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Abstract. Let G = (V(G), E(G)) be a graph with degree sequence (dl,dg, e ,dn>, where d; >

dy > -+ > d,,. The polynomial representation of G is given by fg(x Z % = Z apx”, where

ay, is the number of vertices of G having degree k for each i = 1,2,---n = A(G) In this paper,
we give the polynomial representation of the complement and line graph of a graph, the shadow
graph, complementary prism, edge corona, strong product, symmetric product, and disjunction of
two graphs.
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1. Introduction

Let G = (V(G), E(G)) be a graph on n vertices and let A(G) be the maximum degree
of G. If s1,89, -+ ,8, are the degrees of the vertices of G, where s; > s9 > -+ > s,
then the sequence (si,s2, - ,s,) is called the degree sequence of G. Here, s; = A(G).

The polynomial fg(x szl is called the polynomial representation of G. A degree

=1
sequence (s1, S2,...,Sy,) of nonnegative integers is said to be graphic if a simple graph

G with degree sequence (si,Sa2,...,s,) can be found (see [1]). Using the polynomial
representation of a graph, we can alternatively define a polynomial P(x) to be graphic if
there exists a graph G such that P(z) = fg(x). It is easy to verify not every polynomial
is graphic. The degree sequence of a graph had been investigated in [2], [3], [4], [5], [6],
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[9], and [12]). Erdds and Gallai in [4] obtained a necessary and sufficient condition for a
given polynomial to be graphic. The polynomial representations and degree sequences of
the the join, corona, lexicographic product, Cartesian product, and Tensor product of two
graphs had been obtained by Canoy et al. in [8]. These graphs were also investigated for
other graph parameters in previous studies (see [7], [10], and [11]).

In this present study, the authors endeavored to determine expressions for the poly-
nomial representations of the complement and line graph of a graph, shadow graph, com-
plementary prism, edge corona, strong product, symmetric difference, and disjunction of
two graphs.

2. Terminologies and Notations

Let G = (V(G), E(G)) be a simple undirected graph. The distance between two
vertices u and v of G, denoted by dg(u,v), is equal to the length of a shortest path
connecting u and v. Any path connecting v and v of length dg(u, v) is called a u-v geodesic.
The open neighborhood of a vertex v of G is the set Ng(v) = {u € V(G) : uwv € E(G)}
and its closed neighborhood is the set Ng[v] = Ng(v) U {v}. The open neighborhood of
a subset S of V(G) is the set Ng(S) = UyesNg(v) and its closed neighborhood is the
set Ng[S] = Ng(S) U S. The degree of v, denoted by dega(v), is equal to |[Ng(v)|. The
maximum degree of G, denoted by A(G), is equal to max{degz(v) : v € V(G)}. Suppose
A(G) = n. For each i = 1,2,---n, let a; be the number of vertices of G with degree

n
i > 0. Then the polynomial fg(z) = Z a;z’ is called the polynomial representation of G.
i=1
Equivalently, fa(z) = Z zNe @)l
veV(Q)

Let G and H be graphs. The complement of G, denoted by G is the graph with
V(G) = V(G) and vw € E(G) if and only if vw ¢ E(G). The line graph L(G) of G
is the graph with V(L(G)) = E(G) and ejes € E((L(G)) if and only if e; and ez have
a common vertex in G. The shadow graph D2(G) of G is the graph obtained by taking
two copies of G, say G and Ga, and joining each vertex u € V(G1) to the neighbors of
the corresponding vertex u’ € V(G3). The complementary prism GG is the graph formed
from the disjoint union of G and its complement G by adding a perfect matching between
corresponding vertices of G and G. For each v € V(G), let © denote the vertex in G
corresponding to v. In simple terms, the graph GG is formed from G U G by adding the
edge vv for every vertex v € V(G). The edge corona G ¢ H of graphs G and H is the
graph obtained by taking one copy of G and |E(G)| copies of H and joining each of the end
vertices u and v of every edge uv in G to every vertex of the copy H** of H (that is forming
the join ({u,v}) + H"" for each uv € E(G)). The strong product G X H of graphs G and
H is the graph with vertex set V(G) x V(H) and (u,v) is adjacent with (u/,v") whenever
[uu' € E(G) and v =] or [vv’ € E(H) and v = /] or [uv’ € E(G) and vv’ € E(H)]. The
symmetric difference G @® H of graphs G and H is the graph with vertex set V(G) x V(H)
and (u,v) is adjacent with (u’,v") whenever [uu’ € E(G)] or [vv' € E(H)] but not both.
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The disjunction GV H of graphs G and H is the graph with vertex set V(G) x V(H) and
(u,v) is adjacent with (u’,v") whenever uu' € E(G) or vv' € E(H).

