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Abstract. The main purpose of this article is to introduce the probabilistic type 2 poly-Bernoulli
polynomials under the condition that Y is a random variable. This means that we will consider
the probabilistic extension of the type 2 poly-Bernoulli polynomials and study to obtain some new
results. Furthermore, we also define the probabilistic unipoly-Bernoulli polynomials and numbers
attached to p, and investigate their interesting basic properties. Based on these new definition,
we derive some meaningful formulae of probabilistic type 2 poly-Bernoulli polynomials and prob-
abilistic unipoly-Bernoulli polynomials and numbers attached to p.
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1. Introduction

The Bernoulli polynomials are defined by

o
tn
et = § By(x)—, (see[l, 2, 7, 15, 27, 30],[12, 19, 20, 28)). (1)
mn.

n=0

t
et —1

For k € Z, the polylogarithm function is defined by

Lix(z Z nk’

‘ 8

(|lz| < 1), (seel4, 5, 24],[23)). (2)

For k € Z, Kim defined the polyexponential function eg(z), which is given by

ex(x) = Z m (see[6]). 3)
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When k£ = 1, we note that

er(z) =) =€ -1 (4)

As we all know, the poly-Bernoulli polynomials are defined by Kaneko. It is given by

Lip(1—e™?) > t"
1_767256121t = ZPBﬁLk) (ZU)E, (566[5]). (5)
When x = 0, we note that PB;, k) = PB(k)( 0) are called the poly-Bernoulli numbers.

In 2019, Kim considered the definition of type 2 poly-Bernoulli polynomials. It is given
by

er(log(1+1))
W ™ Z /B *'7 (see[6, 22]). (6)
When z = 0, we note that Bn = ff)(o) are called the type 2 poly-Bernoulli numbers.
Kim also studied the unipoly function attached to p. Its definition as follows.
o~ p(n)
(zlp) = )= 2", (k €Z), (see[6]). (7)
n=1

Later, he defined the unipoly-Bernoulli polynomials attached to p by

1
P up(1 —e~'|p)e” ZB (see[6]). (8)

Recently, Kim studied the probabilistic poly-Bernoulli polynomials associated with Y.
Assume that Y is a random variable such that the moment generating function of Y given
by

ZEY” (<), ([6, 14, 16)). (9)

exist for some 7 > 0. Then the definition of the probabilistic poly-Bernoulli polynomials
are given by

M(E[GWW = iggwm)i, (see[3, 8, 9, 18, 31, 32]).  (10)

When k = 1, it is obvious that B = = (=1)"BY (x). This type of polynomials is a
new extension. Inspired by this, the aim of our paper is to explore the probabilistic type
2 poly-Bernoulli polynomials and obtain some new results. Meanwhile, the probabilistic
unipoly-Bernoulli polynomials are also another research.
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The Stirling number of the first kind are defined by
2)n =Y Si(n,k)z*, (see[10, 28, 29]). (11)

Where (z)g =1, (), =2(z—1)---(z —n+1),(n>1).
From (11), we can easily know

k'(log (1+1)) Zsl n, k: (see[10, 11, 29]). (12)

The Stirling number of the second kind are defined by
= Zn: Sa(n,k)(x)r, (see[l7, 21, 26]). (13)
From (13), we also derive the generating function as follows.
1 (e — 1)k ZSQ n, k (see[21, 26]). (14)

In 2024, Kim defined the probabilistic Stirling number of the second kind associated
with Y are given by

l €Yt— k:OO " ﬁ see .
=0 = L T (o 0,181 (15)

The Bell polynomials are defined by

ot > t"
e 1) = ZBeln(:E)m, (see[13, 16, 22, 23, 25]). (16)

2. probabilistic type 2 poly-Bernoulli polynomials

Let (Y;)j>1 be a sequence of mutually independent copies of the random variable Y,
and let
SOZO,Sk:Y1+}/§+"'+Yk,(kEN). (17)

In this section we consider probabilistic type 2 poly-Bernoulli polynomials.

R B = "
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When z = 0, ,Br(Lk’Y) 0) = /ng’y)

are called probabilistic type 2 poly-Bernoulli numbers.
From (18), we get

> a0 @)y = A D e (19
n=0
ky)t £\, = [m)] t™
-SSR (e i,

n

-S S ()i

Therefore, by comparing the coefficients on both sides of (

19), we have the following
theorem.

