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Abstract. A great deal of inventory costs are typically unpredictable because of the unpredictabil-
ity of a competitive market. The fluctating demand from customer’s and the unpredictability of
the market economy make it difficult for researchers and operation research practitioners to ap-
propriately replicate an inventory problem. In order to prevail this type of unpredictability cir-
cumstances, in this paper, we have represented the inventory parameters as interval. Using this
concept, we progressed a two-warehouse inventory model for deteriorating items with a fixed Shelf
life, partially backlogging shortages and interval-valued deterioration rate. In addition to this the
parameters like ordering cost, purchase cost, shortage cost, deterioration cost for both the rented
and owned warehouse except the backlogging parameter have been considered as interval-valued.
The uncertainty in the inventory parameters motivated us to view them as interval-valued in the
present research. Based on the assumptions, the cost function of this problem is a highly nonlinear
constraint optimization problem. Mathematica is used to tackle this nonlinear optimization prob-
lem. A numerical example has been presented to demonstrate the computational result. Then, a
sensitivity analysis has been performed to study the effect of changes of different parameters of
the model on the optimal policy.
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1. Introduction

The growth of a competitive global market with significant swings has made inventory
management much more difficult in recent years. Many academics and researchers have
been working to develop various effective and efficient inventory models while accounting
for the uncertainty of inventory parameters. The ultimate goal of these efforts is to improve
cash flow, increase profits, and improve operational efficiency and efficiency through the
business with the aid of appropriate purchasing and selling coordination. When it comes
to competitive marketing, it is more sophisticated to assess the value of any inventory
parameter in interval form rather than constant form while the behaviour of numerous
important inventory measures fluctuates throughout the course of inventory storage. Con-
sequently, the average profit, maximum shortage level, starting stock level, and market
demand will all be interval valued. This analysis analyses the uncertainty of both the mar-
ket demand for products and the inventory factors. By maximising operational efficiency
and cash flow in an unpredictable environment, this activity supports industrial managers
in increasing their earnings or decreasing their expenses.

A significant problem for any commercial organisation is inventory deterioration. A de-
terministic inventory model with trade credit finance and capacity restrictions for dete-
riorating products has been developed by Liao and Huang [6]. An inventory model with
generalized-type demand and deterioration has been designed by Hung [3]. In their model,
Widyadana and Wee[21] spoke about the economic production quantity model for degrad-
ing products. Eventually, an inventory model with non-instantaneous decaying objects
with generalized-type degradation was developed by Shah et al. [11]. Using financial con-
siderations and backordering into account, Taleizadeh and Nematollahi [14] suggested an
inventory control problem for decaying products. Again applying the Stackelberg tech-
nique, Taleizadeh et al.[15] developed a vendor-managed inventory model for deteriorating
items in supply chain systems. Tsao [20] designed an inventory model that aids in the
decision-making process when determining a shared location, inventory, and preservation
facility in the scenario of a payment delay. For deteriorating products with preservation
technology investment, Shaikh et al.[13] introduced an economic order quantity model. A
new inventory model with non-instantaneous deterioration with price and stock-dependent
demand for completely backlogged shortages under inflation was investigated once again
by Shaikh et al.[12]. After that, a stochastic production inventory model for deteriorating
goods with finite life cycle was examined by Pal et al.[8].

Utilising adequate physical space to keep the items in order to maintain commercial opera-
tions is another aspect of inventory management. In this context, commercial organisations
look at the two-warehouse facility. There are currently two warehouses in a two-warehouse
system: an owned warehouse ”OW” and a rented warehouse ”RW”. A commercial organ-
isation may choose to store more items than they can handle for a wide range of reasons
such as (i) in order to prevent stock-out scenarios, (ii) to hold enormous quantities of
goods that are seasonal, (iii) in order to take benefit of the discount, (iv) in order to fulfil
the product’s high demand etc.,
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In inventory management, a shortage occurs when demand for a product exceeds available
inventory. The way this shortage is handled has a big influence on customer happiness and
operational effectiveness. One solution to this problem is to partially backlog shortages.
Partially backlog shortages are an inventory management approach that tries to balance
immediate consumer needs with operational efficiency and cost-effectiveness. The decision
of how much of the shortage to fill or backlog quickly is influenced by a number of fac-
tors, including ”Cost of Backlogging,” ”Impact on Customer Service,” ”Inventory Holding
Costs,” and ”Lead Time for Replenishment,” among others. Partially backlogged short-
ages impact multiple areas of inventory management systems and supply chain models.
For example: ”Service Level,” ”Inventory Levels,” ”Operational Costs,” and ”Customer
Satisfaction,” etc.

Liang and Zhou[5] developed a two-warehouse inventory model recently for items that
were deteriorating with payment delayed. A two warehouse inventory model with time-
varying deterioration and higher demand has been established by Sett et al.[10]. Using
an exclusive real-coded genetic algorithm, Bhunia et al.[1] have also proposed a two-
warehouse deterministic inventory model. Furthermore, utilising a genetic algorithm with
shifting population size method, Das et al.[2] have provided a two-warehouse production
inventory model with time-varying demand. With an ideal credit duration and partial
backlog under inflation, Palanivel and Uthayakumar[9] have developed a two-warehouse
inventory model. An inventory model with two warehouses and deteriorating goods of
unsatisfactory quality under payment delay has been introduced by Jaggi et al.[4].

Nowadays, the prepayment or advance payment strategy is frequently preferred by com-
panies. Whenever suppliers pay in advance for the supply of products, they are only
covering a portion of the total amount due; the remaining amount is only added to the
invoice upon delivery. In other words, suppliers and retailers may operate their businesses
and purchase the entire inventory by paying a portion of the total advance. The balance
that remains can then be paid in intervals. Only a few of the researchers have created
inventory models and worked on advance payment. An inventory model with a stochastic
lead time and price-dependent demand that includes an advance payment has been de-
veloped by Maiti et al.[7]. Thangam [18] has presented a strategy on the best course of
action for dominating retailers in a supply chain with trade credit and advance payment
systems. Thangam[19] has expanded the model once more by including the most effective
price discounting and lot-sizing rules under the advance payment plans and two-echelon
trade credit. With an expiration date and prior payment, Teng et al.[17] have developed
lot-size rules for deteriorating products. In order to create an EOQ model, Tavakoli and
Taleizadeh[16] included conditional discounts for deteriorating products that require full
prior payment.

Several studies that have been performed incorporated fixed inventory costs into account
when evaluating in the collection of available literature. But in actuality, because of the
unpredictability of competing marketing scenarios, inventory prices aren’t always fixed.
The uncertainty in the inventory parameters motivated us to view them as interval valued
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in the present research. This idea was implemented in a two-warehouse inventory model
with fixed shelf life, partial backlog shortage, and advanced payment Method. The two-
warehouse inventory model, which allows for partial backlogging of shortages, is highly
adaptable and may be applied to a wide range of inventory problems. This model is
flexible in its ability to handle varying rates of deterioration, patterns of demand, and
strategies for backlogging. The effectiveness of this solution is derived from its capacity to
enhance inventory management procedures, while simultaneously guaranteeing customer
satisfaction and operational efficiency in dynamic and diversified corporate environments.

Finally we discuss a numerical example with the help of Mathematica Software to validate
our proposed model and performed a sensitivity analysis to study the effect of changes of
different parameters. Below is a summary of the major contributions:

• Inventory costs like ordering cost, holding cost, purchasing cost, shortage cost, de-
terioration cost and capital cost are interval valued.

• n equal installment before received the product.

• The demand of the item is linearly dependent on price i.e. D(p) = a− bp

• Advance Payment, Partial backlogging and fixed Shelf life have been considered.

• Inventory parameters with values for intervals have been taken into account.

• Partially backlogged shortages at a steady rate.

• The product’s demand is stock-dependent.

• Rate of deterioration is constant.

The remaining sections are arranged as follows: Different symbols and Notations used in
this study were covered in Section 2 of the paper. In Section 3, the model’s mathematical
formulation is described. In Section 4, we examine the Optimal solution of the model
by applying different parameters. Finally in Section 5, the Conclusion of the paper is
provided.

2. Notations

The following notations have been taken into consideration while we developed the inven-
tory model:

Notations Units Description

A = [AL, AU ] $/Order Interval-valued Ordering Cost
η Units Backlogging unit (0 < η < 1)
S Units Total Inventory level
a Constant Demand rate’s coefficient part (a > 0)



R. Shukla et al. / Eur. J. Pure Appl. Math, 17 (3) (2024), 2028-2054 2032

Notations Units Description

M yr Enterprise’s lead time for paying prepay-
ments

b Constant Demand rate Constant for price (b > 0)
α Constant Rate of Deterioration at OW
β Constant Rate of Deterioration at RW
n Constant Prepayments evenly spaced throughout

the Lead period
W1 Units Level of Inventory at OW
Cp = [CpL, CpU ] Units Interval-valued purchasing Cost per unit
k Constant An amount that needs to be paid in mul-

tiple installments (0 < k < 1)
R Units Backlogged units
f1 Constant Fixed Shelf-life
ta yr The time where the inventory level in RW

falls to zero
c = [cL, cU ] Unit Interval valued shortage cost per unit
tb yr The time where the inventory level in OW

falls to zero
q Unit Rupees per unit time spent in OW
γ Constant In OW , the deterioration rate’s value ex-

ists between (0, 1)
θ Constant In RW , the deterioration rate’s value ex-

ists between (0, 1)
D1 = [D1L, D1U ] Unit Interval valued Cost of deterioration, Ru-

pee per unit time in RW
D2 = [D2L, D2U ] Unit Interval valued Cost of deterioration, Ru-

pee per unit time in OW
p Unit Rupees per unit time spent in RW
h = [hL, hU ] Constant Interval valued Holding Cost Constant

that does not depend on Time
T yr Total length of an inventory cycle,hence

T = ta + tb
Ir(t) Unit Inventory level at any time t in RW
Io(t) Unit Inventory level at any time t in OW

