x1, x2, . . . , xk} for k = 1, 2, . . . , n such that Sk for k ∈ {1, 2, . . . , |A|} is a
closed geodetic sequence constituted by the vertices in A and Sn \A = ∪uv∈E(G)Suv. Then
Sk, k = 1, 2, . . . , n, is a closed geodetic sequence of sets in G ⋄H. Let w ∈ V (G ⋄H) \ S
and let uv ∈ E(G) such that w ∈ V (Huv + uv). Suppose that u = w. If Suv = V (Huv),
then since Huv is not complete, there exist x, y ∈ Suv such that xy /∈ E(Huv). Then
dG⋄H(x, y) = 2 and w ∈ IG⋄H(x, y). Suppose that Suv ̸= V (Huv). Since Suv is a 2-path
closure absorbing set of Huv, for w ∈ V (Huv)\Suv, there exist x, y ∈ Suv such that [x,w, y]
is a geodesic in Huv. This means that dG⋄H(x, y) = 2 and w ∈ IG⋄H(x, y). The case where
w = v is handled similarly. Now, suppose that w ∈ V (Huv). Since Suv is 2-path closure
absorbing, there exist x, y ∈ Suv such that dHuv(x, y) = 2 and w ∈ IHuv(x, y). This means
that dG⋄H(x, y) = 2 and w ∈ IG⋄H(x, y). We have just shown that S is a closed geodetic
set of G ⋄H.

Finally, to show that S is a hop dominating set, let w ∈ V (G⋄H)\S. If w ∈ V (G), then
since w /∈ τ(G), there exists v ∈ NG(w) such that NG(v) \ {w} ≠ ∅. Let u ∈ NG(v) \ {w}.
Pick z ∈ Suv. Then dG⋄H(w, z) = 2. Suppose that w ∈ V (Huv) for some uv ∈ V (G).
Then w ∈ V (Huv)\Suv. Since |V (G)| ≥ 3 and G is connected, there exists z ∈ V (G) such
that uz or vz is an edge in G. Let uz ∈ E(G). Take x ∈ Suz. Then dG⋄H(x,w) = 2. Same
goes for the case where vz ∈ E(G). Therefore, S is a hop dominating set of G ⋄H.

Corollary 5. Let G and H be connected graphs where G is of order n ≥ 3 and H is not
complete. Then

γhcg(G ⋄H) = n · ρc2(H) + |τ(G)|. (10)

3. Conclusion

The concept of closed geodetic hop domination in graphs has been introduced and
initially investigated in this study. As shown, not all graphs admit this concept. Some
conditions under which a graph admits a closed geodetic hop dominating set are provided.
Realizations results involving closed geodetic number, geodetic hop domination number
and closed geodetic hop domination number are also provided. The closed geodetic hop
dominating sets of the join corona, and edge corona of two graphs have been obtained.
These characterizations have been used to obtain bounds or exact values of the closed
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geodetic hop domination number of each of these graphs. Exploring necessary and suffi-
cient conditions for a graph to admit closed geodetic hop dominating set may be interesting
and worthwhile to possibly provide insightful results.
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