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Abstract. Let G = (V (G), E(G)) be a graph with degree sequence ⟨d1, d2, · · · , dn⟩, where d1 ≥

d2 ≥ · · · ≥ dn. The polynomial representation of G is given by fG(x) =

n∑
i=1

xdi =

∆(G)∑
k=1

akx
k, where

ak is the number of vertices of G having degree k for each i = 1, 2, · · ·n = ∆(G). In this paper,
we give the polynomial representation of the complement and line graph of a graph, the shadow
graph, complementary prism, edge corona, strong product, symmetric product, and disjunction of
two graphs.
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1. Introduction

Let G = (V (G), E(G)) be a graph on n vertices and let ∆(G) be the maximum degree
of G. If s1, s2, · · · , sn are the degrees of the vertices of G, where s1 ≥ s2 ≥ · · · ≥ sn,
then the sequence ⟨s1, s2, · · · , sn⟩ is called the degree sequence of G. Here, s1 = ∆(G).

The polynomial fG(x) =

n∑
i=1

xsi is called the polynomial representation of G. A degree

sequence ⟨s1, s2, . . . , sn⟩ of nonnegative integers is said to be graphic if a simple graph
G with degree sequence ⟨s1, s2, . . . , sn⟩ can be found (see [1]). Using the polynomial
representation of a graph, we can alternatively define a polynomial P (x) to be graphic if
there exists a graph G such that P (x) = fG(x). It is easy to verify not every polynomial
is graphic. The degree sequence of a graph had been investigated in [2], [3], [4], [5], [6],
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[9], and [12]). Erdős and Gallai in [4] obtained a necessary and sufficient condition for a
given polynomial to be graphic. The polynomial representations and degree sequences of
the the join, corona, lexicographic product, Cartesian product, and Tensor product of two
graphs had been obtained by Canoy et al. in [8]. These graphs were also investigated for
other graph parameters in previous studies (see [7], [10], and [11]).

In this present study, the authors endeavored to determine expressions for the poly-
nomial representations of the complement and line graph of a graph, shadow graph, com-
plementary prism, edge corona, strong product, symmetric difference, and disjunction of
two graphs.

2. Terminologies and Notations

Let G = (V (G), E(G)) be a simple undirected graph. The distance between two
vertices u and v of G, denoted by dG(u, v), is equal to the length of a shortest path
connecting u and v. Any path connecting u and v of length dG(u, v) is called a u-v geodesic.
The open neighborhood of a vertex v of G is the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}
and its closed neighborhood is the set NG[v] = NG(v) ∪ {v}. The open neighborhood of
a subset S of V (G) is the set NG(S) = ∪v∈SNG(v) and its closed neighborhood is the
set NG[S] = NG(S) ∪ S. The degree of v, denoted by degG(v), is equal to |NG(v)|. The
maximum degree of G, denoted by ∆(G), is equal to max{degG(v) : v ∈ V (G)}. Suppose
∆(G) = n. For each i = 1, 2, · · ·n, let ai be the number of vertices of G with degree

i ≥ 0. Then the polynomial fG(x) =
n∑

i=1

aix
i is called the polynomial representation of G.

Equivalently, fG(x) =
∑

v∈V (G)

x|NG(v)|.

Let G and H be graphs. The complement of G, denoted by G is the graph with
V (G) = V (G) and vw ∈ E(G) if and only if vw /∈ E(G). The line graph L(G) of G
is the graph with V (L(G)) = E(G) and e1e2 ∈ E((L(G)) if and only if e1 and e2 have
a common vertex in G. The shadow graph D2(G) of G is the graph obtained by taking
two copies of G, say G1 and G2, and joining each vertex u ∈ V (G1) to the neighbors of
the corresponding vertex u′ ∈ V (G2). The complementary prism GG is the graph formed
from the disjoint union of G and its complement G by adding a perfect matching between
corresponding vertices of G and G. For each v ∈ V (G), let v denote the vertex in G
corresponding to v. In simple terms, the graph GG is formed from G ∪ G by adding the
edge vv for every vertex v ∈ V (G). The edge corona G ⋄ H of graphs G and H is the
graph obtained by taking one copy of G and |E(G)| copies of H and joining each of the end
vertices u and v of every edge uv in G to every vertex of the copy Huv of H (that is forming
the join ⟨{u, v}⟩+Huv for each uv ∈ E(G)). The strong product G⊠H of graphs G and
H is the graph with vertex set V (G)× V (H) and (u, v) is adjacent with (u′, v′) whenever
[uu′ ∈ E(G) and v = v′] or [vv′ ∈ E(H) and u = u′] or [uu′ ∈ E(G) and vv′ ∈ E(H)]. The
symmetric difference G⊕H of graphs G and H is the graph with vertex set V (G)×V (H)
and (u, v) is adjacent with (u′, v′) whenever [uu′ ∈ E(G)] or [vv′ ∈ E(H)] but not both.
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The disjunction G∨H of graphs G and H is the graph with vertex set V (G)×V (H) and
(u, v) is adjacent with (u

