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Abstract. Let G = (V(G), E(G)) be any connected graph. A function f : V(G) — {0,1,2,3}
is a modern Roman dominating function of G if for each v € V(G) with f(v) = 0, there exist
u,w € Ng(v) such that f(u) = 2 and f(w) = 3; and for each v € V(G) with f(v) = 1, there
exists u € Ng(v) such that f(u) = 2 or f(w) = 3. The weight of a modern Roman dominating
function f of G is the sum wWBE(f) = > vev(c) f(v) and the minimum weight among all of the
modern dominating functions on G is called the modern Roman domination number ~,,r(G) of G.
In this paper, we characterize graphs with smaller modern Roman domination number and obtain
the v,,r(G) of some special graphs. Moreover, we investigate and characterize the modern Roman
domination of the join and corona of graphs.
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1. Introduction

The concept of Roman domination is introduced in 2004 [6]. It is inspired by the
strategies for defending the Roman Empire presented in the work of ReVelle and Rosing
in [13] and Stewart, Cockayne, et al. in [15]. Since then, it has emerged as an active
research field in graph theory (see [10],[8],[1],[4],[3],[12],9],[7],[14],[11]). A new model of
graph domination based on Roman domination is introduced in [8], called modern Roman
domination. Studies and exploration on this variant can be found in [1, 11, 14]. Explicity,
a function f : V(G) — {0,1,2,3} is a modern Roman dominating function (M RDF') of
G if for each v € V(G) with f(v) = 0, there exist u,w € Ng(v) such that f(u) = 2 and
f(w) = 3; and for each v € V(G) with f(v) = 1, there exists u € Ng(v) such that f(u) = 2
or f(u) = 3. The minimum weight among all of the M RDF is called the modern Roman
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domination number and is denoted by 4, z(G). In this model, the label of a vertex under
the function f represents a type of weapon in a war zone. The four defensive weapon
types are represented by the set of weights {0, 1,2, 3} under the function f. Weapon types
are given ascending weights: light, medium, heavy, and air force. Light weapons are for
pedestrians; heavy weapons can be tanks and rockets. The defense strategy of modern
Roman domination relies on a support system of heavy weapons and air forces to back up
the light and medium weapons. [1].

This study explores further the concept of modern Roman domination in graphs. It
focuses on providing the modern Roman domination number of some specials graphs and
some characterizations for the modern Roman dominating functions of the join and corona
of graphs.

2. Terminology and Notation

The symbols V(G) and E(G) denote the vertex set and edge set, respectively, of a
graph G. For S C V(G), |S| is the cardinality of S. In particular, |V(G)| and |E(G)| are
the order and size, respectively, of G. All graph terminologies that are not introduced but
are being used here are adapted from [2].

The set of neighbors of a vertex u in G, denoted by Ng(u), is called the open neigh-
borhood of u in G. The closed neighborhood of u in G is the set Ng[u] = Ng(u) U {u}.

If S C V(G), the open neighborhood of S in G is the set Ng(S) = U N¢g(u). The closed

ucsS
neighborhood of S in G is the set Ng[S] = Ng(S)US. For S C V(G) of a connected graph

G, N¢(S) = U Ng(v) and Ng[S] = SUNg(S). A graph whose edge-set is empty is called
veS

an empty graph (also called null graph or totally disconnected graph). An empty graph of
order n is denoted by K,. A set S C V(G) is a dominating set in G if Ng[S] = V(G).
Thus, S is a dominating set in G if and only if for each v € V(G) \ S, there exists u € S
such that uv € E(G). The minimum cardinality of a dominating set in G, denoted by
v(G), is the domination number of G. A dominating set S of G with |S| = v(G) is called
a v - set of G. Readers may refer to [5] for the introduction and more comprehensive
discussion of the development of the concept of domination in graphs.

For a positive integer k, a set D C V(G) is called a k-dominating set if each z €
V(G)\ D is adjacent to at least k vertices in D. The k-domination number v (G) is then
defined to be the smallest cardinality of a k-dominating set of G.

A Roman dominating function (RDF) on G is a function f : V(G) — {0,1,2} such
that every vertex u € V(G) for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 2. The weight of an RDF is the value wg(f) = >_,cv(q) f(u). The Roman
domination number yg(G) is the minimum weight among all of the RDF on G. An RDF
with wg(f) = Yr(G) is referred to as a yr-function [3].
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A function f : V(G) — {0, 1,2, 3} is a double Roman dominating function of G, written
f € DRD(G), if each of the following holds:

(1) for each v € V(G) with f(v) = 0 at least one of the following holds:

(a) v has two adjacent vertices u and w for which f(u) = f(w) = 2; or

(b) v has an adjacent vertex u for which f(u) =3, and

(2) for each v € V(G) with f(v) = 1, v is adjacent to a vertex u for which either f(u) = 2
or f(u) =3.

The double Roman domination number of G denoted by 74r(G), is the minimum
weight wa(f) = ZUQV(G) f(v) of all the double Roman dominating functions f of G. Any
f € DRD(QG) of weight equal to y4r(G) is referred to as ysp-function of G [3].

A modern Roman dominating function (MRDF) of G is a function f : V(G) —
{0,1,2,3) if

(P1) for each v € V(G) with f(v) = 0, there exist u,w € Ng(v) such that f(u) =2 and
f(w) = 3; and

(P2) for each v € V(G) with f(v) = 1, there exists u € Ng(v) such that f(u) = 2 or
Flu) = 3.

