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Abstract. Sangaku problems are traditional Japanese geometrical puzzles, often displayed in reli-
gious temples, that have intrigued mathematicians for centuries. This study aims to generalize the
Equal Incircles Theorem, extending Angela Drei’s proof to N -circles, by applying the trigonomet-
ric method alongside foundational mathematical tools, including mathematical induction, Heron’s
formula, and the telescoping product. A generalized equation for N circles based on the Equal
Incircles Theorem is derived through explicit mathematical formulation and characterization. The
findings deepen our understanding of geometric relationships, highlight the historical significance
of Sangaku problems, and offer potential advancements for future engineering applications, math-
ematics education, and research in mathematical history.
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1. Introduction

Sangaku are wooden tablets inscribed with various geometrical problems and devoted
to Shinto shrines and Buddhist temples, as shown in Figure 1, during the Japanese Edo
period (1603-1868 CE) this is a book: [2]. The historical significance of this tradition
was largely unrecognized by scholars until it was brought to light through the publication
Japanese Temple Problems: Sangaku. This source discovered by an article in a collection:
[5] notes that Japanese temple geometry often predated the discovery of several well-known
Western geometric theorems, such as the Katayamahiko Temple Problem, Meiserinji Tem-
ple Problem, and the Equal Incircles Theorem. Subsequently, the geometrical principles
underlying Japanese temple architecture were documented in the book Sacred Mathemat-
ics: Japanese Temple Geometry this is a book: [4]. Following this, an investigation led
by R. J. Hosking [see also [7]] as a technical report, addressed a traditional mathematical
approach to a Sangaku problem from Okayama prefecture, as shown in Figure 2.

However, these Sangaku problems still lack modern alternative mathematical methods
to gain deeper insights. Recent investigations have reported that these ancient problems
have contributed to modern mathematical methods, particularly in the field of discrete
geometry. Notable examples include the geometric inversion method [see also [10]] a
journal article, Euclidean geometry [see also [6]] a journal article, and so on.
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Figure 1: A Sangaku board hanging under the
roof of a temple in Japan.

Figure 2: Sangaku Problems at Katayamahiko
Shrine.

Equal Incircles Theorem
Let C be a point. Assume points Mi, for i = 1, 2, . . . , N (N > 3), lie on a line not

passing through C. Assume further that the incircles of triangles M1CM2, M2CM3, . . . ,
MN−1CMN all have equal radii. Then the same is true for the triangles M1CM3, M2CM4,
. . . , MN−2CMN , and also for the triangles M1CM4, M2CM5, . . . , MN−3CMN , and so
on.

Figure 3: The image depicts the diagram associated with
the Equal Incircles Theorem.

Several Sangaku problems from Japan remain unsolved or lack characterization in
mathematical theorems that used to explicit mathematical formulations, including the
“Equal Incircle Theorem” [see also [3]] as technical reports, which presents a configuration
of multiple equal circles inscribed within the same number of sub-triangles, with larger
equal circles inscribed within the larger triangles, as shown in Figure 3. Subsequently,
Angela Drei’s proof provides initial mathematical formulations for two Sangaku problems
with equal incircles, employed to characterize the geometrical relationships expressed in
terms of trigonometric forms.

So, this paper aims to develop a mathematical framework that generalizes the mul-
tiple incircles problem, enabling non-equal radii, by extending from the Equal Incircles
Theorem. The study also explores three setups: (1) two tangent circles within a triangle
in Section 1; (2) an analysis of the inclusion of incircles in a sectorial triangular configura-
tion in Section 2; (3) the analysis of the inclusion of incircles and ex-circles in a sectorial
triangular configuration in Section 3.
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2. Main results

This section has formulated an equation that describes generalized adjacent triangles
with inscribed circles in the initial part and ex-circles in the remaining part, based on An-
gela Drei’s proof. This formulation is extended to other scenarios, including perpendicular
and angle-bisector cases.

