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Abstract. This paper introduces a pioneering advancement in rough set theory by presenting a
new class of rough sets termed h-rough sets. Central to this novel approach are the concepts of
h-lower and h-upper approximations, intricately tied to the notion of h-open sets. We delve into
the fundamental properties of h-rough sets and establish the framework of h-approximation spaces,
offering a comprehensive understanding of their theoretical underpinnings. Moreover, we introduce
and rigorously analyze the concepts of h-rough equality and h-rough inclusion, providing formal
definitions and insightful examinations of their implications in data approximation tasks. Through
detailed examples and thorough exploration, this paper showcases how h-rough sets extend rough
set theory, offering more flexible and precise techniques for data approximation. This study not
only contributes to the theoretical development of rough set theory but also opens up exciting
possibilities for practical applications across various domains.
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1. Introduction

Information technology is the most significant feature of the 21st century, playing a
vital role in information discovery through available knowledge. Rough set theory [12], a
recent approach for reasoning about data, was created by Pawlak. This theory extends
set theory by describing a subset of a universe with a pair of ordinary sets known as
the lower and upper approximation. It depends on a specific topological structure and
finds many applications across various real-life fields. The theory and applications of
rough sets have impressively developed over time. Numerous papers have been written
to generalize rough sets ([3],[2],[4],[5],[7],[14],[12],[15],[16],[18], [19],[20]). In [17] Wiweger
introduced the concept of topological rough sets, one of the most important generalizations
of rough sets. This generalization utilizes an approach starting with a topological space
and defines the approximation via the interior and closure operators of topological spaces.
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In [1] Abbas introduced h-open. In this paper, we introduce a new classification for the
universe called h-approximation space. Additionally, we study the concepts of h-lower and
h-upper approximations, investigate h-rough sets, compare this concept with rough sets,
and provide some properties and examples.

2. Preliminaries

Rough set theory finds its roots in the necessity to represent subsets of a universe
through equivalence classes within a partition of that universe, which defines a topological
space, denoted as approximation space A = (M,R). Here, M denotes the universe set and
R stands for an equivalence relation ([8],[13]). The equivalence classes of R are referred
to as granules, elementary sets, or blocks, denoted by Rm ⊆ M for each m ∈ M . Within
this approximation space, two operators are considered:

(i) R(K) = {m ∈ M : Rm ∩K ̸= ϕ} is called upper approximation of K ⊆ M .

(ii) R(K) = {m ∈ M : Rm ⊆ K} is called lower approximation of K ⊆ M .

Let POSR(K) = R(K) denote the positive region of K, NEGR(K) = M − R(K)
denote the negative region of K, and BNR(K) = R(K) − R(K) denote the borderline
region of M .

The degree of completeness can also be characterized by the accuracy measure, in
which | R | represents the cardinality of set R as follows:

αR(K) =
| R(K) |∣∣ R(K)

∣∣ ,where K ̸= ϕ

Accuracy measures aim to quantify the completeness of knowledge. αR(K) helps gauge
the size of the boundary region of datasets, yet it doesn’t readily capture knowledge
structure. One key advantage of rough set theory lies in its capability to manage categories
that defy sharp definition within a knowledge base. The rough sets framework allows for
the measurement of characteristics in potential datasets, facilitating the assessment of
inexactness and expression of topological imprecision characterization.

(i) If R(K) ̸= ϕ and R(K) ̸= M , then K is roughly R-definable.

(ii) If R(K) = ϕ and R(K) ̸= M , then K is internally R-undefinable.

(iii) If R(K) ̸= ϕ and R(K) = M , then K is externally R-undefinable.

(iv) If R(K) = ϕ and R(K) = M , then K is totally R-undefinable.

We denote the set of all roughly R-definable (resp. internally R-undefinable, externally
R-undefinable and totally R-undefinable) sets by RD(M) (resp. IUD(M), EUD(M) and
TUD(M)) ([8],[13]).