The weight of a modern Roman dominating function f of G is the sum w@%(f) =

> vev(c) f(v) and its minimum weight among all of the modern Roman dominating func-
tion is called the modern Roman domination number ~v,r(G) of G. A modern Roman
dominating function of G with weight w2 (f) = ymr(G) is called a vy, g-function of G [8].

For a function f: V(G) — {0,1,2,3} on a graph G, let (V, V1, Vo, V3) be the ordered
partition induced by f, where V; = {v € V(G) : f(v) =i} for i € {0,1,2,3}. Then we can
write f = (Vp, V1, Vo, V3). The weight of f is defined by wa(f) = |Vi| + 2|Va| + 3|V3].

Example 1. Consider the given graph G with V(G) = {a,b,c,d, e, g,h} in Figure 1. The
function f: V(G) — {0,1,2,3} given by

3, if v =a.
flv) =<2, if v=g.
0, otherwise.

is a modern Roman dominating function of G. It can be verified that the y,r(G) = 5.



S. Ahamad, J. Cariaga, S. Menchavez / Eur. J. Pure Appl. Math, 18 (1) (2025), 5252 4 of 18

G: b (0)

S

©
20

Figure 1: Graph G of order 7 with v,,r(G) = 5.

3. Known Results

We make use of the following known results from [8].

Proposition 1. Let G be a graph of order n and let f = (Vy, V1, Va, V3) be a Ymr-function
on G. Then each of the following statements holds:

(i) If n >4, then 5 < yur(G) < 2n.
(ii) If there are two vertices that are adjacent to all other vertices in G, then vy,gr = 5.
(iii) If G is empty graph, then 27(G) = Ymgr(G).

(iv) Vo £ @

(v) VaU V3 is a dominating set of G. Moreover, it is a 2-dominating set of G [Vp]

(vi) If v is a pendant vertex, then f(v) # 0.
(vil) If v is an isolated vertex, then f(v) = 2.

Proposition 2. For path P,,n > 1,

n
'YmR(Pn) =n-+ lrg—‘
) ifn=4
Proposition 3. For cycle Cpyn > 3, ympr(Cr) =1 z'fn
n+ 2], ifn#4

4. Main Results

This section begins with the general and useful properties of modern Roman domi-
nating functions. It also presents the characterizations of some graphs G with v,,z(G) €
{2,3,4,5} and the modern Roman domination number of the n-barbell graph B,,, wind-
mill graph Wd(k,n), friendship graph G%, butterfly graph G2, complete bipartite graph
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K, p, star graph S, and fan graph F),. For simplicity, we denote by M RDF'(G) the set
of all modern Roman dominating functions on a graph G.

Remark 1. If f = (Vy, V1, Vo, V3) is a ymr-function of G and v € Vi, then v need not be
in No(Va) N Na(Vs).

Proposition 4. Let G be any graph with no isolated vertex. If f = (Vp,V1,Va,V3) a
YmRr-function of G, then the following holds:

(i) Vo = @ if and only if V3 = & and Vo is a vy-set of G. Moreover, vp,r(G) =
V(G| +(G).

(i) Vi = @ if and only if Vo U Va3 is a 2-dominating set of G. Moreover, if Vi = &,
(Va U V3) is connected and Vs is a y-set of G, then ymr(G) > 7(G) + 272(G).

Proof. Clearly, Vj = @ if and only if V3 = @. Suppose Vj = &. Since Vo U V3 is a
dominating set of G and V3 = &, it follows that V5 is a dominating set of G. Suppose V5
is not a y-set of G. Let S be a y-set of G and define g = (V{, V{, V3, V) where Vj = Vi =
&, V] =V (G)\S, and Vj = S. Then there exists V;* C V(G) such that V5" is a y-set of G.
Let Vi = V5, Vi = V{ = & and V| = V(G)\V5". Thus, g = (Vy,V{,V4,V5) € MRDF(Q),
and so, w(g) < wB(f), a contradiction. Hence, V5 is a y-set of G. Furthermore,
Mmr(G) = Vi|+2|Va| = [V(G)\Va|+2[Va| = [V(G)\Va|+27(G) = [V(G)[—v(G)+2(G) =
|[V(G)| + ~(G). This proves (i).

Now we prove (ii). Suppose Vi = &. Then by Proposition 1, Vo U V3 is a 2-dominating
set of G. Conversely, suppose that V; # @ and take {v} € V;. Then by Remark 1, v
need not be in Ng(V2) N Ng(V3), which is a contradiction. Hence, the assertion follows.
Moreover, assume that (Vo U V3) is connected and let V3 be a 7-set of G. Since V; = @,
Ymr(G) = 2|Va| + 3[V3| = 2[Vo U V3| + |V3] = 292(G) +7(G). O

Proposition 5. Let G be a connected graph. Then
(i) Yymr(G) =2 if and only if G = K;.
) (G) =3 if and only if G = K».
(iii) Ymr(G) =4 if and only if G € {K3, Ps}.
(iv) Ymr(G) =5 if and only if |[V(G)| =4 and v(G) =1 or v2(G) =2 and |V(G)| > 4.

Proof. (i) Suppose vgr(G) = 2, say f = (Vo, Vi, Va, V3) is a vy, gp-function on G. By
Proposition 1(iv), Vo = {v}. Hence, Vj = V4 = V3 = @. The converse is clear.

(ii) Suppose Ymr(G) = 3, say f = (Vp, V1, Vo, V3) is a y,p-function on G. By (i),
|Va| > 2. By Proposition 1(iv), and the assumption that v,r(G) = 3,|V2| = 1,|V1| =1
and Vy = V3 = &. Therefore, |V(G)| = 2. Since G is connected, G = Ks. Conversely,
suppose that G = Ky, say V(G) = {x,y}. Then g = {&,{z},{y},2} € MRDF(G) and
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wl(g) = 3. Since ympr(G) > 2, it follows that v,r(G) = 3.

(iii) Note that if v,,,r(G) = 4, then 1 < |V3| < 2 by Proposition 1(iv). Hence, there are
only two cases to consider, namely, |Va| = 1 and |Va| = 2. If |V3| = 2, then |Vi| = 0. By
(P2), this cases is not possible. So if |V2| = 1, we have |V;| = 2. By (P2), (V1 U V5) must
be connected. Thus, the result follows. The converse follows directly from Propositions 2
and 3.

(iv) If vmr(G) =5, then |V3] <1 and 1 < |V3| < 2. Also, by (iii), |V(G)| > 4. Now, if

|V3| = 0, then |Vj| = 0. Hence, there are only two cases to consider, namely, |Va| =1 and
|Va| < 2. If |Va| = 2, then |V1| = 1. Therefore, |V(G)| = 3 which is not possible by (iii). If
|Va| = 1, then |V1| = 3. By (P2), (V4 U Va) must be connected and V5 is a dominating set
in G, it follows that V5 is a y-set in G. Therefore, |V (G)| = 4 and v(G) = 1. Now, suppose
that |V3| = 1. If |Vo| = 0, then |Vi| = 2. Consequently, |V (G)| = 3. Thus, G € {K3, Ps},
a contradiction by (iii). If |Va| = 1, then |Vi| = 0. Since V5 U V3 is a 2-dominating set
in G and |Vo U V3| = 2, it follows that Vo U V3 is a yo-set in G. Hence, |V(G)| > 4 and
72(G) = 2.
Conversely, suppose |V (G)| =4 and v(G) = 1. By (iii), 7(G) > 5. Let v be a dominating
vertex of G and define a function f = (Vp, Vi, Vo, V3) on V(G) such that V) = @ =
Vs, Vo = {v}, Vi = V(G)\ {v}. Then f € MRDF(G) and w2(f) = 5. This implies that
Ymr(G) = 5. Next, suppose that 72(G) = 2 and |V (G)| > 4. Let D = {u, v} be the ~o-set
of G. Define a function g = (Vp, V1, Vi, V3) such that V; = & and

3, if x = .
g(x) =<2, ife=wv
0, ifzeV(G)\D.

Then g € MRDF(G) and w®(g) = 5. Since G ¢ {K3, P3}, we must have w3 (g) = 5.
Hence, ymr(G) = 5. O

Corollary 1. For a connected graph G of order 4, Ymr(G) = 5 if and only if G €
{K1 + (K1 U Ka), Ky + K3, K1 + K3, K1 + Ps}.

Proof. The proof follows directly from Proposition 5 (iv). O
Remark 2. Let G be a graph, then every vymp-function of G is a vqr-function of G if
Vo =o.

Proposition 6. For a complete graph K,,, ymr(Ky,) =5 for alln > 4.

Proof. Pick any z,y € V(K,,) with x # y. Clearly, g = (V(K,) \ {z,vy},2,{z},{y}) €
MRDF(Ky). It follows that v,r(K,) < 5. On the other hand, suppose that f =
(Vo, V1, Vo, V3) is a ypp-function of K,. If Vj = &, then V3 = &. Since f is a vyyp-
function of K,,,|Va| =1 and |Vi| = n — 1. Hence, vmr(K,) = w?f(f) =n+12>51If
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Vo # @, then |Vo| > 1 and |V3]| > 1. It follows that v,z (K,) = w%f(f) = 2|Va|+3|V3] > 5.

Therefore, Vg (Ky) = 5. O
In what follows, we denote by f|g the restriction of f on the subgraph G of the graph

H.

Proposition 7. Let G be a disconnected graph with nontrivial components G1,Ga, -+ ,G,.

Then

Ymr(G) = 22 Ymr(Gi).

Proof. Let G1,Ga, -+ , Gy, be the components of G. Let fi, fo,- -, fn be vmp-functions
of G1,Ga,- - , G, respectively. Define a function f: V(G) — {0,1, 2,3} given by

fl(SE), ifx e V(Gl)
), if x € V(Go).
= P s

fn(z), if x € V(G,).
Then f is a vy, p-function of G. Thus vpr(G) < Y1 Ymr(Gi). Conversely, let f be a -

function of G. Then the restriction f|g, of f to G;, where i = 1,2,--- n is a y,,z-function
of G;. Thus, ymr(Gi) < wBB(f|g,) for all i = 1,2,---,n. Hence, Y1 | Ymr(G;) <
Ymr(G). Hence, the assertion follows by combining the results. O

Corollary 2. Let G be a graph of order n. Then vy,r(G) = 2n if and only if G = K,,.

The n-barbell graph is the simple graph obtained by joining two copies of complete
graph K,>3 by a bridge and is denoted by B,,. Figure 2 shows the n-barbell graphs Bs
and By, respectively.

Figure 2: The graphs Bs and Bj with v,,r(B3) = 8 and 7,,,r(Bs) = 10, respectively.