Section 1 Two Tangent Circles in a Triangle

Theorem 1 Let a triangle △AB1C1 with vertices A, B1, and C1. Inside this triangle,
there are two circles. Let circles O1 (green) and O2 (blue) as the incircles of the triangles
∆AB1B2 and ∆AC1B2 with radii r1 and r2 respectively. Circle O1 is tangent to the sides
AB1, AB2 and B1C1 at points F1, E1, and D1 respectively, and circle O2 is tangent to
the sides AC1, AB2, and B2C2 at points E2, F2 and D2 respectively by specifying that,

(i) |B1C1| = a, |AB1| = c, |C1A| = b.

(ii) |AF1| = x2, |F1B1| = x1, |AE2| = y1, |D2B2| = x3, |E2C1| = y2

(iii) ∠AB1C1 = B, ∠AC1B1 = C, and ∠B1AC1 = A

(iv) semi-perimeter of AB1B2 triangle : s1 = x1 + x3 + y1

(v) semi-perimeter of AC1B2 triangle : s2 = x3 + y1 + y2

(vi) semi-perimeter of ABC triangle : s = a+b+c
2 = x1 + y3 + y2 + x3

And then,

r1
r2

=
tan B

2 · (s1 − (x3 + y1))

tan C
2 · (s2 − (x3 + y1))

Figure 4: The image depicted the Sangaku Two Circles
Problem.

Proof. Let us begin to consider the radius of two incircles (green and blue), using the
Incircle of a Triangle formulation. We get,

r1 =
[AB1B2]

s1
(1)

r2 =
[AB2C1]

s2
(2)
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Divided the Equation (1) by Equation (2). Then,

r1
r2

=
[AB1B2]

[AC1B2]
· s2
s1

(3)

From the area-based ratio, we can formulate the area proportion of two sub-triangles
∆AB1B2 and ∆AC1B2 depending on its bases.

[AB1B2]

[AC1B2]
=

(s1 − x2)

(s2 − y1)
(4)

Substituting Equation (3) into Equation (4) and we arrive at

r1
r2

=
s2
s1

· (s1 − x2)

(s2 − y1)
(5)

This equation is straightforward; to derive in terms of bisector-angle trigonometry.

tan(
B

2
) =

r1
s1 − (y1 + x3)

, tan(
C

2
) =

r2
s2 − (y1 + x3)

Hence,

tan B
2

tan C
2

=
r1
r2

· (s2 − (y1 + x3))

(s1 − (y1 + x3))
⇔ r1

r2
=

tan B
2 · (s1 − (x3 + y1))

tan C
2 · (s2 − (x3 + y1))

Suppose the biggest right triangle, ∆AC1B1 , obtained a perpendicular line from vertex
A. In that case, this scenario can extend to the scope of mathematical formulation that
describes two tangent circles in a triangle with a perpendicular line.

Corollary 1 (Perpendicular triangle scenario)
Consider a triangle △AB1C1 with vertices A, B1, and C1. Inside this triangle, there

are three inscribed circles. Let O1 (green), O2 (blue), and O3 (light gray) be the incircles
of triangles △AB1B2, △AC1B2, and △AB1C1 with radii r1, r2, and r respectively. Circle
O1 is tangent to sides AB1, AB2 and B1B2 at points F1 and E1, and D1 respectively, and
circle O2 is tangent to sides AC1, AB2 and C1B2 at points E2, F2 and D2 respectively.
Circle O3 is tangent to sides AB1, AC1, and B1C1 at points T1, T2, and T3, respectively
such that the following conditions hold:

(i) B1A ⊥ C1A.

(ii) AB2 ⊥ B1C1.

And then,

AB2 =
√

(s1 − x2)(s2 − y1)

Proof. We know that the incenter of circle O lies on the line AB2, with points B2 and
T1 coinciding in this case. Therefore, AT1IT2 forms a square, as all its sides are equal to
the radius of the circle O. It follows that

b+ c = 2r + a

Consider the incircles ∆AB1B2 and ∆AC1B2 can express the connection between
incircles radius and side AB1, influencing useful mathematical formulation after combined
for each other.
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Figure 5: The image depicts the Sangaku Two
Circles Problem, illustrating the perpendicular
line AB2.

Figure 6: The image depicts the Sangaku Two
Circles Problem featuring the inscribed circles
O.

2(r1 + r2) +AB1 +AC1 = B1B2 +AB2 + C1B2 +AB2

Further simplifying, we get:

AB1 = r1 + r2 + r (6)

We derived the right-hand side of the main formulation but needed to show that the
left-hand side of the equation is equal to the right-hand side, demonstrating the equality
between both expressions. According to the similar triangle theorem, and consider the
triangle ∆AB1B2 ∼ ∆AB2C1, which implies the following.

B1B2

AB1
=

AB1

B2C1
=⇒ AB2

1 = B1B2 ·B2C1 (7)

Substituting Equation (6) into Equation (7) and we arrive at

AB2
2 = (B1B2) · (C1B2) = (x1 + x3 + y1 − x2) · (x3 + y2) = (s1 − x2)(s2 − y1)

Therefore,

AB2 =
√

(s1 − x2)(s2 − y1)

Consider a triangle ∆AC1B1, where a bisector line is drawn from vertex A to the
opposite side. Within this configuration, we explored this condition that used to describe
two circles that are tangent to each other and tangent to two sides of the triangle with
the bisector line.

Corollary 2 (Triangle angle bisector scenario)
Consider a triangle ∆AB1C1 with vertices A, B1, and C1. Inside this triangle, there

are two circles. Let the circles O1 (green) and O2 (blue) as the incircles of the triangles
∆AB1B2 and ∆AC1B2 with radii r1 and r2 respectively. Circle O1 is tangent to the sides
AB1, AB2 and B1C1 at points F1, E1, and D1 respectively, and circle O2 is tangent to the
sides AC1, AB2, and B2C2 at points E2, F2 and D2 respectively such that the following
conditions hold:

(i) ∠B1AB2 = ∠C1AB2 = θ

(ii) The cevian AB2 internal bisects the angle ∠B1AC1
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And then,

s2 − y1
s2 − x3

=
s1 − x2

s1 − (x3 + y1 − x2)

Figure 7: The image depicts the Sangaku Two Circles
Problem, illustrating the angle-bisecting scenario.

Proof. According to the angle-bisector theorem in the triangle ∆AB1C1 so that

x1 + x2
y1 + y2

=
x1 + x3 + y1 − x2

x3 + y2

Therefore,

s2 − y1
s2 − x3

=
s1 − x2

s1 − (x3 + y1 − x2)

The next section is inspired by the American Invitational Mathematics Examination
2018 Problem 13 [see also [1]] as a technical report. This problem is the best sample to
point out the extended scope of this study. However, it obtained a new mathematical
formulation that can describe the minimum area of a triangle, which contains two incir-
cles centered in the base of the triangle. The relation can be expressed in the form of
trigonometry.

Corollary 3 (Area minimum on bisecting triangle angle scenario)
Consider a triangle △AB1C1 with vertices A, B1, and C1. Inside this triangle, there

are two circles. Denote the circles O1 (green) and O2 (blue) as the incircles of the triangles
∆AB1B2 and ∆AC1B2 with radii r1 and r2 respectively. Circle O1 is tangent to the sides
AB1, AB2 and B1C1 at points F1, E1, and D1 respectively, and circle O2 is tangent to the
sides AC1, AB2, and B2C2 at points E2, F2 and D2 respectively such that the following
conditions hold:

(i) The cevian AB2 internal bisects the angle ∠B1AC1 and the angle ∠I1AI2.

And then, the minimum area of the triangle AI1I2 is:

(s− a)(s− b)(s− c)

a

Proof. Assume that the angle ∠AB2B1 = δ, and that we have drawn BI1 and CI2,
which bisect the angles ∠AB1C1 and ∠AC1B1 respectively.

