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1. Introduction

Let X be a real vector space of dimension d ≥ n and let ⟨·, ·|·, . . . , ·⟩ : Xn+1 → R be a
function such that for every x0, x1, . . . , xn, xn+1 ∈ X and α ∈ R we have

(I1) ⟨x1, x1|x2, . . . , xn⟩ ≥ 0 and ⟨x1, x1|x2, . . . , xn⟩ = 0 if and only if x1, x2, . . . , xn are
linearly dependent;

(I2) ⟨x1, x1|x2, . . . , xn⟩ = ⟨xi1 , xi1 |xi2 , . . . , xin⟩ for any permutation; {i1, i2, . . . , in} of
(1, . . . , n);

(I3) ⟨x0, x1|x2, . . . , xn⟩ = ⟨x1, x0|x2, . . . , xn⟩;

(I4) ⟨αx0, x1|x2, . . . , xn⟩ = α⟨x0, x1|x2, . . . , xn⟩;

(I5) ⟨x0 + xn+1, x1|x2, . . . , xn⟩ = ⟨x0, x1|x2, . . . , xn⟩+ ⟨xn+1, x1|x2, . . . , xn⟩.
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The function ⟨·, ·|·, . . . , ·⟩ is called an n-inner product introduced by Misiak in 1989
[14]. Here, the pair (X, ⟨·, ·|·, . . . , ·⟩) is called an n-inner product space. If (X, ⟨·, ·⟩) is a
real inner product space of dimension d ≥ n, we can define the standard n-inner product
by

⟨x0, x1|x2, . . . , xn⟩ =

∣∣∣∣∣∣∣∣∣
⟨x0, x1⟩ ⟨x0, x2⟩ . . . ⟨x0, xn⟩
⟨x2, x1⟩ ⟨x2, x2⟩ . . . ⟨x2, xn⟩

...
...

. . .
...

⟨xn, x1⟩ ⟨xn, x2⟩ . . . ⟨xn, xn⟩

∣∣∣∣∣∣∣∣∣.
So, a real inner product space of dimension d ≥ n with the n-inner product defined above
is an example of an n-inner product space, which we can call a standard n-inner product
space.

Next, from n-inner product space we can derive n-norm, defined by

∥x1, x2, . . . , xn∥ = ⟨x1, x1|x2, . . . , xn⟩
1
2 .

Furthermore, an n-norm on X is a function ∥·, . . . , ·∥ : Xn → R such that for every
x0, x1, . . . , xn, xn+1 ∈ X and α ∈ R, the function satisfying the following properties:

(N1) ∥x1, x2, . . . , xn∥ ≥ 0 and ∥x1, x2, . . . , xn∥ = 0 if and only if x1, x2, . . . , xn are linearly
dependent;

(N2) ∥x1, x2, . . . , xn∥ is invariant under permutation;

(N3) ∥αx1, x2, . . . , xn∥ = |α| ∥x1, x2, . . . , xn∥;

(N4) ∥x0 + x1, x2, . . . , xn∥ ≤ ∥x0, x2, . . . , xn∥+ ∥x1, x2, . . . , xn∥.

Geometrically, ∥x1, x2, . . . , xn∥ represents the generalized volume of an n-dimensional
parallelepiped spanned by x1, x2, . . . , xn. Then,

⟨x0, x1|x2, . . . , xn⟩
∥x0, x2, . . . , xn∥ ∥x1, x2, . . . , xn∥

is the cosine of the angle between two parallelepipeds spanned by x0, x2, . . . , xn and
x1, x2, . . . , xn. See [9, 10, 15] for more properties of n-inner products. The related results
may also be found in [3–6, 13, 16, 17].

Historically, numerous authors have introduced and developed several concepts of or-
thogonality in 2-normed spaces and 2-inner product spaces [1, 2, 7, 11, 12, 15]. Just as the
concepts of orthogonality in normed spaces draw inspiration from those in inner product
spaces, the notions of orthogonality in 2-normed spaces are similarly linked to those in
2-inner product spaces. In [11], it is shown that the standard definition of orthogonality
in a 2-inner product space (X, ⟨·, ·|·⟩) with dim(X) ≥ 3, is as follows:
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Definition 1 (G-orthogonality in 2-inner product spaces). Let (X, ⟨·, ·|·⟩) be a 2-inner
product spaces. x1 is G-orthogonal to x2 if and only if there exists a subspace V of X with
codim(V ) = 1 such that ⟨x1, x2|x⟩ = 0 for all x ∈ V (Denoted by x1⊥Gx2).