3. Results

The first result gives the polynomial representation of the complement of a graph.
Theorem 1. Let G be a non-trivial graph of order n. Then fg(z) = 2" fa(2).

Proof. Let v € V(G). Then Ng(v) = {w € V(G) : w € V(G) \ Ng[v]}. This implies
that [Ng(v)| = n — [Ng(v)| — 1. It follows that

fole) = YD a0

veV(G)
= Y e
veV(G)
veV(Q)
= a:n*lf(;(l). ]
X

Theorem 2. Let G be a non-trivial graph of order n. If the degree sequence of G is
(di,ds,---dy), then the degree sequence of G is

n—d,—1,n—dy1—1,--- ,n—do—1,n—d; —1).

Proof. By Theorem 1,

o) = S
j=1

n
— E l,n—dj—l‘
J=1

Hence, the degree sequence of G is (n —d, — 1,m —dp_1 —1,--+ ,n —dy — 1). This proves
the assertion. O

Next, we give the polynomial representation of the line graph of a graph.

Theorem 3. Let G be a non-trivial connected graph. Then

1 S aNe@lHHNaWI,

weE(Q)
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Proof. Let e = uv € V(L(G)). Then |Npg)(e)| = [Ng(u)| + [Ng(v)| — 2. Tt follows
that

fL(G) () = Z 2INLe) (@)l

ecV(L(Q))
- Z 2!Ne(W)|+|Ng (v)|-2
weV (L(G))

_ iz S NN
weFE(G)

Corollary 1. Let G be a non-trivial r-regular connected graph of size p. Then

fre (@) = pa™ 2.
Proof. Since G is r-regular, |[Ng(v)| = r for all v € V(G). By Theorem 3, we have
frie(@) = 12 S aNe@HNaw)

T
weE(G)

— % Z 22

weE(G)
_ p$2'r’—2. H

Theorem 4. Let G be a connected graph of size p and let H any graph of order n. Then

faor(x) = fa(a™™) + p2® fu ().

Proof. Let v € V(G o H). If v € V(G), then Ngon(v) = Na(v) U [Uyeng )V (H™)].
If v e V(H®) for e = uw € E(G), then Ngor(v) = Nge(v) U {u,w}. Thus,

faom(z) = Z 2Naon ()]

veV (GoH)

— Z 2! Neomr (V)] + Z I Neom (V)]
veV(G) VeV (GoH\V(G)

— Z zNe@)+nING ()| Z Z ! Nae(v)[+2
veV(G) e€E(G)veV (He)

_ Z 2 DINa(v)] —I—p:E Z 2INu ()]
veV(G) veV (H)

= fo@") +pa®fu(z). O
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The following result is immediate from the above result:

Corollary 2. Let G be a connected graph of size p and let H be an r-reqular graph of

order n. Then

faor () = fa(z™) + pna™ 2.

In particular, faor, (z) = fo(z™ 1) + pna™tt.

Corollary 3. Let m and n be positive integers. Then
(i) fp,op, (1) = (m — 2)22"+2 £ 22"+ 4 (m — 1)[(n — 2)2* + 223] for m,n > 2;
(i1) fpoc, () = (m —2)x?T2 4 22" 4 (m — 1)na? form > 2 and n > 3; and
1) fo,.e0, (x) = mx + mnx* for m,n > 3.
O, 2n+2 4 >3

Proof. Clearly, |[E(P,)| =r—1,|E(Cs)| = s, fp.(z) =22+ (r —2)2? and fc,(z) = sz?
for positive integers r > 2 and s > 3. By Theorem 4, we find that (i), (i7), and (ii7)
hold. O

Theorem 5. Let G be a connected graph of size p and let H be any graph with degree
sequences (dy,dg,---dy) and (r1,re,---ry,), respectively. Then the terms of the degree
sequence of Go H are the elements of the set {(n+1)d; : 1 <i <mpuU{r;+2:1<j<n},
where p consecutive terms of the degree sequence are r; 4+ 2 for each j with 1 <1 <n.

m
Proof. The polynomial representations of G and H are, respectively, fg(z) = Z z%
. i=1
and fg(z) = Z x"7. By Theorem 4,