′
, v

′
) whenever uu

′ ∈ E(G) or vv
′ ∈ E(H).

3. Results

The first result gives the polynomial representation of the complement of a graph.

Theorem 1. Let G be a non-trivial graph of order n. Then fG(x) = xn−1fG(
1
x).

Proof. Let v ∈ V (G). Then NG(v) = {w ∈ V (G) : w ∈ V (G) \ NG[v]}. This implies
that |NG(v)| = n− |NG(v)| − 1. It follows that

fG(x) =
∑

v∈V (G)

x|NG(v)|

=
∑

v∈V (G)

xn−|NG(v)|−1

= xn−1
∑

v∈V (G)

x−|NG(v)|

= xn−1fG(
1

x
).

Theorem 2. Let G be a non-trivial graph of order n. If the degree sequence of G is
⟨d1, d2, · · · dn⟩, then the degree sequence of G is

⟨n− dn − 1, n− dn−1 − 1, · · · , n− d2 − 1, n− d1 − 1⟩.

Proof. By Theorem 1,

fG(x) =
n∑

j=1

x|NG(v)|

=

n∑
j=1

xn−dj−1.

Hence, the degree sequence of G is ⟨n− dn − 1, n− dn−1 − 1, · · · , n− d1 − 1⟩. This proves
the assertion.

Next, we give the polynomial representation of the line graph of a graph.

Theorem 3. Let G be a non-trivial connected graph. Then

fL(G)(x) =
1

x2

∑
uv∈E(G)

x|NG(u)|+|NG(v)|.
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Proof. Let e = uv ∈ V (L(G)). Then |NL(G)(e)| = |NG(u)| + |NG(v)| − 2. It follows
that

fL(G)(x) =
∑

e∈V (L(G))

x|NL(G)(e)|

=
∑

uv∈V (L(G))

x|NG(u)|+|NG(v)|−2

=
1

x2

∑
uv∈E(G)

x|NG(u)|+|NG(v)|.

Corollary 1. Let G be a non-trivial r-regular connected graph of size p. Then

fL(G)(x) = px2r−2.

Proof. Since G is r-regular, |NG(v)| = r for all v ∈ V (G). By Theorem 3, we have

fL(G)(x) =
1

x2

∑
uv∈E(G)

x|NG(u)|+|NG(v)|

=
1

x2

∑
uv∈E(G)

x2r

= px2r−2.

Theorem 4. Let G be a connected graph of size p and let H any graph of order n. Then

fG⋄H(x) = fG(x
n+1) + px2fH(x).

Proof. Let v ∈ V (G ⋄H). If v ∈ V (G), then NG⋄H(v) = NG(v) ∪ [∪u∈NG(v)V (Huv)].
If v ∈ V (He) for e = uw ∈ E(G), then NG⋄H(v) = NHe(v) ∪ {u,w}. Thus,

fG⋄H(x) =
∑

v∈V (G⋄H)

x|NG⋄H(v)|

=
∑

v∈V (G)

x|NG⋄H(v)| +
∑

v∈V (G⋄H)\V (G)

x|NG⋄H(v)|

=
∑

v∈V (G)

x|NG(v)|+n|NG(v)| +
∑

e∈E(G)

∑
v∈V (He)

x|NHe (v)|+2

=
∑

v∈V (G)

x(n+1)|NG(v)| + px2
∑

v∈V (H)

x|NH(v)|

= fG(x
n+1) + px2fH(x).
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The following result is immediate from the above result:

Corollary 2. Let G be a connected graph of size p and let H be an r-regular graph of
order n. Then

fG⋄H(x) = fG(x
n+1) + pnxr+2.

In particular, fG⋄Kn(x) = fG(x
n+1) + pnxn+1.

Corollary 3. Let m and n be positive integers. Then

(i) fPm⋄Pn(x) = (m− 2)x2n+2 + 2xn+1 + (m− 1)[(n− 2)x4 + 2x3] for m,n ≥ 2;

(ii) fPm⋄Cn(x) = (m− 2)x2n+2 + 2xn+1 + (m− 1)nx4 for m ≥ 2 and n ≥ 3; and

(iii) fCm⋄Cn(x) = mx2n+2 +mnx4 for m,n ≥ 3.

Proof. Clearly, |E(Pr)| = r− 1, |E(Cs)| = s, fPr(x) = 2x+(r− 2)x2 and fCs(x) = sx2

for positive integers r ≥ 2 and s ≥ 3. By Theorem 4, we find that (i), (ii), and (iii)
hold.

Theorem 5. Let G be a connected graph of size p and let H be any graph with degree
sequences ⟨d1, d2, · · · dm⟩ and ⟨r1, r2, · · · rn⟩, respectively. Then the terms of the degree
sequence of G⋄H are the elements of the set {(n+1)di : 1 ≤ i ≤ m}∪{rj+2 : 1 ≤ j ≤ n},
where p consecutive terms of the degree sequence are rj + 2 for each j with 1 ≤ i ≤ n.

Proof. The polynomial representations of G and H are, respectively, fG(x) =
m∑
i=1

xdi

and fH(x) =

n∑
j=1

xrj . By Theorem 4,

fG⋄H(x) =
m∑
i=1

x(n+1)di + px2
n∑

j=1

xrj

=
m∑
i=1

x(n+1)di + p
n∑

j=1

xrj+2.

It follows that the terms of the degree sequence of G ⋄ H are the elements of the set
{(n + 1)di : 1 ≤ i ≤ m} ∪ {rj + 2 : 1 ≤ j ≤ n}. Moreover, p consecutive terms of the
degree sequence are rj + 2 for each j with 1 ≤ j ≤ n.

Theorem 6. Let G be a non-trivial connected graph and let G1 and G2 be copies of G in
the shadow graph D2(G). Then

fD2(G)(x) = 2fG(x
2).
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Proof. Let v ∈ V (G1) and let v′ be the vertex of G2 corresponding to v. Then

ND2(G)(v) = NG1(v) ∪NG2(v
′) = ND2(G)(v

′).

This implies that |ND2(G)(v)| = |ND2(G)(v
′)| = 2|NG(v)|. Thus,

fD2(G)(x) =
∑

v∈V (D2(G))

x|ND2(G)(v)|

=
∑

v∈V (G1)

x|ND2(G)(v)| +
∑

v′∈V (G2)

x|ND2(G)(v
′)|

= 2
∑

v∈V (G)

x2|NG(v)|

= 2fG(x
2).

Corollary 4. Let m and n be positive integers such that m ≥ 2 and n ≥ 3. Then

(i) fD2(Pm)(x) = 2(m− 2)x4 + 4x2;

(ii) fD2(Cn)(x) = 2nx4; and

(iii) fD2(Sm)(x) = 2x2m + 2mx2, where Sm is a star of order m+ 1.

Proof. The polynomial representations of Pm, Cn, and Sm are, respectively, fPm(x) =
(m− 2)x2 + 2x, fCn(x) = nx2, and fSm(x) = xm +mx. It follows from Theorem 6 that

fD2(Pm)(x) = 2fPm(x
2) = 2(m− 2)x4 + 4x2,

fD2(Cn)(x) = 2fCn(x
2) = 2nx4,

and
fD2(Sm)(x) = 2fSm(x

2) = 2x2m + 2mx2.

This proves the assertion.

Theorem 7. Let G be a non-trivial connected graph. Then a ∈ R is a zero of fD2(G)(x)
if and only if a2 is a zero of fG(x).

Proof. By Theorem 6, fD2(G)(x) = 2fG(x
2). Hence, if a is a zero of fD2(G)(x), then

2fG(a
2) = 0. This implies that a2 is a zero of fG(x).

Conversely, if a2 is a zero of fG(x), then fD2(G)(a) = 2fG(a
2) = 0. Thus, a is a zero of

fD2(G)(x).

Theorem 8. Let G be a non-trivial connected graph with degree sequence ⟨d1, d2, · · · dn⟩.
Then the degree sequence of D2(G) is ⟨2d1, 2d1, 2d2, 2d2, · · · , 2dn, 2dn⟩.
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Proof. Given the degree sequence ⟨d1, d2, · · · dn⟩ of G, it follows that fG(x) =
∑n

i=1 x
di .

Hence, by Theorem 6,

fD2(G)(x) = 2fG(x
2) = 2

n∑
i=1

x2di .

It follows that the degree sequence of D2(G) is ⟨2d1, 2d1, 2d2, 2d2, · · · , 2dn, 2dn⟩.

Theorem 9. Let G be a non-trivial connected graph of order n. Then

fGG(x) = xfG(x) + xnfG(
1

x
).

Proof. Let v ∈ V (G). Then

NGG(v) = NG(v) ∪ {v}

and
NGG(v) = NG(v) ∪ {v} = {z ∈ V (G) : z ∈ V (G) \NG[v]} ∪ {v}.

Thus, |NGG(v)| = |NG(v)|+1 and |NGG(v)| = (n−|NG[v]|)+1 = n−|NG(v)|. Therefore,

fGG(x) =
∑

p∈V (GG)

x|NGG(p)|

=
∑

v∈V (G)

x|NGG(v)| +
∑

v∈V (G)

x|NGG(v)|

=
∑

v∈V (G)

x|NG(v)|+1 +
∑

v∈V (G)

xn−|NG(v)|

= x
∑

v∈V (G)

x|NG(v)| + xn
∑

v∈V (G)

x−|NG(v)|

= xfG(x) + xnfG(
1

x
).

Corollary 5. Let n be a positive integer. Then

(i) fPnPn
(x) = 2xn−1 + (n− 2)xn−2 + (n− 2)x3 + 2x2 for n ≥ 2;

(ii) fCnCn
(x) = nxn−2 + nx3 for n ≥ 3; and

(iii) fSnSn
(x) = xn+1 + nxn + nx2 + x for n ≥ 2.

Proof. From Theorem 9 and the polynomial representations fPn(x) = (n− 2)x2 + 2x,
fCn(x) = nx2, and fSn(x) = xn + nx of Pn, Cn, and Sn, respectively, we have

fPnPn
(x) = x[(n−2)x2+2x]+xn[(n−2)

1

x2
+2

1

x
] = 2xn−1+(n−2)xn−2+(n−2)x3+2x2,
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fCnCn
(x) = x(nx2) + xn(n

1

x2
) = nxn−2 + nx3,

and

fSnSn
(x) = x(xn + nx) + xn+1(

1

xn
+ n

1

x
) = xn+1 + nxn + nx2 + x.

This proves the assertion.

Theorem 10. Let G be a non-trivial connected graph with degree sequence ⟨d1, d2, · · · dn⟩.
Then the terms of the degree sequence of GG are the elements of the set {di + 1 : 1 ≤ i ≤
n} ∪ {n− di : 1 ≤ i ≤ n}.

Proof. From the polynomial representation fG(x) =

p∑
i=1

xdi of G and from Theorem 9,

we find that

fGG(x) = xfG(x) + xnfG
1

x
)

= x
n∑

i=1

xdi + xn
n∑

i=1

x−di

=
n∑

i=1

xdi+1 +
n∑

i=1

xn−di .

Therefore, the terms of the degree sequence of GG are exactly the elements of the set
{di + 1 : 1 ≤ i ≤ n} ∪ {n− di : 1 ≤ i ≤ n}.

Theorem 11. Let G and H be non-trivial connected graphs. Then

fG⊠H(x) =
∑

v∈V (G)

fH(x|NG(v)|+1)x|NG(v)| =
∑

p∈V (H)

fG(x
|NH(p)|+1)x|NH(p)|.

Proof. Let (v, p) ∈ V (G ⊠ H). Let D1 = NG(v) × {p}, D2 = {v} × NH(p), and
D3 = NG(v) × NH(p). By definition of strong product of two graphs, it follows that
NG⊠H((v, p)) = D1 ∪D2 ∪D3. Hence,

|NG⊠H((v, p))| = |NG(v)|+ |NH(p)|+ |NG(v)||NH(p)|.