We can say this definition is standard because when X is a standard 2-inner product
space, we have x1⊥x2 if and only if x1⊥Gx2. The definition of G-orthogonality provided
above represents an enhancement over the definition proposed by Cho and Kim [2] and
Godini [7] as demonstrated in [11]. On the other hand, Cho and Kim’s concept of or-
thogonality and Godini can be seen as a development of Khan and Siddiqui’s concept of
orthogonality [12]. Furthermore, one can define the notion of G-orthogonality in n-inner
product spaces as follows:

Definition 2 (G-orthogonality in n-inner product spaces). Let (X, ⟨·, ·|·, . . . , ·⟩) be an n-
inner product spaces with dim(X) ≥ n + 1. x1 is G-orthogonal to x2 if and only if there
exists a subspace V of X with codim(V ) = 1 such that ⟨x1, x2|x3, . . . , xn+1⟩ = 0 for all
x3, . . . , xn+1 ∈ V (Denoted by x1⊥Gx2).

With this definition, in a standard n-inner product space, G-orthogonality is also
equivalent to the usual orthogonality (with respect to the inner product). In other words,
x1⊥x2 if and only if x1⊥Gx2.

We can see that the definition requires the assumption that the dimension of X is
greater than n. In [11], it is shown that if we define G-orthogonality in the standard
2-inner product space X of dimension 2, any pair of linearly independent vectors becomes
G-orthogonal. Similarly, if we define G-orthogonality for a standard n-inner product space
X of dimension n, any pair of linearly independent vectors also becomes G-orthogonal.
Indeed, this fact is undesirable. It is necessary to adopt a different approach to establish
orthogonality in n-inner product spaces of dimension n in a general sense.

Meanwhile, note that if (X, ⟨·, ·|·, . . . , ·⟩) is an arbitrary n-inner product space and
A = {a1, a2, . . . , an} is a set of n linearly independent vectors in X, then one may observe
that

⟨x, y⟩A :=
∑

{i2,...in}⊂{1,2,...,n}

⟨x, y|ai2 , . . . , ain⟩

defines an inner product on X. There are n terms in the above sum, as there are n
subsets of {1, 2, . . . , n} consisting of n− 1 elements. If dimX = d < ∞, we can also define
an inner product by the above formula using a set of d linearly independent vectors in X
(see [8]).

Thus, starting from an inner product, we can define the standard n-inner product, and
then from the n-inner product, we can derive a new inner product. It is then interesting
to investigate how the new inner product derived from standard n-inner product relates
to the original inner product on (X, ⟨·, ·⟩). In particular, we would like to know whether
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or not the new inner product preserves orthogonality. This generally depends on the set
A that we choose in the definition of the new inner product. In the next sections, we
present necessary and sufficient conditions for the set A to give the positive answer. With
this approach, we have an alternative way to establish the orthogonality of two vectors
in arbitrary n-inner product spaces because we can define the inner product on n-inner
product spaces.

2. The n-dimensional case

Let (X, ⟨·, ·|·, . . . , ·⟩) be a standard n-inner product space. As indicated in [10] and
[11], the n-dimensional case is special. So we shall first pay attention to the case where
dimX = n. Our results are the following theorems.

Theorem 1. Let A = {a1, a2, . . . , an} ⊂ X be an orthogonal set with ∥ai∥ = α > 0 for all
i = 1, 2, . . . , n. Then ⟨x, y⟩A = 0 if and only if ⟨x, y⟩ = 0 for all x, y ∈ X.

Proof. For any subset {i2, . . . , in} ⊂ {1, 2, . . . , n}, we have

⟨x, y|ai2 , ai3 , . . . , ain⟩ =

∣∣∣∣∣∣∣∣∣∣∣

⟨x, y⟩ ⟨x, ai2⟩ . . . ⟨x, ain⟩
⟨ai2 , y⟩ ⟨ai2 , ai2⟩ . . . ⟨ai2 , ain⟩

...
...

. . .
...