J=1

m

n
faom(z) = Z 2D 2 Z 7
=1 =
m

_ Z L 1)ds +pzn:xrj+2_

i=1 j=1

It follows that the terms of the degree sequence of G ¢ H are the elements of the set
{(n+1)d; : 1 <i<m}uU{r;+2:1<j <n}. Moreover, p consecutive terms of the
degree sequence are rj + 2 for each j with 1 < j <n. O

Theorem 6. Let G be a non-trivial connected graph and let G1 and G be copies of G in
the shadow graph D>(G). Then

fpa(c) (@) = 2fa(2?).
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Proof. Let v € V(G1) and let v’ be the vertex of G corresponding to v. Then
Np,(c)(v) = Ng, (v) U Ng, (v) = Np,(g) (V).
This implies that |Np, ) (v)| = [Np,)(v)| = 2|Ng(v)|. Thus,

@ = Y a0
veV(D2(G))

_ Z N2 () Z 2Dy ) (V)]

veV(Gr) V'€V (Ga)
— 9 22ING (v)]
veV(G)
= 2fa(a?).

Corollary 4. Let m and n be positive integers such that m > 2 and n > 3. Then
(4) fD2(Pm)(SE) =2(m — 2)334 + 4a2;
(i1) fpy(cn () = 2na*; and

222™ + 2ma?, where S, is a star of order m + 1.

(491) fDy(5p)(T)

Proof. The polynomial representations of P, Cy, and S,, are, respectively, fp, () =
(m — 2)z% + 2z, fe, (z) = nz?, and fs,, (v) = 2™ + ma. It follows from Theorem 6 that

IDy(p) () = 2fpm(a:2) =2(m— 2)m4 + 422,

Fpa(on (@) = 2fc, (%) = 2na’,
and

Ipa(s) (@) = 2fs,, (¢7) = 22*™ + 2ma”.

This proves the assertion. O

Theorem 7. Let G be a non-trivial connected graph. Then a € R is a zero of fp,(a) ()
if and only if a® is a zero of fg(x).

Proof. By Theorem 6, fp,(7) = 2fq(x?). Hence, if a is a zero of Iy (), then
2fc(a?) = 0. This implies that a? is a zero of fg(z).

Conversely, if a? is a zero of fg(x), then fp,g)(a) = 2fg(a®) = 0. Thus, a is a zero of
IDa(e) () O

Theorem 8. Let G be a non-trivial connected graph with degree sequence (dy,dsa,---dy).
Then the degree sequence of Da(G) is (2dy,2d1,2da,2da, -+, 2dy, 2d,,).
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Proof. Given the degree sequence (dy, da, - -

Hence, by Theorem 6,

[y () =2fc(x

—22952‘1

It follows that the degree sequence of Do(G) is (2d1,2dy, 2ds, 2dg, - - -

,2dy, 2dy,).

1449-1462 1455

-dy) of G, it follows that fg(z) = > 1 2%.

Theorem 9. Let G be a non-trivial connected graph of order n. Then

feal@) = wfa() + 2" fa().

Proof. Let v € V(G). Then

and
Nz ()

Thus, |[Noz(v)| = [Na(v)|+1 and |[Ng(0)| = (n—

fcé(x)

Neg(v) = Na(v) U {7}

INGlv]|)+1=n—

3 alVea)

peV(Gé)
Z Nea()l 4 Z 2! Nee (@)
veV(G) 5eV(G)
Z gNe@)+1 | Z n—|Ng(v
veV(G) eV (G)
T Z 2Ne@)| 4 4n Z 2~ Na (@)
veV (G vV (Q)

2fa() +x”fc<§>. s

Corollary 5. Let n be a positive integer. Then

(@) fp,p,(@) =22"""+(n
(i) fe,e, (@)

(iii) fg 3, () ="t +na" +

Proof. From Theorem 9 and the polynomial representations fp, (x) =

—2)2" 2 4+ (n

—2)3 + 222 forn > 2;

nz" 2 + na forn > 3; and

nx? 4+ x forn > 2.