Proposition 8. For any n-barbell graph B, where n > 3,

8 if n =3.
By =14°
mr(Bn) {10, if n > 4.
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Proof. Let By, be an n-barbell graph and uv € E(B,,) be the bridge that joins the two
copies of K,,. If n = 3, define a function f = (Vp, V1, Vo, V3) given by

f) = {2, x € {u,v}.

1, otherwise.

Then f € MRDF of Bs. It follows that ~,r(Bs) < 8. Now, suppose that f' =
(Vo, V{, V4, V) is a vppr-function of Bs. If Vj = @, then V§ = @. Since [’ is a Ymp-
function of Bs, |V4| = 2 and |V{| = V(Bs) \ |V5|. Hence, v,r(Bs) = w?}f(f’) > 8. If
Vgl # 0, then |[V3| > 2 and |V§] > 1. It follows that ymr(Bs) = wi(g) > 8. There-
fore, ymr(Bs) = 8. If n > 4. Pick any v',u/ € V(B,) such that v' # u,u # v, and
v'v,u'u € E(B,). Now, define a function f = (Vp, V4, Va, V3) given by

0, x € V(By) \ {u,v,u,v'}.
f(z) =<3, x € {u,v}.
2, x e {u,v'}.

Then f € MRDF of B,,n > 4. It follows that v,,r(B,) < 10. Now, suppose that
g = (Wo, W1, Wy, W3) is a y,r-function of B,,. If Wy = &, then W3 = &. Since g is a
Ympr-function of By, [Wa| = 2 and [W1| = V(By) \ [Wa|. Hence, ymr(Bn) = wi(g) > 10.
If [Wo| # 0, then |[Wa| > 2 and [W3| > 2. It follows that ymr(Br) = wiif(g) = 2|Wa| +
3|Ws| > 10. Therefore, ymr(B3) = 10. O

The windmill graph Wd(k,n)= G = Ky + nKj_; is constructed for k¥ > 2 and n > 2
by joining n copies of the complete graph K} at a shared vertex. It has n(k — 1) + 1
vertices and %nk(k‘ — 1) edges. The case k = 3 corresponds to the dutch windmill graph
(also called friendship graph) G% = K; + nkK3 and the case n = 2 corresponds to the
butterfly graph G2 = K; + 2K5. The graphs in Figures 3, 4, and 5 are the windmill graph
Wd(4,2), friendship graph G4 and butterfly graphs G2, respectively.

=1

Figure 3: A windmill graph Wd(4,2) with v,,r(Wd(4,2)) =7
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Figure 4: A friendship graph G§ with v,,r(G3) = 10

Figure 5: A butterfly graph G3 with 7,,r(G3) = 6
Proposition 9. For any windmill graph G = K1 + nKy_1, where k > 4 and n > 2,

Ymr(G) = 2n + 3.

Proof. Let G = K1 + nKj_1, where k > 4 and n > 2. Suppose V(K1) = {u} be the
central vertex in G, then pick a vertex v in each n copies of the complete graph Kj_; and
define a function f = (Vp, V1, Va, V3) given by

3, T = u.
flx) =<2, T = .
0, otherwise.

Then f € MRDF(G). It follows that v,zr(G) < 2n + 3. Now, suppose that g =
(Wo, W1, Wa, W3) is a yppr-function of G. If Wy = &, then W3 = @. Since g is a ypyr-
function of G, [Wa| = {u} = 1 and |W;| = V(G)\{u}. Hence, v,,r(G) = wB(g) > 2n+3.
If [Wo| # 0, then [Wa| > 2 and W3] > 1. It follows that y,r(G) = wif(g) =
2|Wa| + 3|W3| > 2n + 3. Therefore, vp,r(G) = 2n + 3. O

Proposition 10. For any friendship graph G, Ymr(G) = 2n + 2.

Proof. Let G = K1 +nKy, n > 2. Let V(K1) = {u} be the central vertex in G.
Define a function f = (@, V(G) \ {u},{u}, ). Then for all v; € V1,1 < i <n, f(Ng[v]) =
2n + 2. Thus, f € MRDF(G). It follows that v,r(G) < 2n 4+ 2. Now, suppose that
= Wy, W1, Wa, W3) is a vypp-function of G. If Wy = &, then W3 = &. Since [’ is a
Ymr-function of G, by Proposition 4 (i), ymr(G) = 2n + 2. O

Corollary 3. For a butterfly graph G, vmr(G) = 6.
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Proof. The result follows from Proposition 10. O

A graph G is called bipartite if the vertex set V(G) of G can be partitioned into two
subsets V7 and Vs such that every edge in G joins a vertex in Vj with a vertex in Vo. If G
is bipartite such that G contains every edge incident with any pair of vertices in V; and
Va, then G is a complete bipartite graph; in this case, G = Ky, , if V1] = m and |V3| = n.
Figure 6 shows the complete bipartite graph K7 5.

N7
\WNiesey
MOEEOK(

9N

Figure 6: A complete bipartite G = K75

Proposition 11. For a complete bipartite graph K, n, let p = min{m,n},m,n > 2.
Then

9, if p=2.
7. ifp=3
m Kmn =
mr(Einn) 9, ifp=4
10, ifp>5.