Using αR(K) and these classifications, rough sets can be characterized by their bound-
ary region size and structure. Rough sets are regarded as a specific subset of relative sets
and are incorporated into the framework of Belnap’s logic [10].
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Definition 1 ([8],[13]). If (M,R) be an approximation space and K ⊆ M . Then there are
memberships which are defined by:

(i) The strong membership is denoted by ∈, ( m∈K ⇔ m ∈ R(K) ).

(ii) The weak membership is denoted by ∈, ( m∈K ⇔ m ∈ R(K) ).

Definition 2 ([6]). A topological space is defined as a pair (M,σ), where M is a set and
σ is a family of subsets of M satisfying the following conditions:

(i) ϕ,M ∈ σ.

(ii) σ is closed under arbitrary union.

(iii) σ is closed under finite intersection.

The elements of M are referred to as the points of the space, while the subsets of
M belonging to σ are termed open sets within the space. The complements of these
subsets, belonging to the complement of σ, are known as closed sets within the space.
Additionally, the family σ of open subsets of M is referred to as the topology for M .The
closure of K ⊆ M is the intersection of all closed sets containing K, denoted as ( K =
∩{F ⊆ M : F is closed and K ⊆ F}). Also, K is closed iff K = K. The interior of K in
M is the union of all open subsets of M contained in K denoted as ( K◦ = ∪{G ⊆ M :
G is open and G ⊆ K}). Additionally, K is open iff K = K◦. The border of K ⊆ M
denoted as ( b(K) = K \K◦). A subset K is classified as exact if b(K) = ϕ; otherwise, it’s
considered rough. It’s evident that K is exact if and only if K = K◦. In Pawlak space, a
subset K ⊆ M can either be rough or exact.

Definition 3 ([1]). A subset K of the topological space M is termed h-open set if for every
non-empty set H ∈ M where H ̸= M and H ∈ σ, K ⊆ (K ∪H)◦ .The complement of
the h-open set is referred to as h-closed. We denoted the collection of all h-open sets of a
topological space (M,σ) as σh.

Theorem 1 ([1]). In any topological space (K,σ) every open set is h-open set.

The converse of the Theorem 1 may not hold, as demonstrated in the following example.

Example 1. Let M = {k, q, s} with a topology σ = {φ,M, {k}, {q}, {k, q}}, then:

σh = {M,φ, {k}, {q}, {s}, {k, q}, {k, s}, {q, s}}.

Definition 4 ([1]). (i) The interior of K in M is the union of all h-open subsets of M
contained in K denoted as ( Inth(K) = ∪{G ⊆ M : G is h-open and G ⊆ K}).

(ii) The subset bh(K) = K \ Inth(K) is said to be h-border of K.

(iii) The subset Exth(K) = Inth( M \K ) is called h-exterior of K.
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3. h-rough classification

In this section we introduce the h-approximation space which is a new class of approx-
imation space. Additionally, we study the concepts of h-lower approximation and h-upper
approximation and outline some properties of h-approximation.

Definition 5. If M is a finite non-empty universe. the pair (M,Rh) is referred to as an
h-approximation space, where Rh represents a general relation used to generate a subbase
for a topology σ on M and a class of h-open sets σh.

Example 2. Let M = {k, q, s, t} be a universe and a relation R defined by R = {(k, k), (k, s),
(k, t), (q, q), (q, t), (s, k), (s, q), (s, t), (t, k)}, thus kR = {k, s, t}, qR = {q, t}, sR = {k, q, t}
and tR = {k}. Consequently, the topology associated with this relation is σ = {M,ϕ, {k},
{t}, {k, t}, {q, t}, {k, q, t}, {k, s, t}} and σh = {M,ϕ, {k}, {t}, {k, t}, {q, t}, {s, t}, {k, s, t},
{q, s, t}, {k, q, t}}. So (M,Rh) is a h-approximation space.