⟨ain , y⟩ ⟨ain , ai2⟩ . . . ⟨ain , ain⟩

∣∣∣∣∣∣∣∣∣∣∣
n×n

= ⟨x, y⟩

∣∣∣∣∣∣∣∣∣
∥ai2∥

2 0 . . . 0

0 ∥ai3∥
2 . . . 0

...
...

. . .
...

0 0 . . . ∥ain∥
2

∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

− ⟨x, ai2⟩

∣∣∣∣∣∣∣∣∣
⟨ai2 , y⟩ 0 . . . 0

⟨ai3 , y⟩ ∥ai3∥
2 . . . 0

...
...

. . .
...

⟨ain , y⟩ 0 . . . ∥ain∥
2

∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

+ · · ·+ (−1)n−1⟨x, ain⟩

∣∣∣∣∣∣∣∣∣
⟨ai2 , y⟩ ∥ai2∥

2 . . . 0
...

...
. . .

...

⟨ain−1 , y⟩ 0 . . .
∥∥ain−1

∥∥2
⟨ain , y⟩ 0 . . . 0

∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

= ⟨x, y⟩
n∏

j=2

∥∥aij∥∥2 − ⟨x, ai2⟩⟨ai2 , y⟩
n∏

j=3

∥∥aij∥∥2 − · · · − ⟨x, ain⟩⟨ain , y⟩
n−1∏
j=2

∥∥aij∥∥2
=

[
⟨x, y⟩ − ⟨x, ai2⟩⟨ai2 , y⟩

∥ai2∥
2 − ⟨x, ai3⟩⟨ai3 , y⟩

∥ai3∥
2 − · · · − ⟨x, ain⟩⟨ain , y⟩

∥ain∥
2

]
n∏

j=2

∥∥aij∥∥2 .



A. Adam, S. Rante, H. Gunawan / Eur. J. Pure Appl. Math, 17 (3) (2024), 1937-1947 1941

Let {1, 2, . . . n}\{i2, . . . in} = {i1}. By Parseval’s identity, we have ⟨x, y⟩ =
n∑

j=1

⟨x, aij ⟩⟨aij , y⟩∥∥aij∥∥2
(since {i1, i2, . . . , in} = {1, 2, . . . , n} as sets). Hence it follows that

⟨x, y|ai2 , ai3 , . . . , ain⟩ =
⟨x, ai1⟩⟨ai1 , y⟩

∥ai1∥
2

n∏
j=2

∥∥aij∥∥2 = ⟨x, ai1⟩⟨ai1 , y⟩
∥ai1∥

4

n∏
i=1

∥ai∥2 .

Summing the above expressions for i1 = 1, 2, . . . , n, we get

⟨x, y⟩A =
∑

{i2,...in}⊂{1,2,...,n}

⟨x, y|ai2 , . . . , ain⟩

=

[
⟨x, a1⟩⟨a1, y⟩

∥a1∥4
+

⟨x, a2⟩⟨a2, y⟩
∥a2∥4

+ · · ·+ ⟨x, an⟩⟨an, y⟩
∥an∥4

]
n∏

i=1

∥ai∥2 .

However, we are assuming that ∥ai∥ = α for all i = 1, 2, . . . , n and so we obtain

⟨x, y⟩A =

[
⟨x, a1⟩⟨a1, y⟩

α4
+

⟨x, a2⟩⟨a2, y⟩
α4

+ · · ·+ ⟨x, an⟩⟨an, y⟩
α4

]
n∏

i=1

α2

=
⟨x, y⟩
α2

α2n = α2(n−1)⟨x, y⟩.

Since α ̸= 0, we conclude that ⟨x, y⟩A = 0 if and only if ⟨x, y⟩ = 0, which proves the
theorem.

Theorem 2. Let A = {b1, b2, . . . , bn} be a set of n linearly independent vectors in X.
Then ⟨x, y⟩A = ⟨x, y⟩ if and only if A is an orthonormal basis for X.

Proof. The sufficient part follows immediately from the previous theorem. For the
necessary part, suppose that ⟨x, y⟩A = ⟨x, y⟩ for all x, y ∈ X. To prove that A is an
orthonormal basis for X, let us first compute (bi, bj) for i ̸= j. We have

⟨bi, bj⟩ = ⟨bi, bj⟩A =
∑

{i2,...in}⊂{1,2,...,n}

⟨bi, bj |bi2 , . . . , bin⟩.

For any {i2, . . . , in} ⊂ {1, 2, . . . , n}, observe that bi ∈ {bi2 , . . . , bin} or bj ∈ {bi2 , . . . , bin},
because {bi2 , . . . , bin} consists of n−1 elements of A. Consequently , ⟨bi, bj |bi2 , . . . , bin⟩ = 0,
because two rows or two columns in the determinant will be identical. Since this is true
for any {i2, . . . , in} ⊂ {1, 2, . . . , n}, we conclude that

⟨bi, bj⟩ =
∑

{i2,...in}⊂{1,2,...,n}

⟨bi, bj |bi2 , . . . , bin⟩ = 0.

Let us now compute ⟨bi, bi⟩ for i = 1, 2, . . . , n. Notice that if bi ∈ {bi2 , . . . , bin}, then we
have ⟨bi, bi|bi2 , . . . , bin⟩ = 0. Meanwhile, if bi ̸∈ {bi2 , . . . , bin} then —by the properties of
the standard n−product— we have
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⟨bi, bi|bi2 , . . . , bin⟩ = ⟨b1, b1|b2, . . . , bn⟩ =

∣∣∣∣∣∣∣∣∣
⟨b1, b1⟩ ⟨b1, b2⟩ . . . ⟨b1, bn⟩
⟨b2, b1⟩ ⟨b2, b2⟩ . . . ⟨b2, bn⟩

...
...

. . .
...

⟨bn, b1⟩ ⟨bn, b2⟩ . . . ⟨bn, bn⟩

∣∣∣∣∣∣∣∣∣ =
n∏

j=1

∥bj∥2 .

Hence, we obtain

⟨bi, bi⟩A =
∑

{i2,...in}⊂{1,2,...,n}

⟨bi, bi|bi2 , . . . , bin⟩ =
n∏

j=1

∥bj∥2 .

By our hypothesis, ∥bi∥2 = ∥bi∥2A =
n∏

j=1

∥bj∥2. This holds only if ∥bi∥ = 1 for all

i = 1, 2, . . . , n.
To sum up, we have proved that ⟨x, y⟩A = ⟨x, y⟩ if and only if A is an orthonormal

basis for X.

3. The higher dimensional case

Let us now consider the case where n+1 ≤ d = dim X < ∞. Let A := {a1, a2, . . . , ad}
be a set of linearly independent vectors in X. (What happens if we use only n vectors will
be discussed later, together with the case where d = ∞.) We define the following inner
product on X:

⟨x, y⟩A :=
∑

{i2,...in}⊂{1,2,...,n}

⟨x, y|ai2 , . . . , ain⟩.

Note that there are

(
d

n− 1

)
terms in the above sum. Analogous to Theorem 2.1, we

have the following theorem.

Theorem 3. Let A = {a1, a2, . . . , ad} ⊂ X be an orthogonal set with ∥ai∥ = α > 0 for all
i = 1, 2, . . . , d. Then ⟨x, y⟩A = 0 if and only if ⟨x, y⟩ = 0 for all x, y ∈ X.

Proof. Let Id := {1, 2, . . . , d}. For any I0 := {i2, . . . , in} ⊂ Id, let I1 := Id \ I0. Then,
we have

⟨x, y|ai2 , . . . ain⟩ =
∑
i∈I1

⟨x, ai⟩⟨ai, y⟩
∥ai∥2

∏
i∈I0

∥ai∥2

=

[
⟨x, y⟩ −

∑
i∈I0

⟨x, ai⟩⟨ai, y⟩
∥ai∥2

] ∏
i∈I0

∥ai∥2 .
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Summing over all subsets I0 ⊂ Id and using the assumption that ∥ai∥ = α for all
i = 1, 2, . . . n, we obtain

⟨x, y⟩A =
∑
I0⊂Id

[
⟨x, y⟩ − ⟨x, ai⟩⟨ai, y⟩

∥ai∥2

]
α2(n−1)

=
∑
I0⊂Id

α2(n−1)⟨x, y⟩ −
∑
I0⊂Id

∑
i∈I0

α2(n−1) ⟨x, ai⟩⟨ai, y⟩
α2

.