Proof. Let G be a complete bipartite graph K,,, and X and Y be partite sets of
Ky pn, where | X| = m and |Y| = n. Let p = min{m,n}. For p = 2, since |V5| = 5 and
v2(G) = 2, it follows from 5(iv) that v,,r(G) = 5. For p = 3, let X and Y be partite sets
of G and assume that |X| = 3, say X = {x1,x9,23}. Let V) =Y, V) = &, Vo = {x1, 22}
and V3 = {x3}. Then f = (Vo,V1,Vo,V3) € MRDF(G) and its weight is 7. Hence,
Ymr(G) < 7. Now, suppose that g = (W, Wi, Wa, W3) is a v, g-function. If Wy = & then
W3 = @. Since g is a y,r-function, then v,r(G) > 7. If Wy # @, let Wy =Y, W) =
2, Wy = {z1,22} and W3 = {x3}. Since g is a vy, z-function, then 7,,zr(G) > 7. Thus,
Ymr(G) = 7. If p =4 and WLOG, let X = {z1,x2,x3, x4} such that f(z1) =2, f(z2) =3
and f(x3) =2 = f(x4). Then f(y;) =0,i=1,2,--- ,n, and for every y; € Y, y; € Ng(X)
by (P2). Define f = (Vp, V1, Vo, V3) such that Vo # @, Vi = &, Vo = {x1, x3, 24}, V3 = {x2}.
Then f € MRDF(G). Thus, vmr(G) < 9. Suppose to the contrary that v,r(G) < 9 and
p = 4. So, Yymr(G) = 8. Now, if X = {x1,x9,x3,24} then {z1,z9, 23} is a 73-set of
G\ {z4}. Clearly, 7 = ynr(G \ {z4}) < ymr(G) = 8. This means that f(z4) = 1, a
contradiction. Therefore, v,,r(G) = 9. If p > 5, let X = K,, and Y = K,,. WLOG, let
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{ur,u2} € V(Kp), {v1,v2} € V(K,) and define a function f = (Vp, V1, Vo, V3) given by

3, AS {ul,vl}.
f(Z) = 2, A {UQ,UQ}.
0, otherwise.

Then f € MRDF(G). Since |Vi| = 0 and w;v; € E(G), for all i = 1,2, {u,v1} = V3 is a
dominating set of G. Thus, v(G) = 2. Since (VU V3) is connected, by Proposition 4 (ii),
’ymR(G) = 10. ]

Thﬁan F,, of order n + 1 is the graph P,, + K7 and the star S, of order n + 1 is the
graph K, + Ki. The graphs in Figures 7 and 8 are the star graph Sg and fan graph Fg,
respectively.

Figure 7: A star graph Sg with 7,,,r(Ss) =7

©
OO
e‘ ,a
Figure 8: A fan graph Fg with v,,,r(Fs) =7

Proposition 12. If G € {F,, Sy}, n > 1, then vr(G) =n + 2.

Proof. WLOG, let G = F,, where V(G) = V(K + P,) and V(K;) = {u} is a central
vertex of G. Now, define a function f = (Vp, V1, Va, V3) given by

fa) = {2, x = {u}.

1, otherwise.

Then f € MRDF(G). It follows that v,r(G) < n + 2. Now, suppose that g =
(Wo, W1, W, W3) is a vy pg-function of G. If Wy = &, then W3 = &. Since g is a
ymr-function of G, |Ws| = |V(K;)| = 1 and |Wi| = |V(P,)| = n. Hence, ymr(G) =
wB(g) > n+2. If [Wy| # 0, then |Wa| > 1 and [W5| > 1. It follows that v,r(G) =
wiB(g) = 2|Wa| + 3|W3| > n + 2. Therefore, ymr(G) =n + 2.

O



S. Ahamad, J. Cariaga, S. Menchavez / Eur. J. Pure Appl. Math, 18 (1) (2025), 5252 12 of 18

5. On the join of graphs

Given two graphs G and H with disjoint vertex sets, the join G+ H of graphs G and H,
is the graph with vertex-set V(G+ H) = V(G)UV(H) and edge-set E(G + H) = E(G)
UEH)U{uv:ueV(G)and v e V(H)} [3].

In this section, the following proposition characterizes all M RDF on the join of graphs.

Proposition 13. Let G and H be any graphs and let f € (Vy, V1, Va, V3) be a function on
V(G + H) with Vo # & and V3 # &. Then f € MRDF(G + H) if and only if one of the
following holds:

(i) fle € MRDF(G) and one of the following holds:

(a) VanV(G)| >1 and V3NV (G)| > 1
(b) Vo NV (G) = @ and each of the following holds:
(bl) V3 is a dominating set of G.
(b2) VaNV(H) is a dominating set of H[Vp].
(c) VsNV(G) =@ and each of the following holds:
(cl) Vi is a dominating set of G.
(c2) V5NV (H) is a dominating set of H[Vp].

(ii) flg € MRDF(H) and one of the following holds:

(a) |VanNV(H)| >1 and |[VsNV(H)| > 1

(b) VaoNV(H) =< and each of the following holds:
(bl) V3 is a dominating set of H.
(b2) VanNV(G) is a dominating set of G[Vy].

(¢c) VaNV(H) =@ and each of the following holds:
(cl) V4 is a dominating set of H.
(c2) V3 NV(G) is a dominating set of G[Vp).

(i) fle € MRDF(G), flu € MRDF(H) and each of the following holds:

(a) Vo NV (H) # @ whenever Ng(z) NVa = & for some x € Vj.
(b) VsNV(H) # & whenever Ng(x) N V3 =& for some x € Vj.