Example 3. Let M = {k, q, s} be a universe and a relation R defined by kR = {k, q},
qR = {q}, sR = {k, q}. Consequently, the topology associated with this relation is
σ = {M,ϕ, {q}, {k, q}} and σh = {M,ϕ, {k}, {q}, {k, q}, {k, s}}. So (M,Rh) is a h-
approximation space.

Definition 6. If (M,Rh) is a h-approximation space and K is any non-empty subset of
M . Then we defined,

(i) The h-lower approximation, Rh(K) = ∪{H ∈ σh : H ⊆ K}.

(ii) The h-upper approximation, Rh(K) = ∩{F ∈ σhc : F ⊇ K}.

Definition 7. If (M,Rh) is a h-approximation space and from the relation Int(K) ⊆
Inth(K) ⊆ K ⊆ Clh(K) ⊆ Cl(K), for any K ⊆ M . Then the universe M can be divided
into 12 regions with respect to any K ⊆ M as follows:

(i) The internal edg of K ([12]) , Edg(K) = K −R(K) .

(ii) The h-internal edg of K , Edg
h
(K) = K −Rh(K).

(iii) The external edg of K ([12]), Edg(K) = R(K) −K .

(iv) The h-external edg of K, Edgh(K) = Rh(K) −K.

(v) The boundary of K ([12]), b(K) = R(K) −R(K) .

(vi) The h-boundary of K, bh(K) = Rh(K) −Rh(K).

(vii) The exterior of K ([12]), Ext(K) = M −R(K) .

(viii) The h-exterior of K, Exth(K) = M −Rh(K).

(ix) R(K) −Rh(K).
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(x) Rh(K) −R(K).

(xi) Rh(K) −R(K).

(xii) R(K) −Rh(K).

Remark 1. In Figure 1, the study of h-approximation spaces is a generalization of the
study of approximation spaces. This extension is evident as elements within the regions
[Rh(K) − R(K)] are well defined within K, contrasting with their undefined nature in
Pawlak’s approximation spaces. Furthermore, elements within the region [R(K)−Rh(K)]
lie outside of K, addressing a prior lack of clarity in Pawlak’s spaces.

Our paper involves redefining the boundary of K in Pawlak’s approximation space as
the h-boundary of K. Additionally, we expand the exterior of K, encompassing elements
not belonging to K, termed as the h-exterior of K.

Figure 1: Representation of h-approximation spaces.

Proposition 1. Let (M,Rh) be h-approximation spaces and K ⊆ M , then the following
statements hold:

(i) b(K) = Edg(K) ∪ Edg(K).

(ii) bh(K) = Edg
h
(K) ∪ Edgh(K).

(iii) R(K) −Rh(K) = Edg(K) ∪ Edg
h
(K).

(iv) Rh(K) −R(K) = Edgh(K) ∪ Edg(K).

(v) Edg(K) = Edg
h
(K) ∪ (Rh(K) −R(K)).

(vi) Edg(K) = Edgh(K) ∪ (R(K) −Rh(K)).
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Proof.

(i) Clear.

(ii) It follows from
bh(K) = Rh(K) −Rh(K)

= (Rh(K) −K) ∪ (K −Rh(K))

= Edg
h
(K) ∪ Edgh(K).

(iii) (iv), (v), and (vi) are obvious.

Definition 8. If (M,Rh) be a h-approximation space and K ⊆ M . Then there are
memberships which are defined by:

(i) The h-strong membership is denoted by ∈h, ( m ∈h K ⇔ m ∈ Rh(K) ).

(ii) The h-weak membership is denoted by ∈h, ( m ∈h K ⇔ m ∈ Rh(K) ).

Remark 2. Based on the Definition 8. we can be written h-lower and h-upper approxi-
mations of a set K ⊆ M as

(i) Rh(K) = {m ∈ K : m ∈h K}.

(ii) Rh(K) = {m ∈ K : m ∈h K}.

Proposition 2. If (M,Rh) is an h-approximation space and K ⊆ M . Then

(i) m ∈ K ⇒ m ∈h K.

(ii) m ∈h K ⇒ m ∈ K.

The converse of Proposition 2 may not be true in general as seen in the following example

Example 4. Let M = {k, q, s, t} be a universe and a relation R defined by R = {(k, k), (t, s),
(t, t), (s, k), (s, t), (s, s)}, thus kR = {k}, qR = ϕ, sR = {k, s, t} and tR = {s, t}. Con-
sequently, the topology associated with this relation is σ = {M,ϕ, {k}, {s, t}, {k, s, t}}. So
(M,Rh) is a h-approximation space. Let K = {q, s, t}, we have q ∈h K but q /∈ K. Also,
let R = {k}. We have q ∈ R but q /∈h K.

Definition 9. If M is a finite none-empty universe , K ⊆ M and K ̸= ϕ, then We can
express the degree of completeness using a novel metric termed the h-accuracy measure,
defined as follows:

αRh
(K) =

| Rh(K) |∣∣ Rh(K)
∣∣
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Example 5. In Example 2, we can deduce the following table showing the degree of accu-
racy measure αR(K) and h-accuracy measure αRh

(K) for some sets.

Table 1: The degree of accuracy measure and h-accuracy measure.

The set K ⊆ M αR(K) αRh
(K)

{k} 1
2 1

{t} 1
3 1

{k, q} 1
3

1
2

{k, s} 1
2

1
2

{k, t} 1
2

1
2

{q, t} 2
3

2
3

{s, t} 1
3

2
3

{k, q, s} 1
3

1
3

{k, q, t} 3
4

3
4

{k, s, t} 3
4

3
4

{q, s, t} 1
2 1

The degree of exactness of set K = {k} is observed to be 50% using the accuracy
measure and 100% using the h-accuracy measure. Thus, it follows that the h-accuracy
measure outperforms the accuracy measure in this particular case.

4. h-rough equality and h-rough inclusion

In this section, the focus is on exploring h-rough equality and h-rough inclusion, draw-
ing from the groundwork laid by Pawlak and Novotny ([11],[9]) in their introduction of
rough equality and inclusion.

Definition 10. If (M,Rh) is a h-approximation space and K,Q ⊆ M . Then K and Q
are called:

(i) h-roughly bottom equal (K ∼h Q) if Rh(K) = Rh(Q).

(ii) h-roughly top equal (K ≃h Q) if Rh(K) = Rh(Q).

(iii) h-roughly equal (K ≈h Q) if (K ∼h Q) and (K ≃h Q).

Example 6. In Example 2, we have the sets {k, s}, {k, q, s} are h-roughly bottom equal
and {s, t}, {q, s, t} are h-roughly top equal.

It’s straightforward to demonstrate that ≈h forms an equivalence relation on P (M),
making the pair (P (M),≈h) an approximation space. Additionally, this relation, ≈h, is
termed as the h-rough equality within the h-approximation space (M,Rh).

Definition 11. Let (M,Rh) be a h-approximation space. The equivalence relation Eh on
the set P (M) is defined by the following condition:
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(K,Q) ∈ Eh if Inth(K) = Inth(Q) and Clh(K) = Clh(Q).

The equivalence relation Eh is identical to ≈h, given that Rh(K) = Inth(K) and
Rh(K) = Clh(K)

Remark 3. Denoting the equivalence class of the relation (≈h or Eh) containing any
subset K of M as [K]≈h

or [K]Eh
. We can conclude that:

[K]≈h
= {Q ⊂ M : Rh(Q) = Rh(K) and Rh(Q) = Rh(K)}.

We denote by Rh(M) the family of h-rough classes in a h-approximation space (M,Rh).