Theorem 1. Forn,k >0, we have

=3 (Z) B (@) {’Z} .
m=0 k=0 Y

From (18), we have

Zﬁ”) - el ) e B (20)
> (log(1+t
; Z(g(—l)'))
IOLIELTS S T
AR Si(j+1,4) ¢
_ZBI ]E%;Zk 1 lj+1 )jl
n Jj+1

Thus, by comparing the coefficients on both sides of (20), we have the following theorem.
Theorem 2. Forn,j > 0, we have

B 1,2
0w =33 ()R o0

7=0 i=1
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Now, we observe that

n E[eYt]n+l -1

m=0
From (21), we have
Z Ble™] 509(11 1) eljgfﬂ% j ?) (B[ —1) (22)

Eyt — (E[ Yt}n—l—l 1)

K
(ZBW )
! I

=0

51#1 ( 1) — 51#1 Dl

[+1 I

w\r—n @F\H

On the other hand,

(B = Y By (23

Hence, comparing the coefficients on both sides of (22) and (23), we have the following
theorem.

Theorem 3. Forn > 0, we have

- _ Bz(}rﬁy) (n+1) - BI(H/)
2 ElSn] = I+ 1

From (3), we have

(log(1 +t))*
(k — 1)lkm

(log(1 +t))k+1
Kk + 1)m

em(log(1+1t)) = (24)

M 10

e
I

0
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On the other hand,

o0 l
em(log(l1+1t)) = Z Bl(m’y)% (Bl —1])

(o) n m B tn
= (Z <7> 55( Yy - @gm’y)) ok

2341

(25)

Therefore, by comparing the coefficients on both sides of (24) and (25), we have the

following theorem.

Theorem 4. Forn,k > 0, we have

m—1
P (k+1)
Let Y be the Poisson random variable with parameter o > 0, then we have

ek‘(log(l + t)) YT _ €k(l09(1 + t)) az(et—1)
Berg—1 Pl = e ¢
_ a(et - 1) ek(lo.g(l + t))eax(et—l)
B a(et —1) ea(etfl)*l

Z (k O‘f *1) eax(ezfl)
]l ea et—1) -1

*Zﬁ(k |ZO‘BZ < _1)
i j(k‘)t] Zzal 1Bl SQ m l)i
7=0 m=0 [=0

sk (S (A EY = s, iz k1,
0, ifn<k+1
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From (18) and (26), we have the following theorem.

Theorem 5. Let Y be the Poisson random variable with parameter o, we have
@ = 3035 (1)l B m. 0,
m=0 (=0

From (18), we have

Z BEY) (a4 1) e’fg; %(% j ?) (E[e¥)* E[e""] (27)

> [ > m
_ (kY), Nt myt
=> B )y Y EYT
=0

m=0
o n n kY o m
:ZZ<Z>B} )(a)E[Y s
n=0 [=0 )
From (18), we also have
> t t
> B (@) = 3 BY Bl (28)
n=0 n=0
=Y B S Bl
n! m)!
=0 m=0
o n n kY . m
= (Z>B§ )E[Sa]ﬁ.
n=0 [=0 )

Therefore, by (27) and (28), we have the following theorem.

Theorem 6. For any a € Z and n,a > 0, we have

Bék,Y)(a + 1) _ Bék’y)(()é) — Z <7> (Bl(k’y)(a)E[Yn_l] - Bl(k,Y)E[Sg"bD .
=0

3. The probabilistic unipoly-Bernoulli polynomials

In this section, we give the definition of the probabilistic unipoly-Bernoulli polynomials

attached to p as follows.
oo tn

(L= EE ) = 3 B @) (29)
n=0
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Ifx=0, B(k Y) — B(k’y)(O) are called the probabilistic unipoly-Bernoulli numbers.

n?p
Particularly, if p(n) = 1, then Bffiy) = V) (x).
From (29)
1 _ 1 2 P(m)(1 —eH)™
- 1—et —
1— Ele 7] we(l—elp) = 7 Ele71] mzl mh (30)
B t 1 X p(m) (1 —eH)m |
1—FEle Yt m§—:1 mk mt
. 1 = p(m)m! —
=Y B (=173 > Tzsg(l,m)(—l) il
7=0 m=1 l=m
o) i oo 141 _
1 I So(l+1,m)(—1)F1m ¢
, J g! mk [+1 I!
=0 1=0 m=1
co n I+1 n
:ZZ n\p m)(m_1)!(_1)n—m+1S2(l+17m)BY v
e £\ mk-1 I+1  har

Therefore, by compring the coefficients on both sides of (29) and (30), we have the following
theorem.