Thus,

fG⊠H(x) =
∑

(v,p)∈V (G⊠H)

x|NG⊠H(v,p)|

=
∑

(v,p)∈V (G⊠H)

x|NG(v)|+|NH(p)|+|NG(v)||NH(p)|

=
∑

v∈V (G)

x|NG(v)|
∑

p∈V (H)

x(|NG(v)|+1)|NG(p)|
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=
∑

v∈V (G)

x|NG(v)|fH(x|NG(v)|+1).

Since ∑
(v,p)∈V (G⊠H)

x|NG(v)|+|NH(p)|+|NG(v)||NH(p)| =
∑

p∈V (H)

x|NH(p)|
∑

v∈V (G)

x(|NH(p)|+1)|NG(v)|

=
∑

p∈V (H)

x|NH(p)|fG(x
|NH(p)|+1),

it follows that fG⊠H(x) =
∑

v∈V (G)

fH(x|NG(v)|+1)x|NG(v)| =
∑

p∈V (H)

fG(x
|NH(p)|+1)x|NH(p)|.

Corollary 6. Let G and H be non-trivial r1-regular and r2-regular connected graphs of
orders m and n, respectively. Then

fG⊠H(x) = mnxr1+r2+r1r2 .

Proof. Since G andH are, respectively, r1-regular and r2-regular graphs, fG(x) = mxr1

and fH(x) = nxr2 . It follows that fH(xr1+1) = nxr2(r1+1). Thus, by Theorem 6,

fG⊠H(x) =
∑

v∈V (G)

x|NG(v)|fH(x|NG(v)|+1)

=
∑

v∈V (G)

xr1nxr1r2+r2

= n
∑

v∈V (G)

xr1+r2+r1r2

= mnxr1+r2+r1r2 .

Theorem 12. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively. Then

fG⊕H(x) =
∑

v∈V (G)

xn|NG(v)|fH(xm−2|NG(v)|).

Proof. Let (v, p) ∈ V (G⊕H). From the definition of G⊕H, it follows that

NG⊕H((v, p)) = [NG(v)× (V (H) \NH(p)] ∪ [(V (G) \NG(v))×NH(p)].

Hence,
|NG⊕H((v, p))| = |NG(v)|(n− |NH(p)|) + |NH(p)|(m− |NG(v)|).
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Therefore,

fG⊕H(x) =
∑

(v,p)∈V (G⊕H)

x|NG⊕H(v,p)|

=
∑

(v,p)∈V (G⊕H)

x|NG(v)|(n−|NH(p)|)+|NH(p)|(m−|NG(v)|)

=
∑

v∈V (G)

∑
p∈V (H)

x|NG(v)|(n−|NH(p)|)+|NH(p)|(m−|NG(v)|)

=
∑

v∈V (G)

xn|NG(v)|
∑

p∈V (H)

x(m−2|NG(v)|)|NH(p)|

=
∑

v∈V (G)

xn|NG(v)|fH(xm−2|NG(v)|).

Corollary 7. Let G and H be non-trivial of orders m and n, respectively. If G is r-regular,
then

fG⊕H(x) = mxnrfH(xm−2r).

Proof. Since G is r-regular, |NG(v)| = r for all v ∈ V (G). Thus, from Theorem 12, we
have

fG⊕H(x) =
∑

v∈V (G)

xn|NG(v)|fH(xm−2|NG(v)|)

=
∑

v∈V (G)

xnrfH(xm−2r)

= mxnrfH(xm−2r).

Theorem 13. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively. If ⟨d1, d2, · · · dm⟩ and ⟨q1, q2, · · · qn⟩ are the degree sequences of G and H, re-
spectively, then the terms of the degree sequence of G ⊕ H are the elements of the set
{ndi + (m− 2di)qj : 1 ≤ i ≤ m and 1 ≤ j ≤ n}.

Proof. From Theorem 12 and the polynomial representation fH(x) =
n∑

j=2

xqj , we have

fG⊕H(x) =
∑

v∈V (G)

xn|NG(v)|fH(xm−2|NG(v)|)

=

m∑
i=1

xndi
n∑

j=1

x(m−2di)qj
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=

m∑
i=1

n∑
j=1

xndix(m−2di)qj

=
m∑
i=1

n∑
j=1

xndi+(m−2di)qj .