The first sum on the right hand side is equal to

(
d

n− 1

)
α2(n−1)⟨x, y⟩. For the second

sum, we observe that each expression ⟨x, ai⟩⟨ai, y⟩ occurs precisely
(
d− 1
n− 2

)
times for all

i ∈ Id.

Hence, by Parseval’s identity, the second sum is equal

(
d− 1
n− 2

)
α2(n−1)⟨x, y⟩. Therefore

we get

⟨x, y⟩A =

[(
d

n− 1

)
−
(
d− 1
n− 2

)]
α2(n−1)⟨x, y⟩ =

(
d− 1
n− 1

)
α2(n−1)⟨x, y⟩,

which gives us the desired conclusion.

Corollary 1. If A = {a1, a2, . . . , ad} is an orthonormal basis for X, then ⟨x, y⟩A =(
d− 1
n− 1

)
⟨x, y⟩ for all x, y ∈ X.

Remark 1. The converse of the above corollary does not hold. To give an example, let
d = dimX = 3 and n = 2. Let A = {a1, a2, a3} be linearly independent set in X. Suppose
that ⟨x, y⟩A = 2⟨x, y⟩ for all x, y ∈ X. We would like to check whether we have ∥ai∥ = 1
for i = 1, 2, 3 and ⟨ai, aj⟩ = 0 for i ̸= j. Notice that

⟨x, y⟩A =

3∑
i=1

⟨x, y|ai⟩ =
3∑

i=1

∣∣∣∣ ⟨x, y⟩ ⟨x, ai⟩
⟨ai, y⟩ ⟨ai, ai⟩

∣∣∣∣
for all x, y ∈ X. From the hypothesis, we have ⟨ai, aj⟩A = 2⟨ai, aj⟩ for i, j = 1, 2, 3, which
may be rewritten as

∥a1∥2 ∥a2∥2 − ⟨a1, a2⟩2 + ∥a1∥2 ∥a3∥2 − ⟨a1, a3⟩2 = 2 ∥a1∥2 ,
∥a1∥2 ∥a2∥2 − ⟨a1, a2⟩2 + ∥a2∥2 ∥a3∥2 − ⟨a2, a3⟩2 = 2 ∥a2∥2 ,
∥a1∥2 ∥a3∥2 − ⟨a1, a3⟩2 + ∥a2∥2 ∥a3∥2 − ⟨a2, a3⟩2 = 2 ∥a3∥2 ,

⟨a1, a2⟩ ∥a3∥2 − ⟨a1, a3⟩⟨a2, a3⟩ = 2⟨a1, a2⟩,
⟨a1, a3⟩ ∥a2∥2 − ⟨a1, a2⟩⟨a2, a3⟩ = 2⟨a1, a3⟩,
⟨a2, a3⟩ ∥a1∥2 − ⟨a1, a2⟩⟨a1, a3⟩ = 2⟨a2, a3⟩.
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Let A := ∥a1∥ , B := ∥a2∥ , C := ∥a3∥ , D := ⟨a1, a2⟩, E := ⟨a1, a3⟩, F := ⟨a2, a3⟩. Then

A2B2 −D2 +A2C2 − E2 = 2A2,

A2B2 −D2 +B2C2 − F 2 = 2B2,

A2C2 − E2 +B2C2 − F 2 = 2C2,

DC2 − EF = 2D,

EB2 −DF = 2E,

FA2 −DE = 2F.

Observe that A = B = C = 1, D = E = F = 0 satisfy the above equations simultaneously.
We shall see that there are other possible solutions with D,E, F ̸= 0.

Multiplying both sides in the last three equations by D,E, and F (respectively) and
rearranging the terms, we obtain

D2 + E2 = A2B2 +A2C2 − 2A2, (1)

D2 + F 2 = A2B2 +B2C2 − 2B2, (2)

E2 + F 2 = A2C2 +B2C2 − 2C2, (3)

C2D2 − 2D2 = DEF, (4)

B2E2 − 2E2 = DEF, (5)

A2F 2 − 2F 2 = DEF. (6)

From (1), (2), and (3), we get

D2 = A2B2 −A2 −B2 + C2, (7)

E2 = A2C2 −A2 +B2 − C2, (8)

F 2 = B2C2 +A2 −B2 − C2. (9)

From (4), (5), and (6), we get

(C2 − 2)D2 = (B2 − 2)E2 = (A2 − 2)F 2 = DEF. (10)

Substituting (7), (8), and (9) into (10), we obtain

(B2 − C2)(A2 +B2 + C2 − 4) = 0,

(A2 − C2)(A2 +B2 + C2 − 4) = 0,

(A2 −B2)(A2 +B2 + C2 − 4) = 0.

