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1. Introduction

Zadeh [12] first proposed the idea of fuzzy sets. The theory of fuzzy sets has several
applications in real-life situations, and many scholars have researched fuzzy set theory.
After introducing the concept of fuzzy sets, several research studies were conducted on
the generalizations of fuzzy sets. The integration between fuzzy sets and some uncertainty
approaches, such as soft sets and rough sets, has been discussed in [1–3]. The new tech-
nology allows very complex inferences about variations on a theme to be anticipated and
fixed in a program.  Lukasiewicz logic, which is the logic of the  Lukasiewicz t-norm, is a
non-classical and many-valued logic. It was originally defined in the early 20th century
by  Lukasiewicz as a three-valued logic. Iampan [7] introduced a new algebraic structure
called UP-algebra. Somjanta et al. [11] and Guntasow et al. [5] applied fuzzy set theory
in UP-algebras. Dokkhamdang et al. [4] introduced the notion of fuzzy UP-subalgebras
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with thresholds of UP-algebras. The concepts of UP-algebras (see [7]) and BCC-algebras
(see [9]) are the same concept, as shown by Jun et al. [8] in 2022. In this publication and
following investigations, our research team will refer to it as BCC rather than UP out of
respect for Komori, who first characterized it in 1984.

In this paper, using the idea of  Lukasiewicz t-norm, we construct the concept of ε-
 Lukasiewicz fuzzy sets based on a given fuzzy set and apply it to BCC-algebras. We define
the concepts of ε- Lukasiewicz fuzzy BCC-subalgebras and investigate several properties.
We provide conditions for an ε- Lukasiewicz fuzzy set to be an ε- Lukasiewicz fuzzy BCC-
subalgebra. We discuss the characterizations of ε- Lukasiewicz fuzzy BCC-subalgebras.
We construct three kinds of subsets, so-called ∈-set, q-set, and O-set, and we find the
conditions under which they can be BCC-subalgebras.

2. Preliminaries

The concept of BCC-algebras (see [9]) can be redefined without the condition (2.6) as
follows:

An algebra X = (X, ∗, 0) of type (2, 0) is called a BCC-algebra (see [6]) if it satisfies
the following conditions:

(∀x, y, z ∈ X)((y ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z)) = 0) (2.1)

(∀x ∈ X)(0 ∗ x = x) (2.2)

(∀x ∈ X)(x ∗ 0 = 0) (2.3)

(∀x, y ∈ X)(x ∗ y = 0 = y ∗ x ⇒ x = y) (2.4)

After this, we assign X instead of a BCC-algebra (X, ∗, 0) until otherwise specified.
We define a binary relation ≤ on X as follows:

(∀x, y ∈ X)(x ≤ y ⇔ x ∗ y = 0) (2.5)

In X, the following assertions are valid (see [7]).

(∀x ∈ X)(x ≤ x) (2.6)

(∀x, y, z ∈ X)(x ≤ y, y ≤ z ⇒ x ≤ z) (2.7)

(∀x, y, z ∈ X)(x ≤ y ⇒ z ∗ x ≤ z ∗ y) (2.8)

(∀x, y, z ∈ X)(x ≤ y ⇒ y ∗ z ≤ x ∗ z) (2.9)

(∀x, y, z ∈ X)(x ≤ y ∗ x, in particular, y ∗ z ≤ x ∗ (y ∗ z)) (2.10)

(∀x, y ∈ X)(y ∗ x ≤ x ⇔ x = y ∗ x) (2.11)

(∀x, y ∈ X)(x ≤ y ∗ y) (2.12)

(∀a, x, y, z ∈ X)(x ∗ (y ∗ z) ≤ x ∗ ((a ∗ y) ∗ (a ∗ z))) (2.13)

(∀a, x, y, z ∈ X)(((a ∗ x) ∗ (a ∗ y)) ∗ z ≤ (x ∗ y) ∗ z) (2.14)

(∀x, y, z ∈ X)((x ∗ y) ∗ z ≤ y ∗ z) (2.15)
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(∀x, y, z ∈ X)(x ≤ y ⇒ x ≤ z ∗ y) (2.16)

(∀x, y, z ∈ X)((x ∗ y) ∗ z ≤ x ∗ (y ∗ z)) (2.17)

(∀a, x, y, z ