EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 3, 2024, 2329-2335 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Exploring the Associated Groups of Quasi-Free Groups

Abdulaziz Mutlaq Alotaibi¹, Khaled Mustafa Aljamal^{2,*}

 ¹ Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
 ² Faculty of Ocean Engineering Technology and Informatics, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu

Abstract. Let G is a cyclic group. Then H(G) is a trivial group and if $G = G_1 * \ldots * G_n$ is the free product of the groups G_1, \ldots, G_n , then $H(G) = H(G_1 * \ldots * G*) \cong H(G_1) \times \ldots \times H(G_n)$. Furthermore, if the groups G_1, G_2, \ldots, G_n are cyclic groups, then H(G) is a trivial group. In this paper we show that for every group G there exists a group denoted H(G) and is called the associated group of G satisfying some important properties that as application we show that if F is a quasi-free group and G is any group, then H(F) is trivial and $H(F*G) \cong H(G)$, where a group is termed a quasi-free group if it is a free product of cyclic groups of any order.

2020 Mathematics Subject Classifications: 16U60, 20C05, 16S34, 20E06

Key Words and Phrases: Free groups, cyclic groups, quasi-free group, free product of groups and associated groups.

1. Introduction

We introduce the following basic concepts needed for the definition of associated groups of given groups [1].

i. If A and B are two subsets of G, let [A, B] be the subgroup of G generated by the elements

 $[a,b] = aba^{-1}b^{-1}$ with $a \in A$ and $b \in B$. Define G' = [G,G] to be the derived subgroup of G generated by the elements $[x,y] = xyx^{-1}y^{-1}$ with $x, y \in G$. It is clear that G' is a normal subgroup of G. For more details see [8].

ii. If R is a subset of G, let R^G to be the intersection of all normal subgroups of G containing R. It is clear that $R \subseteq R^G$ and R^G is a normal subgroup of G [7].

https://www.ejpam.com

© 2024 EJPAM All rights reserved.

⁽¹⁾ Let G be a group.

 $^{^{*}}$ Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v17i3.5258

Email addresses: am.alotaibi@psau.edu.sa (A. M. Alotaibi), khaled_aljammal@yahoo.com (K. M. Aljamal)

- (2) Let X be a set and let F_X be the free group of the reduced words of X generated by X. Then any element f ∈ F_X, f ≠ 1 is uniquely written as f = x₁ ^{α₁}χ₂ ^{α2} ... x_n ^{αn}, x^{α+1}_{i+1} ≠ -α_i, x_i ∈ X, α_i = ±1, i = 1, 2, ..., n. A group H is called a free group of base S ⊆ H if H is isomorphic to F_S that is, H ≅ F_S. The universal property of the free group F of base S [4], states that given any function f : S → G from S to a group G, there exists a unique homomorphism φ : F_S → G called the universal extension of f, that is, if a ∈ S, then φ(a) = f(a). Also, φ is an epimorphism if and only if f(S) generates G.
- (3) Let X be a set and let $R \subseteq F_X$ a subset of F_X . Let $\langle x \mid R \rangle$ stand for the quotient group, such that

 $\langle x \mid R \rangle = F_X / \overline{R}$, where $\overline{R} = R^{F_X}$ is the normal closure of R in $F_X \cdot \langle x \mid R \rangle$ is called a presentation. We say that the group G has the presentation $\langle x \mid R \rangle$ if $G \cong \langle x \mid R \rangle$. From above we see that a group G has the presentation $\langle x \mid R \rangle$ if and only if there exists an onto

function $f: X \to G$, such that f(X) generates G and the normal closure \mathbb{R}^{F_X} of \mathbb{R} in F_X satisfies the condition that $\mathbb{R}^{F_X} = \ker(\varphi)$, where $\varphi: F_X \to G$ is the universal extension of f.

2. The Associated Groups

The concept of the associated group of a given group is introduced in [3] and [6] is defined as follows. Let G denote an arbitrary group. For $x, y \in G$, let $\langle x, y \rangle$ and let $\langle G, G \rangle = \{ \langle x, y \rangle : x, y \in G \}$ and $F_{\langle G, G \rangle}$ be the free group freely generated by all pairs $\langle x, y \rangle$ with $x, y \in G$. Then any element $\alpha \in F_{\langle G, G \rangle}, \alpha \neq 1$ is uniquely written as $\alpha = \langle x_1, y_1 \rangle^{\alpha_1} \langle x_2, y_2 \rangle^{\alpha_2} \dots \langle x_n, y_n \rangle^{\alpha_n} \langle x_{i+1}, y_{i+1} \rangle^{\alpha_{i+1}} \neq \langle x_i, y_i \rangle^{-\alpha_i},$

where $x_i, y_i \in G, \alpha_I = \pm 1, i = 1, 2, ..., n$.