3. PROBLEM DEFINITION

Suppose a scenario where a company place a request for (S +R) units of a given product
and pays for a number ”k” of the purchase price by making ”n” uniform payments at
uniform periods over the lead time ”M” before paying the balance at time t = 0 to
receive the lot. The on-hand inventory level changes to ”S” shortly after ”R” are used
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Figure 1: Graphical representation of two-warehouse inventory system under prepayments with shortages

to partially satisfy the backlogged demand. The remaining portion (S −W1) is saved in
”RW” while ”W1” units are kept in ”OW”. The holding cost in the ”RW” is apparently
higher than that in the ”OW” due to the ”RW ′s” better facilities, and as a result, the
”RW”′s products will reportedly be taken first. In the time interval [0, f1], the inventory
decreases due to customer demand. But in the time interval [f1, ta] the inventory level
decreases due to both the constant depreciation rate ”β” and the customer demand D(p).
It becomes zero in RW at the time t = ta. The inventory level in OW , however, drops
as a result of a constant rate of deterioration ”α” within the range [f1, ta]. The levels
of inventory are zero for RW and greater than zero for OW in the time interval [ta, tb].
Individual time intervals may be considered to be [0, f1], [f1, ta], [ta, tb] and [tb, T ].

Here there will be two cases, the first case is the deterioration rate starts when the level of
inventory of RW is in use in the interval (0 ≤ f1 ≤ ta), and in the second case the deterio-
ration rate starts when the level of inventory of OW is in use in the interval (ta ≤ f1 ≤ tb).

3.1. For CASE I: (0 ≤ f1 ≤ ta)

Following are the differential equations that explain how the levels of inventory for OW
and RW differ:
For various time periods, differential equations for RW are:

dIr(t)

dt
= −(a− bIr(t)), 0 < t < f1 (1)

dIr(t)

dt
= −(a− bIr(t))− βIr(t), f1 < t < ta (2)
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subject to the conditions:

Ir(t) =

{
S −W1, at t = 0
0, at t = ta

(3)

On solving the above differential Equations:

Ir(t) =
a

b
−

{
a

b
− (S −W1)

}
ebt, 0 < t < f1 (4)

Ir(t) =
a

b− β
{(1− e−(b−β)(ta−t))}, f1 < t < ta. (5)

Furthermore, the following differential Equations can be used to represent the inventory
level Io(t) in OW at any instant ”t”

dIo(t)

dt
= −αIo(t), f1 < t < ta (6)

dIo(t)

dt
= −(a− bIo(t))− αIo(t), ta < t < tb (7)

dIo(t)

dt
= −η(a− bIo(t)), tb < t < T (8)

subject to the conditions:

Io(t) =


W1, at t = f1
0, at t = tb
−R, at t = T

(9)

On solving the above differential Equations:

Io(t) = W1e
−α(t−f1), f1 < t < ta (10)

Io(t) =
a

b− α
{(1− e−(b−α)(tb−t))}, ta < t < tb (11)

Io(t) =
a

b
−

{
a

b
+R

}
e−ηb(T−t), tb < t < T (12)

By considering the continuity at t = f1, t = ta and t = tb, we can write:

S = W1 −
a

2− ebf1

[
1

b− β

{
1− e−(b−β)(ta−f1)

}
+

1

b
ebf1

]
(13)

tb = ta −
1

b− α

[
ln

(
1− W1 (b− α)

a
e−α(ta−f1)

)]
(14)
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R =
a

b

[
eηb(T−tb) − 1

]
(15)

Here, we discuss how the model’s inventory-related costs originated based on the assump-
tions:

(a) Ordering Cost: A

(b) Purchase Cost: Cp(S +R) = [CpL(S +R), CpU (S +R)] =CpL


a

(b−β) exp

bη

 log

(
W1(a−b)eα(f1−ta)

a +1

)
b−α

+T−ta





b(b−β)

+ CpL

(
a(βe−bf1−be−bta−βf1+βta)

b(b−β) + W1) ,

CpU


a

(b−β) exp

bη

 log

(
W1(a−b)eα(f1−ta)

a +1

)
b−α

+T−ta





b(b−β)


+ CpU

a(βe−bf1−be−bta−βf1+βta)
b(b−β) +W1

]
(c) Holding Cost:

[ f1∫
0

hL (t)Ir (t) dt +

ta∫
f1

hL (t) Ir (t) dt +

f1∫
0

hL (t)Io (t) dt +

ta∫
f1

hL (t)Io (t) dt

+

tb∫
ta

hL (t)Io (t) dt,

f1∫
0

hU (t)Ir (t) dt +

ta∫
f1

hU (t) Ir (t) dt +

f1∫
0

hU (t)Io (t) dt

+

ta∫
f1

hU (t)Io (t) dt +

∫ tb

ta

hU (t) Io (t)dt

]

=

[
− ebf1 (a+b(W1−S))(b(f1p+hL)−p)

b2
+ (bhL−p)(a+b(W1−S))

b2
+ 1

2af1
2p+ af1hL

b

−
a
(
e(b−β)(f1−ta)(p−(b−β)(f1p+hL))

(b−β)2
+ (b−β)(hL+pta)−p

(b−β)2
+ f1

2p
2 + f1hL − hLta − pta2

2

)
b− β
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−
a
(
e(b−α)(ta−tb)(q−(b−α)(hL+qta))

(b−α)2
+ (b−α)(hL+qtb)−q

(b−α)2
+ hLta − hLtb +

qta2

2 − qtb
2

2

)
b− α

+
W1

(
−eα(f1−ta)(αhL + αqta + q) + αf1q + αhL + q

)
α2

+
1

2
f1W1(f1q + 2hL),

− ebf1 (a+b(W1−S))(b(f1p+hU )−p)
b2

+ (bhU−p)(a+b(W1−S))
b2

+ 1
2af1

2p+ af1hU

b

−
a
(
e(b−β)(f1−ta)(p−(b−β)(f1p+hU ))

(b−β)2
+ (b−β)(hU+pta)−p

(b−β)2
+ f1

2p
2 + f1hU − hU ta − pta2

2

)
b− β

−
a
(
e(b−α)(ta−tb)(q−(b−α)(hU+qta))

(b−α)2
+ (b−α)(hU+qtb)−q

(b−α)2
+ hU ta − hU tb +

qta2

2 − qtb
2

2

)
b− α

+
W1

(
−eα(f1−ta)(αhU + αqta + q) + αf1q + αhU + q

)
α2

+
1

2
f1W1 (f1q + 2hU )

]

(d) Deterioration Cost:

[
D1L

ta∫
f1

θIr (t) dt + D2L

ta∫
f1

γIo (t) dt + D2L

tb∫
ta

γIo (t) dt,

D1U

ta∫
f1

θIr (t) dt + D2U

ta∫
f1

γIo (t) dt + D2U

tb∫
ta

γIo (t) dt

]

=

[
aD1Lθ

(
e(b−β)(f1−ta) + b(ta − f1) + βf1 − βta − 1

)
(b− β)2

+
γD2LW1

(
eα(f1−ta) − eα(f1−tb)

)
α

−
γD2LW1

(
eα(f1−ta) − 1

)
α

,

aD1Uθ
(
e(b−β)(f1−ta) + b(ta − f1) + βf1 − βta − 1

)
(b− β)2

+
γD2UW1

(
eα(f1−ta) − eα(f1−tb)

)
α

−
γD2UW1

(
eα(f1−ta) − 1

)
α

]

(e) Shortage Cost:[
− cL

T∫
tb

Io (t) dt, −cU

T∫
tb

Io (t) dt

]
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=

[
−

cL
(
(a+ bR)ebη(tb−T ) + a(bη(T − tb)− 1)− bR

)
b2η

,

−
cU
(
(a+ bR)ebη(tb−T ) + a(bη(T − tb)− 1)− bR

)
b2η

]

(f) Capital Cost:[(
Ic

[
kCpL(S +R)

n

M

n
(1 + 2 + 3 + .........+ n)

])
,(

Ic

[
kCpU (S +R)

n

M

n
(1 + 2 + 3 + .........+ n)

])]

=

[
CpLIckM(n+ 1)


a

(b−β) exp

bη

 log

(
W1(α−b)eα(f1−ta)

a +1

)
b−α

+T−ta





b(b−β)


2n

+
CpLIckM(n+ 1)W1

2n

+
CpLIckM(n+ 1)(a)βe−bf1−be−bta−βf1+βta

2nb(b− β)
,

CpUIckM(n+ 1)


a

(b−β) exp

bη

 log

(
W1(α−b)eα(f1−ta)

a +1

)
b−α

+T−ta





b(b−β)


2n

+
CpUIckM(n+ 1)W1

2n

+
CpUIckM(n+ 1)(a)βe−bf1−be−bta−βf1+βta

2nb(b− β)

]

Consequently, the total cyclic cost per unit of time is

TC1 = 1
T

[
⟨OrderingCost⟩+ ⟨PurchaseCost⟩+ ⟨HoldingCost⟩
+ ⟨DeteriorationCost⟩+ ⟨ShortageCost⟩+ ⟨Capital Cost⟩

]
TC1 = [TCL, TCU ]
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where
TCL

=
AL

T

+
1

T

[
1

2
f1W1(f1q + 2hL)

]
+

1

T

[
− ebf1 (a+b(W1−S))(b(f1p+hL)−p)

b2
+ (bhL−p)(a+b(W1−S))

b2
+ 1

2af1
2p+ af1hL

b

]

− 1

T

a
(
e(b−α)(ta−tb)(q−(b−α)(hL+qta))

(b−α)2
+ (b−α)(hL+qtb)−q

(b−α)2

)
b− α


− 1

T

[
hLta − hLtb +

qta2

2 − qtb
2

2

b− α

]

+
1

T

[
W1

(
−eα(f1−ta)(αhL + αqta + q) + αf1q + αhL + q

)
α2

]