Now one may check that A = B = C = 4
3 , D + E + F = −2

3 satisfy the above equations
simultaneously. This tells us that A is not necessarily an orthonormal basis.
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We now come to the case where d = dim X = ∞. We assume that X is separable
and B := {ai : i = 1, 2, 3, . . . } is an orthogonal basis for X. Thus for all x, y ∈ X,

we have Parseval’s identity that
∞∑
i=1

⟨x, ai⟩⟨ai, y⟩
∥ai∥2

will converge to ⟨x, y⟩. Next, let A :=

{a1, a2, . . . , an}, where the vectors ai’s are the first n vectors in B. We define

⟨x, y⟩A :=
∑

{i2,...,in}⊂{1,2,...,n}

⟨x, y|ai2 , . . . , ain⟩

for all x, y ∈ X. Then we have the following theorem.

Theorem 4. For all x, y ∈ X, we have

⟨x, y⟩A =

[
n∑

i=1

⟨x, ai⟩⟨ai, y⟩
∥ai∥4

+ n
∞∑

i=n+1

⟨x, ai⟩⟨ai, y⟩
∥ai∥2

]
n∏

j=1

∥aj∥2 .

In particular, if ∥ai∥ = α for i = 1, 2, . . . , n then

⟨x, y⟩A = α2(n−1)

[
n∑

i=1

⟨x, ai⟩⟨ai, y⟩
α2

+ n
∞∑

i=n+1

⟨x, ai⟩⟨ai, y⟩
∥ai∥2

]
.

Proof. The proof is similar to the proof of Theorem 2.1 but this time we have

⟨x, y|ai2 , . . . , ain⟩ =

[
⟨x, ai1⟩⟨ai1 , y⟩

∥ai1∥
4 +

1

∥ai1∥
2

∞∑
i=n+1

⟨x, ai1⟩⟨ai1 , y⟩
∥ai∥2

]
n∏

j=1

∥aj∥2 ,

where {i1} = {1, 2, . . . , n} \ {i2, . . . , in}. Summing all these expression for all subsets
{i2, . . . , in} ⊂ {1, 2, . . . , n}, we obtain

⟨x, y⟩A =

[
n∑

i=1

⟨x, ai⟩⟨ai, y⟩
∥ai∥4

+

n∑
i=1

1

∥ai∥2
∞∑

i=n+1

⟨x, ai⟩⟨ai, y⟩
∥ai∥2

]
n∏

j=1

∥aj∥2 .

In particular, if ∥ai∥ = α for i = 1, 2, . . . , n, then we have

⟨x, y⟩A = α2(n−1)

[
n∑

i=1

⟨x, ai⟩⟨ai, y⟩
α2

+ n

∞∑
i=n+1

⟨x, ai⟩⟨ai, y⟩
∥ai∥2

]
as claimed.

Remark 2. Note that if ∥ai∥ = 1 for i = 1, 2, 3, . . . (that is, B is an orthonormal basis
for X), then the conclusion in the above theorem tells us that

⟨x, y⟩A =
n∑

i=1

⟨x, ai⟩⟨ai, y⟩+ n
∞∑

i=n+1

⟨x, ai⟩⟨ai, y⟩

for all x, y ∈ X.
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Corollary 2. Suppose that ∥ai∥ = α for i = 1, 2, . . . , n. For every x, y ∈ X, let x :=
xA+x⊥A and y := yA+y⊥A where xA and yA are the orthogonal projections of x and y on span
A (respectively), and x⊥A and y⊥A are their complements (respectively). If ⟨xA, yA⟩A = 0
and ⟨x⊥A, y⊥A⟩ = 0, then ⟨x, y⟩ = 0. Conversely, if ⟨xA, yA⟩ = 0 and ⟨x⊥A, y⊥A⟩ = 0, then
⟨x, y⟩A = 0.
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