Proposition 1. For any group G there is a unique epimorphism from $F_{\langle G,G \rangle}$ to [G,G] taking each element $\langle x, y \rangle \in F_{\langle G,G \rangle}, x, y \in G$ to the element $[x,y] = xyx^{-1}y^{-1} \in [G,G]$.

Proof. Let $f : \langle G, G \rangle \to [G, G]$ be the function given by $f(\langle x, y \rangle) = [x, y] = xyx^{-1}y^{-1}$ with $x, y \in G$. Since $F\langle G, G \rangle$ is a free group on $\langle G, G \rangle$, the universal property shows that there exists a unique homomorphism the function $\varphi_G : F_{\langle G, G \rangle} \to [G, G]$ satisfying the condition that

 $\langle x_1, y_1 \rangle \varphi_G(\langle x, y \rangle) = [x, y] = xyx^{-1}y^{-1}$ with $x, y \in G$. This shows that f is the restriction of φ_G on f. That is, $\varphi_G \mid \langle G, G \rangle = f$, or $\varphi_G(\langle x, y \rangle) = f(\langle x, y \rangle)$ for all, $y \in G$. So for any element $\alpha \in F_{\langle G, G \rangle}, \alpha \neq 1, \alpha$ can be written uniquely as

 $\alpha = \langle x_1, y_1 \rangle^{\alpha_1} \langle x_2, y_2 \rangle^{\alpha_2} \dots \langle x_n, y_n \rangle^{\alpha_n}$ and the value of α under φ_G is given by $\varphi_G(\alpha) = \langle x_1, y_1 \rangle^{\alpha_1} \langle x_2, y_2 \rangle^{\alpha_2} \dots \langle x_n, y_n \rangle^{\alpha_n}$.

Now if $\Phi: F_{\langle G,G \rangle} \to [G,G]$ is a homomorphism, such that $\Phi(\langle x,y \rangle) = [x,y] = xyx^{-1}y^{-1}$ with $x,y \in G$, then $\Phi = \varphi_G$. Consequently, φ_G is the unique required homomorphism.

A. M. Alotaibi, K. M. Aljamal / Eur. J. Pure Appl. Math, 17 (3) (2024), 2329-2335

Since $f(\langle G, G \rangle) = [G, G]$ generates [G, G], this implies that φ_G is an epimorphism. This complete the proof.

Definition 1. For any group G, let $\varphi_{G:}F_{\langle G,G\rangle} \to [G,G]$ be the unique epimorphism of Proposition 1 satisfying the condition that $\varphi_G(\langle x,y\rangle) = [x,y] = xyx^{-1}y^{-1}$ with $x, y \in G$.

We denote by $C(G) = Ker\varphi_G$) the kernel of φ_G . Then it is clear that C(G) is a normal subgroup of $F_{\langle G,G \rangle}$.

Definition 2. For any group G, let $R(G) \subseteq F_{\langle G,G \rangle}$ be the set of the following elements of

$$\begin{cases} \langle x, x \rangle \\ \langle x, y \rangle \langle y, x \rangle \\ \langle y, z \rangle^x \langle x, z \rangle \langle xy, z \rangle^{-1} \\ \langle y, z \rangle^x \langle y, z \rangle^{-1} \langle x, [y, z] \rangle^{-1} \end{cases}$$
for $x, y, z \in G$, where $\langle y, z \rangle^x = \langle y^x, z^x \rangle = \langle xyx^{-1}, xzx^{-1} \rangle$.

Lemma 1. Let G be a group of presentation $\langle X \mid R \rangle$. Then $H(G) \cong \overline{R} \cap [F_X, F_X] / [F_X, \overline{R}]$.

Proof. See [3].

Theorem 1. For any group G, the normal closure $[R(G)]^{F\langle G,G}$ of R(G) in $F_{\langle G,G\rangle}$ is contained in C(G).

Proof. First we show that $R(G) \subseteq C(G)$. This is equivalent of showing that the value of any element $\alpha \in R(G)$ under the epimorphism $\varphi_G : F_{\langle G,G \rangle} \to [G,G]$ equals $\varphi_G(\alpha) = 1$, the identity element of G.