− 1

T

a
(
e(b−β)(f1−ta)(p−(b−β)(f1p+hL))

(b−β)2
+ (b−β)(hL+pta)−p

(b−β)2

)
b− β


− a

T

[
f12p
2 + f1hL − hLta − pta2

2

b− β

]
+

CpLW1

T

+
1

T

CpL


a

(b− β) exp

bη

 log

(
W1(α−b)eα(f1−ta)

a
+1

)
b−α + T − ta


b(b− β)




+

aCpL

(
βe−bf1 − be−bta−βf1+βta

)
Tb(b− β)

+
1

T

[
CpLIckM(n+ 1)W1

2n

]
+

1

T

[
CpLIckM(n+ 1)(a)βe−bf1−be−bta−βf1+βta

2nb(b− β)

]
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+
1

T



CpLIckM(n+ 1)


a

(b−β) exp

bη

 log

(
W1(α−b)eα(f1−ta)

a +1

)
b−α

+T−ta


e−bta+βta


b(b−β)


2n


− 1

T

[
γD2LW1

(
eα(f1−ta) − eα(f1−tb)

)
α

+
γD2LW1

(
eα(f1−ta) − 1

)
α

]

+


acL

exp

bη

 log

(
W1(α−b)eα(f1−ta)

a
+1

)
b−α + T − ta


Tb2η

−

acL

exp

bη

 log

(
W1(α−b)eα(f1−ta)

a
+1

)
b−α − ta + tb


Tb2η


+

1

T

[
acLbη(tb − T )

b2η

]
+

1

T

[
aD1Lθ

(
e(b−β)(f1−ta) + b(ta − f1) + βf1 − βta − 1

)
(b− β)2

]

and
TCU

=
AU

T

+
1

T

[
1

2
f1W1(f1q + 2hU ) +

− ebf1 (a+b(W1−S))(b(f1p+hU )−p)
b2

b

]

+
1

T

[
(bhU−p)(a+b(W1−S))

b2
+ 1

2af1
2p+ af1hU

b

]
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− 1

T

a
(
e(b−α)(ta−tb)(q−(b−α)(hU+qta))

(b−α)2
+ (b−α)(hU+qtb)−q

(b−α)2
+ hU ta − hU tb +

qta2

2 − qtb
2

2

)
b− α


+

1

T

[
W1

(
−eα(f1−ta)(αhU + αqta + q) + αf1q + αhU + q

)
α2

]

− 1

T

a
(
e(b−β)(f1−ta)(p−(b−β)(f1p+hU ))

(b−β)2
+ (b−β)(hU+pta)−p

(b−β)2
+ f12p

2 + f1hU − hU ta − pta2

2

)
b− β


+

CpUW1

T

+
1

T

CpU


a

(b− β) exp

bη

 log

(
W1(α−b)eα(f1−ta)

a
+1

)
b−α + T − ta


b(b− β)




+

1

T

[
CpU

(
a
(
βe−bf1 − be−bta−βf1+βta

)
b(b− β)

)]

+
1

T



CpUIckM(n+ 1)


a

(b−β) exp

bη

 log

(
W1(α−b)eα(f1−ta)

a +1

)
b−α

+T−ta





b(b−β)


2n



+
1

T

CpUIckM(n+ 1)

(
a(βe−bf1−be−bta−βf1+βta)

b(b−β) +W1

)
2n


− 1

T

[
γD2UW1

(
eα(f1−ta) − eα(f1−tb)

)
α

+
γD2UW1

(
eα(f1−ta) − 1

)
α

]
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+


acU

exp

bη

 log

(
W1(α−b)eα(f1−ta)

a
+1

)
b−α + T − ta


Tb2η

−

acU

exp

bη

 log

(
W1(α−b)eα(f1−ta)

a
+1

)
b−α − ta + tb


Tb2η


+

1

T

[
acUbη(tb − T )

b2η

]
+

1

T

[
aD1Uθ

(
e(b−β)(f1−ta) + b(ta − f1) + βf1 − βta − 1

)
(b− β)2

]

3.2. For CASE II: (ta ≤ f1 ≤ tb)

For various time periods, differential equations for RW are:

dIr(t)

dt
= −(a− bIr(t)), 0 < t < ta (16)

subject to the conditions:

Ir(t) =

{
S −W1, at t = 0
0, at t = ta

(17)

On solving the above differential Equations:

Ir (t) =
a

b

[
1− e−b(ta−t)

]
0 < t < ta (18)

Furthermore, the following differential Equations can be used to represent the inventory
level Io(t) in OW at any instant ”t”

dIo(t)

dt
= −(a− bIo(t)), ta < t < f1 (19)

dIo(t)

dt
= −(a− bIo(t))− αIo(t), f1 < t < tb (20)

dIo(t)

dt
= −η(a− bIo(t)), tb < t < T (21)

subject to the Conditions:

Io(t) =

{
W1, at t = ta
0, at t = tb

(22)
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On solving the above differential Equations:

Io (t) =
a

b
−
[a
b
−W1

]
eb(t−ta), ta < t < f1 (23)