Definition 12. If (M,Rh) be a h-approximation space and K,Q ⊆ M . Then:

(i) K is h-roughly bottom included in Q (K ⊂h˜ Q) if Rh(K) ⊆ Rh(Q).

(ii) K is h-roughly top included in Q (K ⊂̃h Q) if Rh(K) ⊆ Rh(Q).

(iii) K is h-roughly included in Q (K ⊂̃h˜ Q) if (K ⊂h˜ Q) and (K ⊂̃h Q).

Example 7. In Example 2, we have {k, s} is h-roughly bottom included in {k, q, s}. Also,
{s, t} is h-roughly top included in {q, s, t}.

5. h-rough sets

In this section, we introduce a new concept known as the h-rough set, and we illustrate
its properties and provide examples.

Definition 13. Let (M,Rh) be h-approximation space and the set K ⊆ M is called:

(i) Rh-definable (h-exact) if Rh(K) = Rh(K) or bh(K) = ϕ.

(ii) h-rough if Rh(K) ̸= Rh(K) or bh(K) ̸= ϕ.

Example 8. In Example 4, consider the h-approximation space (M,Rh). Here, the set
{q, s, t} is h-exact, whereas {q} is h-rough set.

Proposition 3. Let (M,Rh) be a h-approximation space. Then:

(i) Every exact set in M is h-exact.

(ii) Every h-rough set in M is rough.

Proof. Clear.

The converse of all parts of Proposition 3 may not hold in general as demonstrated in
the following example.

Example 9. In Example 4, If we consider the h-approximation space (M,Rh). Then the
set {q, s, t} is h-exact but not exact and the set {k} is rough but not h-rough.
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Remark 4. The intersection of two h-exact sets may not necessarily result in a h-exact
set.

Example 10. In Example 4, consider the h-approximation space (M,Rh). We have
{q, s, t} and {k} are two h-exact sets but {q, s, t} ∩ {k} = ϕ does not h-exact.

Definition 14. If (M,Rh) is a h-approximation space, then the set K ⊆ M is called:

(i) Roughly Rh-definable, if Rh(K) ̸= ϕ and Rh(K) ̸= M .

(ii) Internally Rh-undefinable, if Rh(K) = ϕ and Rh(K) ̸= M .

(iii) Externally Rh-undefinable, if Rh(K) ̸= ϕ and Rh(K) = M .

(iv) Totally Rh-undefinable, if Rh(K) = ϕ and Rh(K) = M .

The set of all roughly Rh-definable (resp. internally Rh-undefinable, externally Rh-
undefinable and totally Rh-undefinable) sets is denoted by RDh(M) (resp. IUDh(M),
EUDh(M) and TUDh(M)).

Remark 5. Let (M,Rh) be any h-approximation space. Then the following are hold:

(i) RDh(M) ⊇ RD(M).

(ii) IUDh(M) ⊆ IUD(M).

(iii) EUDh(M) ⊆ EUD(M).

(iv) TUDh(M) ⊆ TUD(M).

Example 11. In Example 3, we have the set {k, s} ∈ RDh(M) but {k, s} /∈ RD(M).
The set {s} ∈ IUD(M) but {s} /∈ IUDh(M). Also, the set {q, s} ∈ EUD(M) but
{q, s} ∈ EUDh(M).

Proposition 4. Let (M,Rh) be any h-approximation space and for all m,n ∈ M , if
m ∈ Rh({n}) and n ∈ Rh({m}), then it implies that Rh({m}) = Rh({n}).

Proof. According to the definition, the h-upper approximation of a set is the h-closure
of that set. Given that Clh({n}) is a h-closed set containing m (based on the condi-
tion) and Clh({m}) is the smallest h-closed set containing m, it follows that Clh({m}) ⊆
Clh({n}). Consequently, Rh({m}) ⊆ Rh({n}). Symmetrically, The reverse inclusion
holds: Clh({n}) ⊆ Clh({m}). Thus, Rh({n}) ⊆ Rh({m}), completing the proof.

