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Abstract. Let G is a cyclic group. Then H(G) is a trivial group and if G = G1∗ . . . ∗Gn is the
free product of the groups G1, . . . , Gn, then H(G) = H(G1 ∗ . . . ∗ G∗) ≊ H(G1) × . . . × H(Gn).
Furthermore, if the groups G1, G2, . . . , Gnare cyclic groups, then H(G) is a trivial group. In
this paper we show that for every group G there exists a group denoted H(G) and is called the
associated group of G satisfying some important properties that as application we show that if
F is a quasi-free group and G is any group, then H(F )is trivial and H(F ∗ G) ≊ H(G), where a
group is termed a quasi-free group if it is a free product of cyclic groups of any order.
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1. Introduction

We introduce the following basic concepts needed for the definition of associated groups
of given groups [1].

(1) Let G be a group.

i. If A and B are two subsets of G, let [A,B] be the subgroup of G generated by the
elements

[a, b] = aba−1b−1 with a ∈ A and b ∈ B. Define G′ = [G,G] to be the derived
subgroup of G generated by the elements [x, y] = xyx−1y−1 with x, y ∈ G. It is clear
that G′ is a normal subgroup of G. For more details see [8].

ii. If R is a subset of G, let RG to be the intersection of all normal subgroups of G
containing R. It is clear that R ⊆ RG and RG is a normal subgroup of G [7].
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(2) Let X be a set and let FX be the free group of the reduced words of X generated by
X. Then any element f ∈ FX , f ̸= 1 is uniquely written as
f = x1

α1χ2
α2 . . . xn

αn, xα+1
i+1 ̸= −αi, xi ∈ X,αi = ±1, i = 1, 2, . . . , n.

A group H is called a free group of base S ⊆ H if H is isomorphic to FS that is,
H ∼= FS . The universal property of the free group F of base S [4], states that given
any function f : S → G from S to a group G, there exists a unique homomorphism
φ : FS → G called the universal extension of f , that is, if a ∈ S, then φ(a) = f(a).
Also, φ is an epimorphism if and only if f(S) generates G.

(3) Let X be a set and let R ⊆ FX a subset of FX . Let ⟨x | R⟩ stand for the quotient
group, such that

⟨x | R⟩ = FX/R̄, where R̄ = RFX is the normal closure of R in FX .⟨x | R⟩ is called a
presentation. We say that the group G has the presentation ⟨x | R⟩ if G ∼= ⟨x | R⟩.
From above we see that a group G has the presentation ⟨x | R⟩ if and only if there
exists an onto

function f : X → G, such that f(X) generates G and the normal closure RFX of R
in FX satisfies the condition that RFX = ker(φ), where φ : FX → G is the universal
extension of f .

2. The Associated Groups

The concept of the associated group of a given group is introduced in [3] and [6] is
defined as follows. Let G denote an arbitrary group. For x, y ∈ G, let ⟨x, y⟩ and let
⟨G,G⟩ = {⟨x, y⟩ : x, y ∈ G} and F⟨G,G⟩ be the free group freely generated by all pairs
⟨x, y⟩ with x, y ∈ G. Then any element α ∈ F⟨G,G⟩, α ̸= 1 is uniquely written as

α = ⟨x1, y1⟩α1 ⟨x2, y2⟩α2 . . . ⟨xn, yn⟩αn ⟨xi+1, yi+1⟩αi+1 ̸= ⟨xi, yi⟩−αi,
where xi, yi ∈ G,αI = ±1, i = 1, 2, . . . , n.

Proposition 1. For any group G there is a unique epimorphism from F⟨G,G⟩ to [G,G]
taking each element ⟨x, y⟩ ∈ F⟨G,G⟩, x, y ∈ G to the element [x, y] = xyx−1y−1 ∈ [G,G].

Proof. Let f : ⟨G,G⟩ → [G,G] be the function given by f(⟨x, y⟩) = [x, y] = xyx−1y−1

with x, y ∈ G. Since F ⟨G,G⟩ is a free group on ⟨G,G⟩, the universal property shows
that there exists a unique homomorphism the function φG : F⟨G,G⟩ → [G,G] satisfying the
condition that

⟨x1, y1⟩φG(⟨x, y⟩) = [x, y] = xyx−1y−1 with x, y ∈ G. This shows that f is the
restriction of φG on f . That is, φG | ⟨G,G⟩ = f , or φG(⟨x, y⟩) = f(⟨x, y⟩) for all,y ∈ G.
So for any element α ∈ F⟨G,G⟩, α ̸= 1, α can be written uniquely as

α = ⟨x1, y1⟩α1 ⟨x2, y2⟩α2 . . . ⟨xn, yn⟩αn. and the value of α under φG is given by
φG(α) = ⟨x1, y1⟩α1 ⟨x2, y2⟩α2 . . . ⟨xn, yn⟩αn.

Now if Φ : F⟨G,G⟩ → [G,G] is a homomorphism, such that
Φ(⟨x, y⟩) = [x, y] = xyx−1y−1 with x, y ∈ G, then Φ = φG. Consequently, φG is the
unique required homomorphism.
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Since f(⟨G,G⟩) = [G,G] generates [G,G], this implies that φG is an epimorphism.
This complete the proof.

Definition 1. For any group G, let φG:F⟨G,G⟩ → [G,G] be the unique epimorphism of
Proposition 1 satisfying the condition that φG(⟨x, y⟩) = [x, y] = xyx−1y−1 with x, y ∈ G.

We denote by C(G) = KerφG ) the kernel of φG. Then it is clear that C(G) is a
normal subgroup of F⟨G,G⟩.

Definition 2. For any group G, let R(G) ⊆ F⟨G,G⟩ be the set of the following elements of

⟨x, x⟩
⟨x, y⟩⟨y, x⟩
⟨y, z⟩x⟨x, z⟩⟨xy, z⟩−1

⟨y, z⟩x⟨y, z⟩−1⟨x, [y, z]⟩−1

 for x, y, z ∈ G, where ⟨y, z⟩x = ⟨yx, zx⟩ =
〈
xyx−1, xzx−1

〉
.

Lemma 1. Let G be a group of presentation ⟨X | R⟩. Then H(G) ∼= R̄∩[FX , FX ] /
[
FX , R̄

]
.

Proof. See [3].

Theorem 1. For any group G, the normal closure [R(G)]F ⟨G,G
〉
of R(G) in F⟨G,G⟩ is

contained in C(G).

Proof. First we show that R(G) ⊆ C(G). This is equivalent of showing that the value
of any element α ∈ R(G) under the epimorphism φG : F⟨G,G⟩ → [G,G] equals φG(α) = 1,
the identity element of G.

(1) Let x ∈ G. Then ⟨x, x⟩ ∈ F ⟨G,G⟩ and φG(⟨x, x⟩) = [x, x] = xx−1x−1 = 1.

(2) Let x, y, z ∈ G. Then the elements ⟨y, z⟩x, ⟨x, z⟩, ⟨xy, z⟩−1 and
(
⟨y, z⟩x⟨x, z⟩⟨xy, z⟩−1

are in F⟨G,G⟩ and φG
(〈
y, zx⟨x, z⟩⟨xy, z⟩−1

)
= φG

(
⟨y, z⟩X

)
φG(⟨x, z⟩)φG

(
⟨xy, z⟩−1

)′′
(3) Let x, y, z ∈ G. Then the elements ⟨y, z⟩x, ⟨y, z⟩−1, ⟨x, [y, z]⟩−1 and

⟨y, z⟩x⟨y, z⟩−1⟨x, [y, z]⟩−1 are in F⟨G,G⟩ and
φG

(
⟨y, z⟩x⟨y, z⟩−1⟨x, [y , z]⟩−1

)
= φG (⟨y, z⟩x)φG

(
⟨y, z⟩−1

)
φG

(
⟨x, [y, z]⟩−1

)
From above we have R(G) ⊆ C(G). Since C(G) is a normal subgroup of F⟨G,G⟩,

this implies that the normal closure [R(G)] F ⟨G,G⟩ of R(G) in F⟨G,G⟩ is contained in
C(G). This complete the proof.

Definition 3. [3] For any group G, let B(G) = [R(G)]F ⟨G,G⟩ be the normal closure of
R(G) in F⟨G,G⟩ and H(G) be the group H(G) = C(G)/B(G) = {αB(G) : α ∈ C(G)},
the quotient group of the set of left cosets of B(G) in C(G).H(G) is called the associated
group of the group G.

Proposition 2. The associated group of any infinite cyclic group is trivial.
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Proof. If G is an infinite cyclic, then G is generated by a single element g and G has
the presentation G = ⟨x | ∅⟩ = ⟨X | R⟩, where X = {x} and R = ∅, the empty set.
Then the normal closure RFX of R in FX is {1}, the identity subgroup of G. By Lemma
1, H(G) ∼= R̄ ∩ [FX , FX ] /

[
FX , R̄

]
= {1}/{1} = {1}. Consequently, H(G) ∼= {1}. This

completes the proof.

Theorem 2. The associated group of the free product of two groups is the direct product
of associated groups of the two groups. That is, if K and L are two groups, then

H(K ∗ L) ∼= H(K)×H(L).
Proof. See [3].

Remark 1. We have the following notes regarding Theorem 2, let K = ⟨X | R⟩ and
L = ⟨Y | S⟩ be presentations of the groups K and L, such that X ∩ Y = ∅. By [5],
K ∗ L has the presentation K ∗ L = ⟨X ∪ Y | R ∪ S⟩. The definition of the presentation
implies that K = ⟨X | R⟩ = FX/R̄, where R̄ is the normal closure of R in FX , L = ⟨Y |
S⟩ = FY /S̄, where S̄ is the normal closure of S in FY , and K ∗ L = ⟨X ∪ Y | R ∪ S⟩ =
FX∪Y/X∪Y , where X ∪ Y = [R∪S]FX∪Y , normal closure of R∪S in FX∪Y . Lemma 1, implies

that H(K) ∼= R̄ ∩ [FX , FX ] /
[
FX , R̄

]
,

H(L) ∼= S̄∩[FY , FY ] /
[
FY , S̄

]
andH(K∗L) ∼= (R ∪ S)∩[FX∪Y , FX∪Y ] /

[
FX∪Y , R ∪ S

]
.

Corollary 1. Consider the groups K and L of presentations
K = ⟨x0, x1, . . . , xn+1 | r1, . . . , rn, x0⟩, and L = ⟨x0, x1, . . . , xn+1 | r1, . . . , rn⟩. Then
H(K) ∼= H(L).

Proof. By [5], L = K ∗ P is the free product of K and P , where P is an infinite cyclic
group. By Theorem 1, H(L) ∼= H(K)×H(P ) and by Proposition 2 H(P ) is trivial. That
is, H(P ) ∼= {1}. This implies that H(L) ∼= H(K)×{1} ∼= H(K). This complete the proof.

3. The Associated Groups of Quasi-Free Groups

Recall that a group is termed a quasi-free group if it is a free product of cyclic groups
of any order. In this section we show that if F is a quasi-free group and G is any group
then the associated group H(F ) of F is trivial and the associated group H(F ∗G) of the
free product F ∗G of F and G satisfies the condition H(F ∗G) ∼= H(G). First we introduce
the following concept. If G is a finite group, the Schur multiplier of G introduced in [8, p.
14] is denoted by M(G) and is defined to be the second cohomology group H2 (G,C∗) of
G, where C∗ is the set of nonzero complex numbers.

Proposition 3. Let G be a finite group. Then H(G) ∼= M(G). Furthermore, if G has the
presentation ⟨X | R⟩, where X has cardinality m and R has cardinality n, then H(G) ∼= {1}
if m = n and H(G) is cyclic if n = m+ 1.

Proof. If G is finite, then by [2] we have H(G) = M(G). If m = n, then
by [3], M(G) = 1. Consequently, H(H) = 1. If n = m+ 1, then M(G) is cyclic. This

implies that H(G) is cyclic. This complete the proof.
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Lemma 2. The associated group of any cyclic group is trivial.

Proof. Let G be any cyclic group. We need to show that H(G) is trivial.
If G is an infinite cyclic group, then by Proposition 2, H(G) ∼= {1}. If G is a finite

cyclic group of order n then G has the presentation G = ⟨x | xn⟩ of one generator x and
one relater xn = 1. So the number of the generators of G is the same number of relaters
= 1. Then Proposition 3, shows that H(G) ∼= {1}. This complete the proof.

Theorem 3. The associated group of a quasi-free group is trivial.

Proof. Let F be a quasi-free group and G be any group. Then
H(F ) ∼= {1} and H(F ∗G) ∼= H(G).

Let F be a quasi-free group. Then F can be written as
F = C∞ ∗ C∞ ∗ . . . ∗ C∞︸ ︷︷ ︸

p− factors

∗Cα1 ∗ Cα2 ∗ . . . ∗ Cαn︸ ︷︷ ︸
q− factors

, where C∞ stands for an infinite cyclic

group and Cα1 , Cα2 , . . . , Cαn stand for finite cyclic groups of orders α1, α2, . . . , αn respec-
tively. From Proposition 1, we have

Lemma 2, implies that H(F ) ∼= (1)× (1)× . . .× (1)︸ ︷︷ ︸
p− factors

× (1)× (1)× . . .× (1)︸ ︷︷ ︸
q− factors

∼= 1.

This completes the proof.

Corollary 2. Let Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} be the group of integers and

Zn = {0, 1, . . . , n− 1} be the group of integers modulo n. Then
H(Z) ∼= {1} and H (Zn) ∼= {1}.

Corollary 3. If K is a free group and G is any group, then
H(K) ∼= {1}, H(F ⟨G,G⟩) ∼= {1} and H

(
F⟨G,G⟩ ∗G

) ∼= H(G).

As an example of a quasi-free group we have the following.

Example 1. Let Z be the group of integers and G = PSL(2, Z) be the projective special
linear group of degree 2 over Z. It is well known that[1] , G = A ∗ B, the free product of
the cyclic groups A of order 2 , and the cyclic group B of order 3 defined

G is a quasi-free group, and Theorem 3, shows that H(F ∗G) ∼= {1}.

4. The Associated Groups of Dihedral Groups and Quaternion Groups

For the structures of dihedral groups and quaternion groups we refer the readers to
[8].

Proposition 4. Let G be a dihedral group. Then

(i) If G = D∞ is infinite, then H (D∞) ∼= {1}.

(ii) If G = Dn is finite, then H (Dn) is cyclic.
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Proof. (1) G = D∞ is defined as the group of two-by-two matrices with entries from
the group of integers Z of the form(

ε k
0 1

)
where E is 1 or -1 , and k is any integer.

D∞ = A ∗B, the free product of the groups A =

{(
1 0
0 1

)
,

(
1 1
0 1

)}
,

B =

{(
1 0
0 1

)
,

(
−1 0
0 1

)}
.

Aand B are of order 2 which implies A and B are cyclic groups, then D∞ is a quasi-free
group and by Theorem 3.1, H (D∞) ∼= {1}. (2) If G = Dn is a finite dihedral group, then
G is of order 2n and is defined as the group of two-by-two matrices, with entries from the

ring of integers Zn mod n of the form

(
ε k
0 1

)
, where ε is 1 or -1 , and k is any integer

mod n. Then by [8], Dn has the presentation
Dn =

〈
x, y | xn, y2, (xy)2

〉
of 2 generators and 3 relations. Since Dn is finite and 3 = 2+1,

Proposition 3 shows that H (Dn) is cyclic. This complete the proof.

Example 2. Let G = PSL(2, F ) be the projective special linear group of degree 2 over
the Galois field F consisting of 5 elements. Then H(G) ∼= C2 and for every free group K
have H(K ∗G) ∼= C2, where C2 is a cyclic group of order 2, because it is well known that
[3]. Now by [2], G has the presentation G =

〈
x, y | x5, y3, (xy)2

〉
of two generators and

three relaters. By Proposition 3, H(G) is cyclic.

Proposition 5. Let Qn be the quaternion group of order 4n. Then H (Qn) is cyclic.

Proof. It is well known in [4] that Qn has the presentation
Qn =

〈
a, b | a2n = 1, b2 = an, b−1ab = a−1

〉
.

So the presentation of Qn is of 2 generators 3 relations so, by Proposition 3, H (Qn)
is cyclic. This complete the proof.

5. Conclusion

It is stated and proven associated group of any cyclic group is trivial.
and associated group of a quasi-free group is trivial. In future work, we must reach

facts related to the following

(i) Let G = G1∗AG2 be the free product of the groups G1 and G2 with an amalgamation
subgroup A introduced in [5]. Find H(G) in terms of H (G1) , H (G2) and H(A).

(ii) Let G be the HNN-group G = ⟨H, ti | rel(H), tiAiti−1 = Bi, i ∈ I⟩ of base H and
associated pairs (Ai, Bi), i ∈ I of subgroups of H introduced in [1]. Find H(G) in
terms of H(H), H(Ai) and H(Bi), i ∈ I.
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