Io(t) =
a

b− α
{(1− e−(b−α)(tb−t))}, f1 < t < tb (24)

Io(t) =
a

b
−

{
a

b
+R

}
e−ηb(T−t), tb < t < T (25)

By considering the continuity at t = ta, t = f1 and t = tb, we can write:

S = W1 +
a

b

[
1− e−bta

]
(26)

R =
a

b

[
eηb(T−tb) − 1

]
(27)

tb = f1 −
1

b− α

[
ln

(
1− b− α

b
+

(
b− α

b
+

(b− α)W1

a

)
eb(f1−ta)

)]
(28)

Here, we discuss how the model’s inventory-related costs originated based on the assump-
tions:

(a) Ordering Cost: A

(b) Purchase Cost: Cp(S +R)= [CpL(S +R), CpU (S +R)]

=

[
CpL



a

exp

−bη

−
log

(
e−bta(aα(ebta−ebf1)+abebf1−bW1(b−α)ebf1)

ab

)
b−α





b


+ CpL

[
a (exp (−bη (f1 − T ))− 1)

b

]
+ CpL

[
a− ae−bta

b
+W1

]
,

CpU



a

exp

−bη

−
log

(
e−bta(aα(ebta−ebf1)+abebf1−bW1(b−α)ebf1)

ab

)
b−α





b


+ CpU

[
a (exp (−bη (f1 − T ))− 1)

b

]
+ CpU

[
a− ae−bta

b
+W1

]]
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(c) Holding Cost:

[ ta∫
0

hL (t) Ir (t)dt +

f1∫
ta

hL (t)Io (t) dt +

tb∫
f1

hL (t)Io (t) dt,

ta∫
0

hU (t) Ir (t)dt +

f1∫
ta

hU (t)Io (t) dt +

tb∫
f1

hU (t)Io (t) dt

]

=

[
(bW1−a)eb(f1−ta)(b(f1q+hL)−q)

b2
− (bW1−a)(b(hL+qta)−q)

b2

b

+
1
2af1

2q + af1hL − ahLta − 1
2aqta

2

b

−
a
(
e−bta (p−bhL)

b2
+ bhL+bpta−p

b2
− 1

2 ta(2hL + pta)
)

b

−
a
(
e(b−α)(f1−tb)(q−(b−α)(f1q+hL))

(b−α)2
+ (b−α)(hL+qtb)−q

(b−α)2

)
b− α

+
a
(
f1

2q
2 + f1hL − hLtb − qtb

2

2

)
b− α

,

(bW1−a)eb(f1−ta)(b(f1q+hU )−q)
b2

− (bW1−a)(b(hU+qta)−q)
b2

b

+
1
2af1

2q + af1hU − ahU ta − 1
2aqta

2

b

−
a
(
e−bta (p−bhU )

b2
+ bhU+bpta−p

b2
− 1

2 ta(2hU + pta)
)

b

−
a
(
e(b−α)(f1−tb)(q−(b−α)(f1q+hU ))

(b−α)2
+ (b−α)(hU+qtb)−q

(b−α)2

)
b− α

+
a
(
f1

2q
2 + f1hU − hU tb − qtb

2

2

)
b− α

]

(d) Deterioration Cost:[
D2L

tb∫
f1

γIo (t)dt, D2U

tb∫
f1

γIo (t)dt

]
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=

[
aγD2L

(
e(b−α)(f1−tb) + b(tb − f1) + αf1 − αtb − 1

)
(b− α)2

,

aγD2U

(
e(b−α)(f1−tb) + b(tb − f1) + αf1 − αtb − 1

)
(b− α)2

]

(e) Shortage Cost:[
− cL

T∫
tb

Io (t)dt, −cU

T∫
tb

Io (t)dt

]

=

[
−

cL
(
(a+ bR)ebη(tb−T ) + a(bη(T − tb)− 1)− bR

)
b2η

,

−
cU
(
(a+ bR)ebη(tb−T ) + a(bη(T − tb)− 1)− bR

)
b2η

]

(f) Capital Cost:[(
Ic

[
kCpL(S +R)

n

M

n
(1 + 2 + 3 + .........+ n)

])
,(

Ic

[
kCpU (S +R)

n

M

n
(1 + 2 + 3 + .........+ n)

])]

=



CpLIckM(n+ 1)


a

exp

−bη

−
log

 e−bta(aα(ebta−ebf1)+abebf1−bW1(b−α)ebf1)
ab


b−α





b


2n

+
CpLIckM(n+ 1)

(
a(exp(−bη(f1−T ))−1)

b + S
)

2n
,
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CpUIckM(n+ 1)


a

exp

−bη

−
log

 e−bta(aα(ebta−ebf1)+abebf1−bW1(b−α)ebf1)
ab


b−α





b


2n

+
CpUIckM(n+ 1)

(
a(exp(−bη(f1−T ))−1)

b + S
)