Proposition 5. Let (M,Rh) be a h-approximation space, where every h-open subset K
of M is h-closed. If n ∈ Rh({m}) ,then it implies that m ∈ Rh({n}) for all m,n ∈ M .

Proof. If m /∈ Rh({n}), then there exists a h-open set H containing m such that
H ∩ {m} = ϕ, implying that {n} ⊆ (M \ H). However, (M \ H) is both a h-closed set
and also is a h-open set that does not contain m. Therefore, (M \H) ∩ {m} = ϕ, which
means n ̸= Rh({m}).
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Proposition 6. Let (M,Rh) be a h-approximation space, where every h-open subset K
of M is h-closed. Then the family of sets {Rh({m}) : m ∈ K} is a partition of the set M .

Proof. If m,n, p ∈ K and p ∈ Rh({m})∩Rh({n}), then p ∈ Rh({m}) and p ∈ Rh({n}).
Consequently, by Proposition 5, m ∈ Rh({p}) and n ∈ Rh({p}). By Proposition 4,
it follows that Rh({m}) = Rh({p}) and Rh({n}) = Rh({p}). Therefore Rh({m}) =
Rh({n}) = Rh({p}). Hence either Rh({m}) = Rh({n}) or Rh({m}) ∩Rh({n}) = ϕ.

6. Properties of h-approximation spaces

In this section, we introduce some properties of h-approximation spaces and provide
counterexamples.

Proposition 7. Let (M,Rh) be h-approximation space and K,Q ⊆ M . Then

(i) Rh(K) ⊆ K ⊆ Rh(K).

(ii) Rh(ϕ) = Rh(ϕ) = ϕ, Rh(M) = Rh(M) = M .

(iii) If K ⊆ Q then Rh(K) ⊆ Rh(Q) and Rh(K) ⊆ Rh(Q).

Proof.

(i) Let m ∈ Rh(K) which mean that m ∈ ∪{H ∈ σh, H ⊆ K}. Then there exists
H0 ∈ σh such that m ∈ H0 ⊆ K. Thus m ∈ K. Hence Rh(K) ⊆ K. Also, let
m ∈ M and by definition of Rh(K) = ∩{F ∈ σhc,K ⊆ F}, then m ∈ F for all
F ∈ σhc. Hence K ⊆ Rh(K).

(ii) It directly follows.

(iii) Let m ∈ Rh(K), by definition of h-lower approximation of K, we have m ∈ ∪{H ∈
σh, H ⊆ K} but K ⊆ Q, thus H ⊆ Q and m ∈ H, then m ∈ Rh(Q). Also, let m ̸=
Rh(Q) this means that m ̸= ∩{F ∈ σhc, Q ⊆ F} then, there exists F ∈ σhc,Q ⊆ F
and m /∈ F which means that, there exists F ∈ σhc, K ⊆ Q ⊆ F and m /∈ F which
implies m /∈ ∩{F ∈ σhc,K ⊆ F}, thus m /∈ Rh(K). Therefore Rh(K) ⊆ Rh(Q).

Proposition 8. Let (M,Rh) be a h-approximation space and K,Q ⊆ M . Then

(i) Rh(M \K) = M \Rh(K).

(ii) Rh(X \K) = M \Rh(K).

(iii) Rh(Rh(K)) = Rh(K).

(iv) Rh(Rh(K)) = Rh(K).

(v) Rh(Rh(K)) ⊆ Rh(Rh(K)).
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(vi) Rh(Rh(K)) ⊆ Rh(Rh(K)).

Proof.

(i) Let m ∈ Rh(M \ K) which is equivalent to m ∈ ∪{H ∈ σh, H ⊆ M \ K}. So
there exists H0 ∈ σh such that m ∈ H0 ⊆ M \K. Then there exists Hc

0 such that
K ⊂ Hc

0 and m /∈ Hc
0, Hc

0 ∈ σhc. Thus, m /∈ Rh(K). So m ∈ M \Rh(K). Therefore
Rh(M \K) = M \Rh(K).