= Nz@)U{v} ={z € V(G): 2z € V(G)\ Ng[v]} U{v}.

|Ng(v)|. Therefore,

(n —2)z% + 22,

fo, (x) =nz?, and fg, () = 2" + nx of P,, Cy, and S, respectively, we have

o7, () = 2l(n—2)a* + 20+ 2" [(n~2)

1
+2—] =22""
x

Ly (n—2)a™

24 (n—2)a3 + 222,
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1
fo.g, (@)= z(na?®) + x”(nﬁ) = nz""? 4 na,
and . .
fsngn(x) =z(z" + nz) + x"“(x—n + n;) =" 42" + na? + 2
This proves the assertion. ]

Theorem 10. Let G be a non-trivial connected graph with degree sequence (dy,da,- - dy,).
Then the terms of the degree sequence of GG are the elements of the set {d; +1:1<i <
ntU{n—d;:1<i<n}.

P
Proof. From the polynomial representation fg(x) = Z 2% of G and from Theorem 9,
i=1
we find that

faal@) = wfol@)+a"fo)

n

n
= xZ:Ud" —i—iL'nZJ?_di
i=1 i=1
n n
— Zxd¢+1 4 Z xn*di_
i=1 i=1

Therefore, the terms of the degree sequence of GG are exactly the elements of the set
{di+1:1<i<n}uU{n—-d;:1<i<n}. ]

Theorem 11. Let G and H be non-trivial connected graphs. Then

fowmu(z) = Z fr (aWNe@IF)INa @) — Z fe(aNr @1 INa @),
veV(G) peV (H)

Proof. Let (v,p) € V(GX H). Let D1 = Ng(v) x {p}, Da = {v} x Ng(p), and
D3 = Ng(v) x Ng(p). By definition of strong product of two graphs, it follows that
Negru((v,p)) = D1 U D2 U D3. Hence,

[Newu ((v,p))] = [Na(v)| + [Nu(p)| + [Na (0)||Nu (p)]-

Thus,

foxru(z) = Z 2! Nerw (v.p)]
(v,p)EV(GRH)

— Z 2! Ne@)+INu )|+ Ne (0)||[Nu ()]
(v,p)EV (GRH)

_ Z 2INa ()] Z 2(Nc@)|+1)Ne(p)
veV(G) peV (H)
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=Y 2Nl py (gNaIy,

veV(G)
Since
Z 2N ) +INu (P)[+Na()||[Nu (p)|  — Z 2/Nu )| Z 2Nz (P)+1)|NG ()]
(v,p)€V(GRH) pEV (H) veV (G)
— Z gNu @) £ (I Nu @)1
pEV(H)

it follows that fomp(x) = Z fr (aNe@IF) INa @) — Z fa(aNr@IHINa @)
veV(Q) peEV(H)

Corollary 6. Let G and H be non-trivial r1-reqular and ro-reqular connected graphs of
orders m and n, respectively. Then

fomb (JI) — mngiTretrire

Proof. Since G and H are, respectively, rj-regular and ry-regular graphs, fg(z) = ma™
and fy(x) = nz™. It follows that fg (2" 1) = na"2("+1, Thus, by Theorem 6,

N, N, 1
femu(e) = Y alNoWlfy (NI
veV(G)
— T inppriretre
veV(G)
= n gpritretrire
veV(G)

= mngitretrirz. g

Theorem 12. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively. Then

fGEBH(l'): Z xn|NG(v)|fH($m72|NG(v)\)'
veV(GQ)

Proof. Let (v,p) € V(G @ H). From the definition of G & H, it follows that
Neen((v,p)) = [Na(v) x (V(H) \ Nu(p)] U [(V(G) \ Na(v)) x Nu(p)].

Hence,
[Newr((v,p))| = [Na(v)|(n — [N (p)]) + |Nu(p)|(m — [Na(v)]).
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Therefore,

faan(x)

Z x‘NG@H(’va”

(v,p)EV(GDH)

Z 2!Ne@)|(n=[Nu (p))+|Nu (p)| (m—|Ne (v)])
(v,p)EV(GBH)
Z Z 2Ne@)(n=INu (p)))+|Nu (p)| (m—|Na (v)])
veV(G) peV (H)
Z 2"NG ()] Z 2(Mm=2[Ng(v)])|Nu (p)|

veV(G) peEV(H)
S aNel gy (m2Ne) [
veV(G)

1458

Corollary 7. Let G and H be non-trivial of orders m and n, respectively. If G is r-reqular,

then

feon(x) =ma" fr(z™ 7).