∡AB1I1 = ∡I1B1C1 =
B

2
, ∡AC1I2 = ∡I2C1B1 =

C

2
, ∡AI1B1 = 90◦ +

δ

2
,
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Figure 8: This image presents the line AB2

internally bisecting the angles ∠B1AC1 and
∠I1AI2.

Figure 9: This image illustrates multiple lines
bisecting angles within this configuration.

∡AB2C1 = 180◦ − δ, ∡AI2C1 = 180◦ − δ

2
, ∡I1AI2 = α+ β

Next, using the sine law is important for deriving relationships between the sides of
the triangle and the relevant angles in this configuration:

AI1 =
sin
(
B
2

)
sin
(
90◦ + δ

2

) · c (5)

AI2 =
sin
(
C
2

)
sin
(
180◦ − δ

2

) · b (6)

Substituting the Equation (5) and (6) into the Area of Triangle Trigonometry formu-
lation.

[AI1I2] =
1

2
·AI1 ·AI2 · sin

(
A

2

)
=

1

2
· b · c ·

sin
(
A
2

)
· sin

(
B
2

)
· sin

(
C
2

)
sin
(
90◦ + δ

2

)
· sin

(
180◦ − δ

2

)
And then,

[AI1I2] =
b · c · sin(A2 ) · sin(

B
2 ) · sin(

C
2 )

sin δ

noting that 1 ≤ 1
sin δ and sin(A2 ) = ±

√
1−cosA

2 . We deduce the minimum area of

triangle AI1I2 from the following inequality establishes a lower bound.

[AI1I2] ≥ b · c ·

(√
(1− cosA)(1− cosB)(1− cosC)

8

)
(7)

We applied the Law of Cosines to the concyclic angles. This is an important point be-
cause it reduces the trigonometric calculations involving cosines to a relationship between
the sides of the triangle.

1− cosA =
(a− b+ c)(a+ b− c)

2bc
, (8)

1− cosB =
(b+ c− a)(b+ a− c)

2ca
, (9)

1− cosC =
(b+ c− a)(a+ c− b)

2ab
. (10)
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Substituting Equations (8), (9), and (10) into Equation (7). Therefore, the minimum
area of the triangle AI1I2 is:

(s− a)(s− b)(s− c)

a

Section 2 Generalization of Angela Drei’s Proof-Inspired Analysis of
Inclusion In- in a Sectorial Triangular Configuration

Theorem 2 Let a triangle △AB1Bn+1 with rays ABu from vertex A. For u ∈
{1, . . . , n}, suppose that Ou is the u-th inscribed circle with radii ru in the triangle
ABuBu+1. It holds that Ou is touch to ABu, ABu+1, and BuBu+1 at Fu, Eu and Du

respectively. Given the lengths AEu, and AFu be xu, and yu respectively, where su is the
semi-parameter of triangle ABuBu+1. Then,

r1
rn

=
sn
s1

·
n∏

i=2

(
si−1 − xi
si − yi−1

)

Figure 10: The image illustrates the approach to the Generalized Sangaku Problem for
N -circles.

Proof. Consider the statement P (n) defined as:

P (n) =
rn−1

rn
=

sn
sn−1

·
(
sn−1 − xn
sn − yn−1

)
(11)

where it is known from Equation (11) that P (n) holds true for all positive integers n.
Substituting the values from n = 2 to n = n into the equation, we obtain:

n∏
i=2

P (i) =

(
r1
r2

)(
r2
r3

)
· · ·
(
rn−1

rn

)
=

(
s2
s1

)(
s3
s2

)
· · ·
(

sn
sn−1

)
·

n∏
i=2

(
si−1 − xi
si − yi−1

)
Further simplifying. Therefore,
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r1
rn

=
sn
s1

·
n∏

i=2

(
si−1 − xi
si − yi−1

)
Remark 1. This is a remark about the telescoping product from Equation (X), which

presented the inscribed radii fractions is shown, generalized to the independent variables
j and k for all j, k ∈ {2, . . . , n}. Therefore,

rk
rj+1

=
sj+1

sk
·
j+1∏
o=k

(
so − xo+1

so+1 − yo

)
.

Section 3 Generalization of Angera Drei’s Proof-Inspired Analysis of
Inclusion In- and Ex-Circles in a Sectorial Triangular Configuration

Theorem 3 Let a triangle △AB1Bn+1 with extended rays ABu from vertex A. For
u ∈ {1, . . . , n}, suppose that Ou is the u-th inscribed circle with radii ru in the triangle
ABuBu+1, and contains O′

u is the escribed circle with radii Ru that are tangent to the
common base BnBn+1 by supposing the angle ∠ABiBi+1 is set to Bi−1. Then,

n∏
i=1

ri
Ri

= tan

(
B

2

)
· tan

(
C

2

)

Figure 11: The image illustrates the approach to the Generalized Sangaku Problem for
N -inscribe and escribed circles.

Proof 1. By trigonometric formulations for bisecting angles,

sin

(
A

2

)
=

√
(s− b)(s− c)

bc
,

cos

(
A

2

)
=

√
s(s− a)

bc
,
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tan

(
A

2

)
=

√
(s− b)(s− c)

s(s− a)
.

Applying Heron’s formula, the expression can be written as follows the relationship
between any consecutive angles B is given by:

tan

(
B

2

)
· tan

(
B1

2

)
=

√
(s−B1B2)(s−AB1)(s−AB1)(s−AB2)

s2(s−AB2)(s−B1B2)
=

r1
R1

(12)

Similarly, this mathematical formulation allows us to repeat angle terms for each sub-
stitution in Equation (12):

r2
R2

= tan

(
180◦ −B1

2

)
· tan

(
B2

2

)
,

r3
R3

= tan

(
180◦ −B2

2

)
· tan

(
B3

2

)
,

...

rn
Rn

= tan

(
180◦ −Bn−1

2

)
· tan

(
C

2

)
.

Upon multiplying these previous n equations, the final product is derived as follows:

n∏
i=1

ri
Ri

= tan

(
B

2

)
· tan

(
C

2

)
·
n−1∏
i=1

tan

(
180◦ −Bi

2

)
and simplifying using the tangent identity, we deduce:

n∏
i=1

ri
Ri

= tan

(
B

2

)
· tan

(
C

2

)

3. Discussions and Conclusions

By extending the Equal Incircles Theorem, this paper aims to develop a mathematical
framework that generalizes the multiple incircles problem, allowing for non-equal radii.
This study enhances the understanding of the Equal Incircles Theorem based on the
generalized Sangaku problem.

In Section 1, this paper revealed the relationship between the fraction of sub-circles
in terms of trigonometry for both initial angles (B,C). Although the numerator and
denominator are similar in form, they differ in the initial angles and the semi-perimeter of
the triangle involving two sub-circles. When generalized to N sub-circles within the same
triangle, separated by cevians AB2, the result revealed that the fraction between any two
sub-inscribed circles radii forms a telescoping product, as described in Section 2.

Also, this paper explores other generalized cases, illustrating the relationship between
N sub-inscribed circles and sub-escribed circles, as shown in Figure 9. Our findings reveal
that this formulation differs significantly from other sections, as the product of their
relation provides meaningful interpretations. These relationships are directly tied to the
radius of the largest circumcircle within the same triangle.
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On the other hand, the study considers the scenario of perpendicular triangles, as
discussed in Corollary 1, presenting the sum of the radii of all circles in these configurations.
This case guides us toward understanding the perpendicular scenario. At the same time,
our findings also consider the angle-bisector case, a general concept frequently encountered
in problem-solving across many sources.

This finding demonstrates a novel approach with applications in many fields, such as
mathematical education, particularly through the development of new geometry teaching
materials [see also [9]] as a technical report. Additionally, it offers potential for the pro-
gression of optimization methods [[8]] is a journal article and research in mathematical
history.
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