- (1) Let $x \in G$. Then $\langle x, x \rangle \in F \langle G, G \rangle$ and $\varphi G(\langle x, x \rangle) = [x, x] = xx^{-1}x^{-1} = 1$.
- (2) Let $x, y, z \in G$. Then the elements $\langle y, z \rangle^x, \langle x, z \rangle, \langle xy, z \rangle^{-1}$ and $(\langle y, z \rangle^x \langle x, z \rangle \langle xy, z \rangle^{-1}$ are in $F_{\langle G, G \rangle}$ and $\varphi G(\langle y, z^x \langle x, z \rangle \langle xy, z \rangle^{-1}) = \varphi_G(\langle y, z \rangle^X) \varphi_G(\langle x, z \rangle) \varphi_G(\langle xy, z \rangle^{-1})''$
- (3) Let $x, y, z \in G$. Then the elements $\langle y, z \rangle^{x}, \langle y, z \rangle^{-1}, \langle x, [y, z] \rangle^{-1}$ and $\langle y, z \rangle^{x} \langle y, z \rangle^{-1} \langle x, [y, z] \rangle^{-1}$ are in $F_{\langle G, G \rangle}$ and $\varphi_{G} (\langle y, z \rangle^{x} \langle y, z \rangle^{-1} \langle x, [y, z] \rangle^{-1}) = \varphi_{G} (\langle y, z \rangle^{x}) \varphi_{G} (\langle y, z \rangle^{-1}) \varphi_{G} (\langle x, [y, z] \rangle^{-1})$ From above we have $R(G) \subseteq C(G)$. Since C(G) is a normal subgroup of $F_{\langle G, G \rangle}$, this implies that the normal closure $[R(G)]^{F\langle G, G \rangle}$ of R(G) in $F_{\langle G, G \rangle}$ is contained in C(G). This complete the proof.

Definition 3. [3] For any group G, let $B(G) = [R(G)]^{F\langle G,G \rangle}$ be the normal closure of R(G) in $F_{\langle G,G \rangle}$ and H(G) be the group $H(G) = C(G)/B(G) = \{\alpha B(G) : \alpha \in C(G)\}$, the quotient group of the set of left cosets of B(G) in C(G).H(G) is called the associated group of the group G.

Proposition 2. The associated group of any infinite cyclic group is trivial.

A. M. Alotaibi, K. M. Aljamal / Eur. J. Pure Appl. Math, 17 (3) (2024), 2329-2335

Proof. If G is an infinite cyclic, then G is generated by a single element g and G has the presentation $G = \langle x \mid \emptyset \rangle = \langle X \mid R \rangle$, where $X = \{x\}$ and $R = \emptyset$, the empty set. Then the normal closure R^{F_X} of R in F_X is $\{1\}$, the identity subgroup of G. By Lemma 1, $H(G) \cong \overline{R} \cap [F_X, F_X] / [F_X, \overline{R}] = \{1\}/\{1\} = \{1\}$. Consequently, $H(G) \cong \{1\}$. This completes the proof.

Theorem 2. The associated group of the free product of two groups is the direct product of associated groups of the two groups. That is, if K and L are two groups, then

 $H(K * L) \cong H(K) \times H(L).$ Proof. See [3].

Remark 1. We have the following notes regarding Theorem 2, let $K = \langle X | R \rangle$ and $L = \langle Y | S \rangle$ be presentations of the groups K and L, such that $X \cap Y = \emptyset$. By [5], K * L has the presentation $K * L = \langle X \cup Y | R \cup S \rangle$. The definition of the presentation implies that $K = \langle X | R \rangle = F_X/\bar{R}$, where \bar{R} is the normal closure of R in $F_X, L = \langle Y | S \rangle = F_Y/\bar{S}$, where \bar{S} is the normal closure of S in F_Y , and $K * L = \langle X \cup Y | R \cup S \rangle = F_{X \cup Y/X \cup Y}$, where $\overline{X \cup Y} = [R \cup S]F_{X \cup Y}$, normal closure of $R \cup S$ in $F_{X \cup Y}$. Lemma 1, implies that $H(K) \cong \bar{R} \cap [F_X, F_X] / [F_X, \bar{R}]$,

$$H(L) \cong \overline{S} \cap [F_Y, F_Y] / [F_Y, \overline{S}] \text{ and } H(K \ast L) \cong (\overline{R \cup S}) \cap [F_{X \cup Y}, F_{X \cup Y}] / [F_{X \cup Y}, \overline{R \cup S}].$$

Corollary 1. Consider the groups K and L of presentations $K = \langle x_0, x_1, \ldots, x_{n+1} | r_1, \ldots, r_n, x_0 \rangle$, and $L = \langle x_0, x_1, \ldots, x_{n+1} | r_1, \ldots, r_n \rangle$. Then $H(K) \cong H(L)$.