Proof. Since G is r-regular, |[Ng(v)| = r for all v € V(G). Thus, from Theorem 12, we

have

foon() = Y aNel fy(zm=2INa @)

veV(Q)
_ Z xner(xm—%)
veV(G)

— mxner(xm—%)_ n

Theorem 13. Let G and H be non-trivial connected graphs of orders m and n, respec-
twely. If (di,da,---dm) and (q1,q2,- - qn) are the degree sequences of G and H, re-
spectively, then the terms of the degree sequence of G & H are the elements of the set
{nd; + (m —2d;)qj : 1 <i<m and 1 <j <n}.

n
Proof. From Theorem 12 and the polynomial representation fr(z) = Z x%, we have

fean(z)

Jj=2

S anINo py (gm-2Na )
veV(G)

m n
_ § :xndi Z x(m—Qdi)qj
i=1 j=1
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m n

i=1 j=1
m n
— Z Z xndiJr(mdei)qj .
i=1 j=1
It follows that the terms of the degree sequence of G @ H are the elements of the set
{nd; + (m —2d;)gj : 1 <i<mand 1 <j <n}. O

Theorem 14. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively. Then

favu (@) = fa(@") fu(2™).
Proof. Let (v,p) € V(G V H). From the definition of G V H, it follows that

Nava((v,p)) = (Na(v) x V(H)) U (V(G) X Nu(p))-
Hence,
[Nava ((v,p))| = n|Na(v)| +m|Nu(p)l.
Therefore,

fova(xz) = Z 2Nav (v.p)]
(v,p)€V(GVH)

_ Z 2N (©)[+m|Nu (p)]
(v,p)EV(GVH)

= Y el Y pmiNuG)

veV(Q) peV (H)

= Z 2"Ne @) £ (™)

veV(QG)
= fe@")fu(2™). O

Corollary 8. Let n and m be positive integers. Then

() Frmvr, (@) = (m — 2)(n — 22420 1 2(m — 220 4 2(n — 2)a2min 4 ggmtn
form,n > 2;

(i) fp,vo, (x) = n(m — 2)z?mT20 4 2nx?™+ for m > 2 and n > 3; and

(iii) fe,,ve, (x) = mnaz?™ 2 for mn > 3.

Proof. For any k > 2 and r > 3, fp (x) = (k — 2)z% + 2z and fc, (x) = r2?. By
Theorem 14, we have

fe.ve, () = fp,(z")fp, (™)
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= [(m—2)(=")* +2(z")][(n — 2)(&™)* +2(2™)]
= (m—2)(n—2)z? 2" 4 2(m — 2)a™ 2" 4 2(n — 2)2?™ " 4 4g™m N

feave, () = fp,(2")fc, (™)
[(m —2)(z™)? + 2(z™)] (n(z"™)?)
)

(m 2 $2m+2n +2n$2m+n

and

fenve, () = fo, (") fc,(x™)
(m(z™)?)(n(z™)?)

2m—+2n 0

= mnx

Theorem 15. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively. Then a € R is a zero of favm(x) if and only if a™ is a zero of fa(x) or a™ is a

zero of fr(x).

Proof. By Theorem 14, foypm)(z) = fa(2")fu(z™). Suppose a is a zero of foy ()
Then fovm(a) = fo(a™)fy(a™) = 0. This implies that fg(a™) = 0 or fy(a™) = 0.
Hence, a™ is a zero of fg(z) or a™ is a zero of fy(x).

Conversely, suppose a” is a zero of fg(x) or a™ is a zero of fy(x). Then, clearly,

faviy(a) = fa(a™) fu(a™) = 0, showing that a is a zero of faoym)(z). O

Theorem 16. Let G and H be non-trivial connected graphs of orders m and n, respec-
twely. If (di,da,---dm) and (q1,q2,- - qn) are the degree sequences of G and H, re-
spectively, then the terms of the degree sequence of GV H are the elements of the set
{nd;i+mgq; : 1 <i<mand1 <j<n}.

Proof. From Theorem 14,
fevu(z) = fa(@")fu(z™)

m n

- ey am
i=1 j=1
m n

- S

i=1 j=1
m n

- Sy,
i=1 j=1

It follows that the terms of the degree sequence of G V H are the elements of the set
{ndi+mgq; :1<i<mand1l<j<n} O
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4. Conclusion and Recommendation

The polynomial representations of some graphs have been obtained in this study. The
authors were not able to describe the degree sequence of some graphs resulting from some
operations. However, for particular graphs, the degree sequence of the graphs may be
obtained. Determining real roots or zeros of the polynomial representation of a graph, if
they exist, can be an aspect for further investigation.
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