2n


Consequently, the total cyclic cost per unit of time is

TC2 = 1
T

[
⟨OrderingCost⟩+ ⟨PurchaseCost⟩+ ⟨HoldingCost⟩
+ ⟨DeteriorationCost⟩+ ⟨ShortageCost⟩+ ⟨Capital Cost⟩

]
TC2 = [TCL, TCU ]
where
TCL

=
AL

T

+
1

T



CpLIckM(n+ 1)


a

exp

−bη

−
log

 e−bta(aα(ebta−ebf1)+abebf1−bW1(b−α)ebf1)
ab


b−α





b


2n


+

1

T

CpLIckM(n+ 1)
(
a(exp(−bη(f1−T ))−1)

b + S
)

2n


− 1

T

a
(
e−bta (p−bhL)

b2
+ bhL+bpta−p

b2
− 1

2 ta(2hL + pta)
)

b


+

1

T

 (bW1−a)eb(f1−ta)(b(f1q+hL)−q)
b2

− (bW1−a)(b(hL+qta)−q)
b2

b
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+
1

T

[
1
2af1

2q + af1hL − ahLta − 1
2aqta

2

b

]

− 1

T

a
(
e(b−α)(f1−tb)(q−(b−α)(f1q+hL))

(b−α)2
+ (b−α)(hL+qtb)−q

(b−α)2
+ f1

2q
2 + f1hL − hLtb − qtb

2

2

)
b− α


+

1

T

[
aγD2L

(
e(b−α)(f1−tb) + b(tb − f1) + αf1 − αtb − 1

)
(b− α)2

]

− 1

T



acL exp

−bη

−
log

(
e−bta(aα(ebta−ebf1)+abebf1−bW1(b−α)ebf1)

ab

)
b−α + f1 − T




b2η



1

T



bη(T − tb) exp

bη

−
log

(
e−bta(aα(ebta−ebf1)+abebf1−bW1(b−α)ebf1)

ab

)
b−α





b2η


+

1

T

[(
bη(T − tb) exp (bη (f1 − T )) + ebη(tb−T ) − 1

)
b2η

]

and
TCU

=
AU

T
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+
1

T



CpUIckM(n+ 1)


a

exp

−bη

−
log

 e−bta(aα(ebta−ebf1)+abebf1−bW1(b−α)ebf1)
ab


b−α





b


2n


+

1

T

CpUIckM(n+ 1)
(
a(exp(−bη(f1−T ))−1)

b + S
)

2n


− 1

T

a
(
e−bta (p−bhU )

b2
+ bhU+bpta−p

b2
− 1

2 ta(2hU + pta)
)

b


+

1

T

 (bW1−a)eb(f1−ta)(b(f1q+hU )−q)
b2

− (bW1−a)(b(hU+qta)−q)
b2

b


+

1

T

[
1
2af1

2q + af1hU − ahU ta − 1
2aqta

2

b

]

− 1

T

a
(
e(b−α)(f1−tb)(q−(b−α)(f1q+hU ))

(b−α)2
+ (b−α)(hU+qtb)−q

(b−α)2
+ f1

2q
2 + f1hU − hU tb − qtb

2

2

)
b− α


+

1

T

[
aγD2U

(
e(b−α)(f1−tb) + b(tb − f1) + αf1 − αtb − 1

)
(b− α)2

]

− 1

T



acU exp

−bη

−
log

(
e−bta(aα(ebta−ebf1)+abebf1−bW1(b−α)ebf1)

ab

)
b−α + f1 − T




b2η
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1

T



bη(T − tb) exp

bη

−
log

(
e−bta(aα(ebta−ebf1)+abebf1−bW1(b−α)ebf1)

ab

)
b−α + f1 − T





b2η


+

1

T

[(
ebη(tb−T ) − 1

)
b2η

]

4. Numerical Examples

4.1. For CASE I: When (0 ≤ f1 ≤ ta)

Considering the values as AL = 495, S = 115, f1 = 0.1912, hL = 10, q = 12, W1 = 100,
p = 12, b = 0.5, ta = 0.2228, tb = 0.8818, α = 0.1, CpL = 8, β = 0.08, Ic = 0.25, k = 0.4,
M = 0.25, a = 200, θ = 0.08, D1L = 190, D2L = 190, T = 1.1046, γ = 0.06, η = 0.8,
cL = 95, n = 15.

After calculation the optimum value of TCL = 4054.93

Considering the values as AU = 500, S = 115, f1 = 0.1912, hU = 12, q = 12, W1 = 100,
p = 12, b = 0.5, ta = 0.2228, tb = 0.8818, α = 0.1, CpU = 10, β = 0.08, Ic = 0.25, k = 0.4,
M = 0.25, a = 200, θ = 0.08, D1U = 200, D2U = 200, T = 1.1046, γ = 0.06, η = 0.8,
cU = 100, n = 15.