Proof. By [5], L = K * P is the free product of K and P, where P is an infinite cyclic group. By Theorem 1, $H(L) \cong H(K) \times H(P)$ and by Proposition 2 H(P) is trivial. That is, $H(P) \cong \{1\}$. This implies that $H(L) \cong H(K) \times \{1\} \cong H(K)$. This complete the proof.

3. The Associated Groups of Quasi-Free Groups

Recall that a group is termed a quasi-free group if it is a free product of cyclic groups of any order. In this section we show that if F is a quasi-free group and G is any group then the associated group H(F) of F is trivial and the associated group H(F * G) of the free product F * G of F and G satisfies the condition $H(F * G) \cong H(G)$. First we introduce the following concept. If G is a finite group, the Schur multiplier of G introduced in [8, p. 14] is denoted by M(G) and is defined to be the second cohomology group $H^2(G, C^*)$ of G, where C^* is the set of nonzero complex numbers.

Proposition 3. Let G be a finite group. Then $H(G) \cong M(G)$. Furthermore, if G has the presentation $\langle X | R \rangle$, where X has cardinality m and R has cardinality n, then $H(G) \cong \{1\}$ if m = n and H(G) is cyclic if n = m + 1.

Proof. If G is finite, then by [2] we have H(G) = M(G). If m = n, then

by [3], M(G) = 1. Consequently, H(H) = 1. If n = m + 1, then M(G) is cyclic. This implies that H(G) is cyclic. This complete the proof.

Lemma 2. The associated group of any cyclic group is trivial.

Proof. Let G be any cyclic group. We need to show that H(G) is trivial.

If G is an infinite cyclic group, then by Proposition 2, $H(G) \cong \{1\}$. If G is a finite cyclic group of order n then G has the presentation $G = \langle x | x^n \rangle$ of one generator x and one relater $x^n = 1$. So the number of the generators of G is the same number of relaters = 1. Then Proposition 3, shows that $H(G) \cong \{1\}$. This complete the proof.

Theorem 3. The associated group of a quasi-free group is trivial.

Proof. Let F be a quasi-free group and G be any group. Then $H(F) \cong \{1\}$ and $H(F * G) \cong H(G)$.

Let F be a quasi-free group. Then F can be written as

 $F = \underbrace{C_{\infty} * C_{\infty} * \ldots * C_{\infty}}_{p-\text{ factors}} * \underbrace{C_{\alpha_1} * C_{\alpha_2} * \ldots * C_{\alpha_n}}_{q-\text{ factors}}, \text{ where } C_{\infty} \text{ stands for an infinite cyclic}$

group and $C_{\alpha_1}, C_{\alpha_2}, \ldots, C_{\alpha_n}$ stand for finite cyclic groups of orders $\alpha_1, \alpha_2, \ldots, \alpha_n$ respectively. From Proposition 1, we have

Lemma 2, implies that
$$H(F) \cong \underbrace{(1) \times (1) \times \ldots \times (1)}_{p-\text{factors}} \times \underbrace{(1) \times (1) \times \ldots \times (1)}_{q-\text{factors}} \cong 1.$$

This completes the proof.

Corollary 2. Let $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ be the group of integers and

 $Z_n = \{0, 1, \dots, n-1\}$ be the group of integers modulo n. Then $H(Z) \cong \{1\}$ and $H(Z_n) \cong \{1\}$.

Corollary 3. If K is a free group and G is any group, then $H(K) \cong \{1\}, H(F\langle G, G\rangle) \cong \{1\}$ and $H(F_{\langle G, G\rangle} * G) \cong H(G)$.

As an example of a quasi-free group we have the following.

Example 1. Let Z be the group of integers and G = PSL(2, Z) be the projective special linear group of degree 2 over Z. It is well known that [1], G = A * B, the free product of the cyclic groups A of order 2, and the cyclic group B of order 3 defined

G is a quasi-free group, and Theorem 3, shows that $H(F * G) \cong \{1\}$.

4. The Associated Groups of Dihedral Groups and Quaternion Groups

For the structures of dihedral groups and quaternion groups we refer the readers to [8].