(ii) Comparable to (i)

(iii) Since Rh(K) = ∪{H ∈ σh, H ⊆ K}. This implies that Rh(Rh(K)) = ∪{∪{H ∈
σh, H ⊆ K}} = ∪{H ∈ σh, H ⊆ K} = Rh(K).

(iv) Rh(Rh(K)) = Rh(M \ Rh(M \K)) = M \ Rh(M \ Rh(M \K)). From (i), (ii) and
(iii), we get Rh(Rh(K)) = M \Rh(M \K) = M \ (M \Rh(K)) = Rh(K).

(v) Since Rh(K) ⊆ Rh(Rh(K)) and by (iii) we have Rh(Rh(K)) = Rh(K), then Rh(Rh(K)) ⊆
Rh(Rh(K)).

(vi) Since Rh(Rh(K)) ⊆ Rh(K) and by (iv), we have Rh(Rh(K)) = Rh(K), then
Rh(Rh(K)) ⊆ Rh(Rh(K)).

Proposition 9. Let (M,Rh) be a h-approximation space and K,Q ⊆ M . Then

(i) Rh(K ∪Q) ⊇ Rh(K) ∪Rh(Q).

(ii) Rh(K ∪Q) ⊇ Rh(K) ∪Rh(Q).

(iii) Rh(K ∩Q) ⊆ Rh(K) ∩Rh(Q).

(iv) Rh(K ∩Q) ⊆ Rh(K) ∩Rh(Q).

Proof.

(i) Since we have K ⊆ K ∪ Q and Q ⊆ K ∪ Q. Then Rh(K) ⊆ Rh(K ∪ Q) and
Rh(Q) ⊆ Rh(K ∪Q) by (iii) in Proposition 7, then Rh(K ∪Q) ⊇ Rh(K) ∪Rh(Q).

(ii) (iii) and (iv) Similar to (i).

The equality of all parts in Proposition 9 does not hold, as demonstrated in the fol-
lowing example.

Example 12. In Example 2:

(i) If K = {t}, Q = {k, q}, then we have Rh(K ∪Q) = {k, q, t}, Rh(K) = {t}, Rh(Q) =
{k}.Therefore Rh(K ∪Q) ̸= Rh(K) ∪Rh(Q).



A. Al-Rehili / Eur. J. Pure Appl. Math, 17 (3) (2024), 1804-1817 1815

(ii) If K = {t}, Q = {k, q}, then we have Rh(K ∪Q) = M , Rh(K) = {q, s, t}, Rh(Q) =
{k, q}.Therefore Rh(K) ∪Rh(Q) ̸= Rh(K ∪Q).

(iii) If K = {k, q, s}, Q = {q, s, t}, then we have Rh(K ∩ Q) = ϕ, Rh(K) = {k} and
Rh(Q) = {q, s, t}. Therefore Rh(K ∩Q) ̸= Rh(K) ∩Rh(Q).

(iv) If K = {k}, Q = {q, t}, then we have Rh(K ∩ Q) = ϕ, Rh(K) = {k}, Rh(Q) =
{q, s, t}.Therefore Rh(K) ∩Rh(Q) ̸= Rh(K ∩Q).

The following theorems are generalization of Proposition 9.

Proposition 10. Let (M,Rh) be a h-approximation space and K,Q ⊆ M . If K is Rh-
definable. Then the following are hold.

(i) Rh(K ∪Q) = Rh(K) ∪Rh(Q).

(ii) Rh(K ∩Q) = Rh(K) ∩Rh(Q).

Proof.