(c) VQOV(H)#Q or VaNV(H) # @ whenever 3x € Vi with Ng(x)NVa = @ and
Ng(z )ﬂVg

(d) VanNV(G) # @ whenever Ny (z) N Va = & for some x € Vj.
(e) VaNV(G) # @ whenever Ng(z) N Vs = & for some x € Vj.
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(f) VanV(G) # @ or V5NV (G) # & whenever Iz € Vi with Ng(x)NVa = & and
NH(:E) NV3=g

Proof. Suppose f|g € MRDF(G). Assume that (i)(a) holds. Let v € Vj. If v € V(G),
then there exist u,w € V(G) such that {u,w} C Ng(v) and f(u) = 2 and f(w) = 3,
by (P1). This implies that {u,w} C Ngym(v). Now, assume that v € V(H). Note that
[VanV(G) > 1 and [V3NV(G)| > 1. Now, take u € Vo NV(G) and w € V3N V(QG)
such that vu,vw € E(G + H). Thus, {u,v} C Ngig(v). Moreover, let v € V;. Assume
v € V(G). Then there exists z € Vo N V(G) or z € V3N V(G) such that z € Ng(v) by
(P2). This means that z € Ngym(v). Now, assume v € V(H). Since [VoNV(G)| > 1 and
[VaNV(G)| > 1, there exists z € VaNV(G) or z € V3N V(G) such that z € Ngypu(v).
Thus, f € MRDF(G + H). Similarly, if flz € MRDF(H) with [VoNV(H)| > 1 and
[VaNV(H)| > 1, then f € MRDF(G + H). Assume (i)(b) holds. Since Vj NV (G) = @,
Vo C V(H). Let v € Vy. By (b2), there exists u € Vo N V(H) such that uv € E(H) C
E(G + H). Also, since V3 is a dominating set of G, V3N V(G) # @. Pick u € Vs N V(G).
Then uwv € E(G + H). Let v € Vi NV(G). By (bl), there exists u € V3N V(G) such that
wv € E(G) C E(G+ H). Now, let v € Vi NV (H). By (bl), there exists u € V3N V(G).
Then wv € E(G + H). Therefore, f € MDRF(G + H). Similarly, if (ii)(b) holds, then
f € MRDF(G + H). Assume (i)(c) holds. Since V) N V(G) = @, then V) C V(H). Let
v € V. By (¢2), there exists u € VsNV (H) such that wv € E(H) C E(G+ H). Also, since
Va is a dominating set of G, Va NV (G) # @. Pick u € VoNV(G). Then uv € E(G + H).
Let v € ViNV(G). By (cl), there exists u € VaNV(G) such that uv € E(G) C E(G+ H).
Now, let v € Vi NV (H). By (cl), there exists u € Vo N V(G). Then wv € E(G + H).
Therefore, f € MDRF (G + H). Similarly, if (ii)(c) holds, then f € MRDF(G + H).
Suppose (iii) holds, that is f|¢ € MRDF(G) and f|g ¢ MRDF(G). Let v € Vo N V(G).
If No(v)NVa = @ and Ng(v) N V3 # @. Take u € V3N V(G) such that uwv € E(G) C
E(G + H). Since Ng(v) N'Va = @, by assumption there exists w € Vo N V(H) such
that vw € E(G + H). If Ng(v) N Vo # @ and Ng(v) N Vs = @. Pick u € Vo N V(QG)
such that wv € E(G) C E(G + H). Since Ng(v) N V3 = &, by assumption there exists
w € V3NV (H) such that vw € E(G+ H). If Ng(v) NVa = @ and Ng(v) N V3 = &. Then
by assumption, VoNV (H) # @ and V3NV (H) # @ and so, there exist u € Vo NV (H) and
w € VaNV(H) such that vu,vw € E(G + H). Now, suppose f(v) = 1. If Nog(v)NVy = @&
and Ng(v) N V3 = @. Then by assumption, there exist z € VoNV(H) or z € VNV (H)
such that vz € E(G + H) satisfying (P2). Therefore, f € MRDF(G + H). Similarly, for
v € V(H) such that f(v) € {0,1}, f € MRDF(G + H).

Conversely, suppose f € MRDF(G + H). Consider the following cases:

Case 1: Suppose f|lg € MRDF(G). If (i)(a) holds, we are done. Suppose (i)(a) does not
hold. Thus, either VoNV(G) = @ or VaNV(G) = @. Suppose VoNV (G) = @. Necessarily,
WNV(G) =@. Let v € Vi NV(G). Since f|g € MRDF(G), there exists u € V3 such
that wv € E(G). Thus, V3 is a dominating set of G, and so, (bl) holds. Also, since
VoNV(G) = @, we have Vo C V(H). This means that VoNV(H) # &, say w € VaNV (H).
Suppose v € Vo NV (H). Then since f € MRDF(G+ H), vw € E(H) C E(G+ H). And
50, (b2) holds. Also, since V3 is a dominating set of G, there exists u € V3 N V(G) where
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wv € E(G+ H). Suppose V3 NV (G) = @, then similarly, (i)(cl) and (i)(c2) hold.