After calculation the optimum value of TCU = 4606.39

Hence, TC1 = [TCL, TCU ] = [4054.93, 4606.39]

Analyzing holding cost for own warehouse with sensitivity

Table 1

Variation in
parameter
(%)

TC1=
[TCL, TCU ]

Cost
Change
in (%)

TC2=
[TCL, TCU ]

Cost
Change
in (%)

-20 [2243.52,
2563.80]

[−1.8114,
−2.0425]

[1054.93,
1119.41]

[−0.9096,
−0.9794]
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-10 [3011.43,
3433.45]

[−1.0435,
−1.1729]

[1520.46,
1620.71]

[−0.444,
−0.4781]

10 [5456.06,
6171.91]

[1.4011,
1.5655]

[3200.69,
3410.11]

[1.2361,
1.3112]

20 [7310.93,
8232.89]

[3.256,
3.6265]

[4582.27,
4893.38]

[2.6177,
2.7945]

Observations from Table (1):

• Table 1 shows that the variation in the holding costs in its OW causes the cost per
unit of time to change (increase/decrease).

• The graph makes it abundantly obvious that the cost per unit time in these two
situations (both) rapidly rises when the holding cost of OW increases in value.

• However, whether the holding cost rises or falls, TC1′s value is always higher than
TC2′s value.

• It is absolutely shown that maintaining a longer fixed Shelf-life is beneficial.
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4.2. For CASE II: (ta ≤ f1 ≤ tb)

Considering the values as AL = 495, S = 115, f1 = 0.3567, hL = 10, q = 12, W1 = 100,
p = 12, b = 0.5, ta = 0.2228, tb = 0.8818, α = 0.1, CpL = 8, β = 0.08, Ic = 0.25, k = 0.4,
M = 0.25, a = 200, θ = 0.08, D1L = 190, D2L = 190, T = 1.1046, γ = 0.06, η = 0.8,
cL = 95, n = 15.

After calculation the optimum value of TCL = 1964.55

Considering the values as AU = 500, S = 115, f1 = 0.3567, hU = 12, q = 12, W1 = 100,
p = 12, b = 0.5, ta = 0.2228, tb = 0.8818, α = 0.1, CpU = 10, β = 0.08, Ic = 0.25, k = 0.4,
M = 0.25, a = 200, θ = 0.08, D1U = 200, D2U = 200, T = 1.1046, γ = 0.06, η = 0.8,
cU = 95, n = 15.

After calculation the optimum value of TCU = 2098.82

Hence, TC2 = [TCL, TCU ] = [1964.55, 2098.82]

Analyzing holding cost for rented warehouse with sensitivity

Table 2

Variation in
parameter
(%)

TC1=
[TCL, TCU ]

Cost
Change
in (%)

TC2=
[TCL, TCU ]

Cost
Change
in (%)

-20 [2128.31,
2213.13]

[−1.9266,
−2.3932]

[970.90,
1031.37]

[−0.9936,
−1.0674]

-10 [2839.56,
3246.74]

[−1.2154,
−1.3596]

[1369,
1460.21]

[−0.5955,
−0.6386]

10 [5106.55,
5983.91]

[1.0516,
1.3775]

[2823.81,
3010.41]

[0.8592,
0.9115]

20 [6836.86,
7717.87]

[2.7819,
3.1115]

[4032.35,
4305.67]

[2.0678,
2.2068]

Observations from Table (2):

• Table 2 shows that the variation in the holding costs in RW causes the cost per unit
of time to change (increase/decrease).

• The graph makes it abundantly obvious that the cost per unit time in these two
situations (both) rapidly rises when the holding cost of the RW increases in value.
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• However, whether the holding cost rises or falls, TC1′s value is always higher than
TC2′s value.

• It is absolutely shown that maintaining a longer fixed Shelf-life is beneficial.

5. Conclusions

In this study, for the first time, we have developed a two-warehouse inventory model
with advance payment by considering interval-valued for ordering cost, purchase cost,
shortage cost and deterioration cost. We also consider a fixed shelf life along with partially
backlogging shortages. The rate of the demand depends on the amount of stock. The
backlog rate changes over time. Based on the assumption, the cost function of this problem
is a highly nonlinear constraint optimization problem.

When approaching non-linear inventory models, especially those involving optimization
or simulation, several alternative solutions exist beyond using specific software like Math-
ematica. Mathematica’s strength lies in its ability to handle symbolic computation, op-
timization, visualization, and integration across various mathematical domains. It is a
powerful tool for analyzing and solving non-linear inventory models effectively. While
generic algorithms are versatile, Mathematica’s integrated environment and specialized
functionalities provide a streamlined approach for researchers and practitioners in tackling
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complex inventory optimization problems. Thus, we utilise Mathematica to address this
nonlinear optimisation problem in this study. A numerical example had been presented
to demonstrate the computational result. Then, a sensitivity analysis had been performed
to study the effect of changes of different parameters of the model on the optimal policy.

Future research may extend this work by examining factors such as time and advertisement-
sensitive demand, trade credit, power-patterned demand, and displayed stock-dependent
demand. In addition to these, the concept of this model can be expanded by incorporat-
ing several elements, such as advanced payment with discount policy, cash-follow analysis,
flawed production process with rework policy, etc. Furthermore, this work’s notion can be
expanded to include fuzzy-valued or interval and fuzzy combined.
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