(i) It is evident that Rh(K) ∪ Rh(Q) ⊆ Rh(K ∪ Q). For the converse inclusion, let
m ∈ Rh(K ∪ Q), that means, m ∈ ∪{H ∈ σh, H ⊆ K ∪ Q}. Then there exists
H0 ∈ σh such that m ∈ H0 ⊂ K ∪Q. We distinguish three cases:
Case (1) If H0 ⊂ K, m ∈ H0 and H0 is a h-open set, then m ∈ Rh(K).
Case (2) If H0 ∩K = ϕ, then H0 ⊆ Q and m ∈ H0, thus m ∈ Rh(Q).
Case (3) If H0∩K ̸= ϕ. Since m ∈ H0 and H0 is an h-open set, then m ∈ Clh(K), for
every H0 Which satisfies the aforementioned condition, thus m ∈ Rh(K), then m ∈
Rh(K), because K is Rh- definable. Therefore, in three cases m ∈ Rh(K) ∪Rh(Q).

(ii) It is evident that Rh(K∩Q) ⊆ Rh(K)∩Rh(Q). We prove the converse inclusion. Let
m ∈ Rh(K) ∩Rh(Q), then m ∈ Rh(K) implies m ∈ Rh(K) and m ∈ H ⊆ M , where
H is an h-open set and m ∈ Rh(Q) implies for all H ∈ σh, H ∩ Q ̸= ϕ. Therefore
H ∩ (K ∩Q) = (H ∩K) ∩Q = H ∩N ̸= ϕ. Hence m ∈ Rh(K ∩Q).

Proposition 11. If (M,Rh) is a h-approximation space and K,Q ⊆ M . Then the fol-
lowing are hold.

(i) Rh(Cl(K) ∪Q) = Cl(K) ∪Rh(Q).

(ii) Rh(Int(K) ∩Q) = Int(K) ∩Rh(Q).

Proof.

(i) Based on Proposition 7 (i) and Proposition 9 (ii), we have Cl(K) ⊂ Rh(Cl(K)).Then
Cl(K)∪Rh(Q) ⊂ Rh(Cl(K))∪Rh(Q) ⊂ Rh(Cl(K)∪Q). Conversely, since Cl(K)∪
Q ⊂ Cl(K)∪Rh(Q) and the union of an h-open set and a closed set is h-closed,then
Rh(Cl(K)∪Q) ⊂ Rh(Cl(K)∪Rh(Q)) = Cl(K)∪Rh(Q). Therefore, Rh(Cl(K)∪Q) =
Cl(K) ∪Rh(Q).
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(ii) Considering the intersection of an open set Int(K) and an h-open set Rh(Q) is h-
open,Int(K) ∩ Rh(Q) = Rh(Int(K) ∩ Rh(Q)) ⊂ Rh(Int(K) ∩ Q). Conversely, by
using Proposition 9 (iii), Rh(Int(K)∩Q) ⊂ Rh(Int(K))∩Rh(Q) ⊂ Int(K)∩Rh(Q).
Therefore Rh(Int(K) ∩Q) = Int(K) ∩Rh(Q).

7. Conclusions

This paper introduced h-rough sets, an extension of rough set theory, by incorporating
h-open sets to define h-lower and h-upper approximations. Alongside these new approx-
imations, we explored h-rough equality and h-rough inclusion, thoroughly examining the
properties of h-approximation spaces. Our findings illustrate that h-rough sets provide im-
proved precision and flexibility in data approximation and analysis. Future research should
focus on integrating h-rough sets with fuzzy set theory to better manage uncertainty, devel-
oping efficient algorithms for processing large-scale data, and combining h-rough sets with
neural networks and decision trees for enhanced decision-making processes. Additionally,
applying h-rough sets to machine learning tasks such as feature selection, clustering, and
classification holds significant potential. Further theoretical advancements, particularly in
exploring the topological properties of h-rough sets, will continue to expand and deepen
the utility of rough set theory, ensuring its ongoing relevance and effectiveness in modern
data analysis.
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