It follows that the terms of the degree sequence of G ⊕ H are the elements of the set
{ndi + (m− 2di)qj : 1 ≤ i ≤ m and 1 ≤ j ≤ n}.

Theorem 14. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively. Then

fG∨H(x) = fG(x
n)fH(xm).

Proof. Let (v, p) ∈ V (G ∨H). From the definition of G ∨H, it follows that

NG∨H((v, p)) = (NG(v)× V (H)) ∪ (V (G)×NH(p)).

Hence,
|NG∨H((v, p))| = n|NG(v)|+m|NH(p)|.

Therefore,

fG∨H(x) =
∑

(v,p)∈V (G∨H)

x|NG∨H(v,p)|

=
∑

(v,p)∈V (G∨H)

xn|NG(v)|+m|NH(p)|

=
∑

v∈V (G)

xn|NG(v)|
∑

p∈V (H)

xm|NH(p)|

=
∑

v∈V (G)

xn|NG(v)|fH(xm)

= fG(x
n)fH(xm).

Corollary 8. Let n and m be positive integers. Then

(i) fPm∨Pn(x) = (m− 2)(n− 2)x2m+2n + 2(m− 2)xm+2n + 2(n− 2)x2m+n + 4xm+n

for m,n ≥ 2;

(ii) fPm∨Cn(x) = n(m− 2)x2m+2n + 2nx2m+n for m ≥ 2 and n ≥ 3; and

(iii) fCm∨Cn(x) = mnx2m+2n for m,n ≥ 3.

Proof. For any k ≥ 2 and r ≥ 3, fPk
(x) = (k − 2)x2 + 2x and fCr(x) = rx2. By

Theorem 14, we have

fPm∨Pn(x) = fPm(x
n)fPn(x

m)
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= [(m− 2)(xn)2 + 2(xn)][(n− 2)(xm)2 + 2(xm)]

= (m− 2)(n− 2)x2m+2n + 2(m− 2)xm+2n + 2(n− 2)x2m+n + 4xm+n,

fPm∨Cn(x) = fPm(x
n)fCn(x

m)

= [(m− 2)(xn)2 + 2(xn)](n(xm)2)

= n(m− 2)x2m+2n + 2nx2m+n,

and

fCm∨Cn(x) = fCm(x
n)fCn(x

m)

= (m(xn)2)(n(xm)2)

= mnx2m+2n.

Theorem 15. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively. Then a ∈ R is a zero of fG∨H(x) if and only if an is a zero of fG(x) or am is a
zero of fH(x).

Proof. By Theorem 14, fG∨H)(x) = fG(x
n)fH(xm). Suppose a is a zero of fG∨H)(x).

Then fG∨H)(a) = fG(a
n)fH(am) = 0. This implies that fG(a

n) = 0 or fH(am) = 0.
Hence, an is a zero of fG(x) or a

m is a zero of fH(x).
Conversely, suppose an is a zero of fG(x) or am is a zero of fH(x). Then, clearly,

fG∨H)(a) = fG(a
n)fH(am) = 0, showing that a is a zero of fG∨H)(x).

Theorem 16. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively. If ⟨d1, d2, · · · dm⟩ and ⟨q1, q2, · · · qn⟩ are the degree sequences of G and H, re-
spectively, then the terms of the degree sequence of G ∨ H are the elements of the set
{ndi +mqj : 1 ≤ i ≤ m and 1 ≤ j ≤ n}.

Proof. From Theorem 14,

fG∨H(x) = fG(x
n)fH(xm)

=
m∑
i=1

xndi
n∑

j=1

xmqj

=

m∑
i=1

n∑
j=1

xndixmqj

=
m∑
i=1

n∑
j=1

xndi+mqj .

It follows that the terms of the degree sequence of G ∨ H are the elements of the set
{ndi +mqj : 1 ≤ i ≤ m and 1 ≤ j ≤ n}.
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4. Conclusion and Recommendation

The polynomial representations of some graphs have been obtained in this study. The
authors were not able to describe the degree sequence of some graphs resulting from some
operations. However, for particular graphs, the degree sequence of the graphs may be
obtained. Determining real roots or zeros of the polynomial representation of a graph, if
they exist, can be an aspect for further investigation.
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