Proposition 4. Let G be a dihedral group. Then

- (i) If $G = D_{\infty}$ is infinite, then $H(D_{\infty}) \cong \{1\}$.
- (ii) If $G = D_n$ is finite, then $H(D_n)$ is cyclic.

Proof. (1) $G = D_{\infty}$ is defined as the group of two-by-two matrices with entries from

the group of integers Z of the form
$$\begin{pmatrix} \varepsilon & k \\ 0 & 1 \end{pmatrix}$$
 where ε is 1 or -1, and k is any integer.
$$D_{\infty} = A * B$$
, the free product of the groups $A = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\},$

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

And B are of order 2 which implies A and B are cyclic groups, then D_{∞} is a quasi-free group and by Theorem 3.1, $H(D_{\infty}) \cong \{1\}$. (2) If $G = D_n$ is a finite dihedral group, then G is of order 2n and is defined as the group of two-by-two matrices, with entries from the ring of integers $Z_n \mod n$ of the form $\begin{pmatrix} \varepsilon & k \\ 0 & 1 \end{pmatrix}$, where ε is 1 or -1, and k is any integer mod n. Then by [8], D_n has the presentation $D_n = \langle x, y \mid x^n, y^2, (xy)^2 \rangle$ of 2 generators and 3 relations. Since D_n is finite and 3 = 2 + 1,

 $D_n = \langle x, y \mid x^n, y^2, (xy)^2 \rangle$ of 2 generators and 3 relations. Since D_n is finite and 3 = 2 + 1, Proposition 3 shows that $H(D_n)$ is cyclic. This complete the proof.

Example 2. Let G = PSL(2, F) be the projective special linear group of degree 2 over the Galois field F consisting of 5 elements. Then $H(G) \cong C_2$ and for every free group Khave $H(K * G) \cong C_2$, where C_2 is a cyclic group of order 2, because it is well known that [3]. Now by [2], G has the presentation $G = \langle x, y | x^5, y^3, (xy)^2 \rangle$ of two generators and three relaters. By Proposition 3, H(G) is cyclic.

Proposition 5. Let Q_n be the quaternion group of order 4n. Then $H(Q_n)$ is cyclic.

Proof. It is well known in [4] that Q_n has the presentation $Q_n = \langle a, b \mid a^{2n} = 1, b^2 = a^n, b^{-1}ab = a^{-1} \rangle.$

So the presentation of Q_n is of 2 generators 3 relations so, by Proposition 3, $H(Q_n)$ is cyclic. This complete the proof.

5. Conclusion

It is stated and proven associated group of any cyclic group is trivial.

and associated group of a quasi-free group is trivial. In future work, we must reach facts related to the following

- (i) Let $G = G_1 *_A G_2$ be the free product of the groups G_1 and G_2 with an amalgamation subgroup A introduced in [5]. Find H(G) in terms of $H(G_1)$, $H(G_2)$ and H(A).
- (ii) Let G be the HNN-group $G = \langle H, t_i | rel(H), t_i A_i t_{i-1} = B_i, i \in I \rangle$ of base H and associated pairs $(A_i, B_i), i \in I$ of subgroups of H introduced in [1]. Find H(G) in terms of $H(H), H(A_i)$ and $H(B_i), i \in I$.

Acknowledgements

This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/1446).

References

- Khaled Mustafa Aljamal, Ahmad Termimi Ab Ghani, and Rasheed Mahmood Saleh. On preimages of the quasi-treed hnn groups. In 2021 International Conference on Information Technology (ICIT), 2021.
- [2] Warren Dicks and Martin John Dunwoody. Groups acting on graphs. Cambridge University Press, 1989.
- [3] Gregory Karpilovsky. The schur multiplier. Oxford University Press, Inc., 1987.
- [4] Roger C Lyndon, Paul E Schupp, RC Lyndon, and PE Schupp. Combinatorial group theory. Springer, 1977.
- [5] W Magnus, Karrass A, and D. Solitar. *Combinatorial group theory*. Dover Publ.Inc. New York, 1976.
- [6] Clair Miller. The second homology group of a group; relations among commutators. Proceedings of the American Mathematical Society, 1952.
- [7] Khaled Mustafa Al-Jamal and Ahmad Termimi Ab Ghani. On the relation between ct-groups and nsp-groups on finite groups. In *Journal of Physics: Conference Series*, 2019.
- [8] J. J. Rotman. The theory of groups: An introduction. Allyn and Bacon, 1973.