Case 2: Suppose f|g € MRDF(H). This case can be proven similarly with Case 1.
Case 3: Suppose f|lg ¢ MRDF(G) and f|g ¢ MRDF(H). If fl|¢c ¢ MRDF(G), then
there exists x € Vo NV (G) such that Ng(x) NVa = @ or Ng(x) N V3 = &. Moreover, there
exists y € ViNV(G) such that Ng(y)NVa = @ and Ng(y)NVs = @. If Ng(x)NVa = @ and
Ng(x) NV # &. Note that f € MRDF(G + H). Then, there exists u € (VoNV(G+ H))
such that u € Ngipg(x) for some z € Vo N V(G). Since Ng(z) NVa = @,u € Ny(x).
Consequently, u € Vo N V(H) for some = € V. Thus, (iii)(a) holds. If Ng(z)NVs = &
and Ng(z) NVp # @. Since f € MRDF(G + H), then there exists w € (V3NV(G + H))
such that w € Ng4pg(z) for some z € Vp NV (G). Consequently, by assumption, (iii)(b)
holds. If Ng(x) NVa = @ and Ng(x) N V3 = @. Since f € MRDF(G + H), then there
exist u € (VaNV(G+ H)) and w € (V3NV(G + H)) such that u,w € Ng4pg(z) for some
x € VoNV(G). Thus, by assumption, u,w € Ny (z) and consequently, VoNV (H) # & and
VaNV(H) # @. Hence, (iii)(a) and (iii)(b) hold. Furthermore, suppose Ng(y) NVa = &
and Ng(y) N Vs = @ for some y € Vi1 N V(G). Since f € MRDF(G + H), there exist
u€eVoanNV(G+ H)orwe VsNV(G+ H) such that u,w € Ngipg(y). By assumption,
u,w € Npg(y) and consequently, (iii)(c) holds. Similarly, if f|gz ¢ MRDF(H), then
(iii)(d), (iii)(e), and (iii)(f) hold. O

Proposition 14. Let G and H be any graphs. Then
3 < ymr(G+H) <10

Proof. Suppose G and H are trivial graphs. Then by Proposition 5 (ii), vr(G+ H) =
Ymr(K2) = 3. Suppose G and H are not trivial graphs, then ~,,r(G + H) > 2. That
is, Yymr(G + H) > 3. On the other hand, let V(G) = {v1,v2, - ,v,} and V(H) =
{u1,ug, -+ ,un}. Now, define a function f = (Vp, V1, Vo, V3) on V(G + H) given by

2, if x € {v1,u1}.
f(x) =143, if x € {va,us}.
0, ifx e V(G+ H) \ {v1,v2,ur,us}.

for every x € V(G + H). Then f € MRDF(G+ H). Thus, (G + H) < wZ, () = 10.
Hence, 3 < v,r(G + H) < 10. ]

Proposition 15. Let G and H be any graphs. Then
(1) Ymr(G+ H) =3 if and only if G = K1 and H = K;
(i) Ymr(G + H) =4 if and only if G = K1 and H € {K», K, }
(iil) vmr(G + H) =5 if and only if one of the following holds:

(a) G=K; and H € {Pg,Kg,E,KlLJKQ} or H=K; and G € {Pg,Kg,fg,Klu
K>},
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(b) If V(G + H)| > 4, then v2(G) =2 or v2(H) = 2.
(c) If V(G + H)| >4, then v(G) =1 and v(H) = 1.

Proof. The proof follows immediately from Proposition 5. O

Corollary 4. Let m and n be positive integers.
(i) If G = K, and H = K,;, with n,m > 2,v,gr(G + H) = 5.
(i) If G = K,, and H = K, with n,m > 5,v,r(G + H) = 10.

6. On the corona of graphs

Let G and H be graphs with disjoint vertex sets. The corona of G and H is the
graph G o H obtained by taking one copy of G and |V (G)| copies of H, and then joining
the it" vertex of G to every vertex of the i** copy of H. For convenience, we adapt the
notation H” + v used in [3] to denote the subgraph of G o H corresponding to the join
HY+ ({v}),v € V(G). Moreover, for convenience, we define for i = 0,1,2,3 and v € V(G),
V= {u € V(HY)|f(u) = i}.

Proposition 16. Let G be any nontrivial connected graph and H be any graph. Let
= (Vo,V1,Va,V3) be any function on V(G o H). Then f € MRDF(G) if and only if
each of the following holds:

(i) For everyv € (Vo UWV) NV(Q), flgr € MRDF(H"). Moreover, if v € Vo NV (G),
then the following holds:

(a) IF V¥ # 0 and |Vi!| = 0, then [Ng(v) 0 V| > 1; and
(b) If |Vy| =0 and |V5’| # 0, then |[Ng(v) N Va| > 1.

(ii) For every v € VoNV(Q),Vy dominates V.

(iii) For everyv € V3NV (G),Vy dominates Vy .

Proof. Suppose f € MRDF(G o H) and let v € (Vb U Vi) NV(G). Let u € V.
Then u € Vj and by definition, there exist w,z € Ngom(u) such that w € V5 and z € Vi.
But Ngom(u) = {v} U Ngv(u) and v € Vp U Vi, and thus, w,z € Ngv(u). Moreover, let
u € V. Then u € V; and by definition, there exists x € Vo U V3 such that x € Ngom(u),
so that € (V5 UVY) and so, € Npgv(u). Hence, flgr € MRDF(G o H). Now, let
v € Vp. Suppose that |Vy’| # 0 and |V3’| = 0. Then if v € Ngog(v) and u € V3, we have
u € Ng(v) N'V3. Thus, [Ng(v) N V3| > 1. Moreover, suppose that |Vy’| # 0 and |Vy’'| = 0.
Similarly, if w € Ngom(v) and w € Vi, then u € Ng(v) NVa. Thus, [Ng(v)NVa| > 1. This
proves (i).