Theorem 7. Forn,k >0, we have

n I+1
- 1! i1 92(l4+1,m)
kY n—m )
By =22 ( )mk () B

=0 m=1

Let Y be the Poisson random variable with parameter o > 0. Then we have

(1 . 67t|p za(et—1) ZB(k Y) ea(e_tfl)) (31)

(o9 n 00 m al(e—t _ 1)[

_ kY kY

S B - 3 B S e
n=0 m=0 =0

= Z Ba(ml,pr) (l-)n' Z Bq(?];’y) (x)% Z al Z SQ(%, l)( 1) ﬁ
n=0 m=0 =0 i=l
00 " o n 7 n LY tn

=S @5 -2 S (1)1t @)
n=0 n=0 i=0 [=0
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On the other hand

. 0 —t 11
up(1 — e~t|p)e me*”:Zp(m 1—et ZBel e 1) (32)

" p(j — i) olgl _jyii r
Z A Beli(ﬂs)i (—1)3_24_”52(”7]')5-

Therefore, by comparing the coefficients on both sides of (31) and (

32), we have the
following theorem.

Theorem 8. Let Y be the Poisson random variable with parameter a(> 0). Then we have

n J
p a T™n ’
BN (2 Z(“ ()2 1y 52nJ+ZZ< ) 01855, 1) BV (2).
7j=11i=0 J =0 [=0
From (29), we have
tn > l
_ (k)1 —Yi@

ZB(” )= S B (Ble ) (33)

0o kY tl o) . gm
=SB )ﬁZ(—l) ElYi + Yo+ - + Y,

=0 " m=0 m!
o0 n tn

= Z<—1>m(”)BmpE[s;"] §
n=0m=0 m ’ n

Therefore, by compring the coefficients on bosides (33), we have the following theorem.
Theorem 9. For a,n > 0 and o € Z, we have

n

B @) = S0 (a1 ) B, s

m=0

Let Y be the Bernoulli random variable with probability of success A. Then we have

7;)37%}/) (x)%r: = A(eil)uk(l —e 'p) (A(e™" = 1) +1))" (34)
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m=0
_ 1 oo i Iﬂ . g Z
= A(e*t _ 1) ;; IF (Z 1 A ( 1)
B co i B l@ L .
= ;;( 1) I <Z Z>A ( 1)
oo i+1
= P(l) T il .
_;;(_1)llk<2_l+l> l(e 1)
»3 ! ) z 11— n tn
:;lzl(_l)lpl(k)ll<i—l+1)A l; Sy(n.d) -
oo n i+l p(l) . y .
= ZZ <_1)l+an(Z)lfl(x)i,lAl S(n, Z)E
n=0i=0 [=1 !

Therefore, by compring the coefficients on both sides of (34), we have the following theo-
rem.

Theorem 10. Let Y be the Bernoulli random variable with probability of success A, then

we have
n 1+1

=> > (-1 z+np ()1-1 ()i A" Sa(n, 4).

=0 =1

4. Conclusion

In this paper, we present a probabilistic version of the type 2 poly-Bernoulli polynomi-
als associated with a random variable Y satisfying suitable moment conditions. We call it
probabilistic type 2 poly-Bernoulli polynomials. We study some properties of such poly-
nomials and obtain relevant results. More specifically, we derived an exact expression for

,]i’y(x), and establish a relation between the type 2 poly-Bernoulli numbers and the Stir-
ling number of the first kind, and obtain a explicit formula of B&k’y) (), In the case where
Y is the Poisson variable with parameter a. Similarly, we define the unipoly-Bernoulli
polynomials attached to p. Then we show the explicit expression of Bln’cj]}; (z) and other
results by skilful calculations. As a next step in our research, we will study this probability
type of polynomials more deeply so that give better and generalizable results.
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