Suppose that v € Vo N V(G) and let v € Vf. By definition, there exists {z,y} C
Neomr(u) = {v} + Npgv(u) such that z € V5 and y € V3. If v € V; and take z = v, then
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y € V3 and y € Ngv(u). Thus, V5’ dominates V[{. This proves (ii). Similarly, if v € V3
and taking y = v, then x € Vi’ and € Nyv(u). This means that V; dominates Vj’. This
proves (iii).

Conversely, let w € Vp and let v € V(G) for which v € V(HY +v). If u = v, by (i),
fla» € MRDF(G o H). Thus, there exist w € V3’ and z € V5’ such that w,z € Nyv(u)
and so, w,z € Ngop(u). Now, if |V5’| = 0, by (i) [Ng(v) N V3| > 1. Thus, there exists
w € Vy and z € Ng(v) N V3 such that w,z € Ngog(u). Similarly, if |Vy'| = 0, by (i),
|Ng(v)NVa| > 1. Thus, there exist w € Ng(v) NV and z € V¥ such that w, 2 € Ngop (u).
If u # v, then u € V. Suppose v € ViNV(G). By (i), flg» € MRDF(GoH). Thus, there
exist x,y € Ngv(u) such that z € Vi and y € V5. If v € VoNV(G). By (ii), V3" dominates
V. Thus, there exist w,v € Npgv(u) such that w € Vy’. Also, if v € V3N V(G). By (iii),
Vy dominates V. Thus, there exist w,v € Nyv(u) such that w € V. Now, let u € V;. If
u € V(G), then there exist = € V5*U V3 such that € Nyu(u) since f|g« € MRDF(H").
This implies that x € Vo U V3 and € Ngom(u). Suppose u € V(H"Y) for some v € V(G).
Ifve (VouVs)NV(G), then v € (Vo UV3) N Ngog(u). If v € Vy U Vi, then there exist
w € Vy U VY such that w € Ngv(u) since flge € MRDF(H") by (i). It implies that
w € VaUVs and w € Ngop(u). Therefore, f € MRDF(G o H). O

Proposition 17. Let G and H be any graph with |V(G)| = n and |V(H)| = m and let
f=Wo,V1,Va,V3) be a ympg-function of Go H. Then 3n < ZaEV(U+H”) fla) < 2n+nm,
for each v € V(QG).

Proof. Let v € V(G). If v € VU V3, then 3n < }° oy (o) f(P) < X pevwrny) fa) <
2n 4+ nm. Suppose that v € V. By Proposition 16, f|gw € MRDF(H"). Thus, 3n <
> aevrmry f(a) < 2n+nm. If v € V4, then by Proposition 16, f|g» € MRDF(H").
Thus, 3n < > cy vy f(P) £ Dpev(wrnv) f(a) < 2n + nm. Moreover, the bounds are

sharp if H = K; and G € {P,,C,, K, }. O

Proposition 18. Let G be a connected graph of order n > 1 and K,, be the complete
graph of order m > 2, then

dn, ifm=2.

mR(G o Kp) =
T ) {5n, if m > 3.

Proof. If n =1, then G o K,;, = K;+1. Hence, if m = 2,v,,r(G 0o K3) = ypr(K3) = 4
by Proposition 5 (iii). If m > 4, then v, r(Km+1) = 5 by Proposition 6. Now, If n > 1,
then for m = 2, let V(K3) = {z,y} and V(G) = {v1,v2, - ,v,}. Define a function
=W, V1,Va,V3) on V(G o K3) where Vj = @ = V3,V] = UUGV(G) V(HY),Va = V(G).
Then f € MRDF(G o K3). It follows that v,zr(G o K2) < 4n. Now, suppose that
g = (Wo, W1, Wy, W3) is a v, p-function of G o K. If Wy = &, then W3 = &. Since ¢ is a
Ympr-function of G o Ky, by Proposition 4, v,,r(G o K3) = 4n.
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For m > 3, let V(G) = {v1,va, - ,v,} and WLOG, pick a vertex u € V(K,,). Define
a function f = (Vp, V1, Ve, V3) on V(G o K,;,) by

3, if x € V(G).
flz) =<2, if 2 € Upev(e) V).
0, if 2 € Upev(e) VIH \w)").

Then f € MRDF(G o K,,). It follows that v,,r(G o K,;,) < 5n. Now, suppose that
g = (Wo, W1, Wa, W3) is a yp,r-function of G o K,,,. If Wy = @, then W3 = @&. Since g
is a ymp-function of G o K, |Ws| = V(G) and |W;| = V(H"). Hence, ymr(G o K;,) =
wngm(g) > 5n. If [Wy| # 0, then |Wa| > 1 and |[W3| > 1. It follows that v,,r(G o K,) =
ngme (g) = 2|Ws| + 3|W3| > 5n. Therefore, v, (G o Kp,) = 5n. O

Corollary 5. If K,, is a complete graph of order n > 1, then
(i) ’ymR(Kl OK7n) =n+2.
(i) Ymr(Kno K1) = 3n.

Proof. Statement (i) follows from the fact that K o K,, = S,, and by Proposition 12
(i), ymr (K1 © Kpn) = Ymr(Sn) = n+ 2. For (i), note that K, o K is the disjoint union n
copies of Ks. Using proposition 5 (ii) and Proposition 7, we have v, r(K, 0 K1) = 3n. O
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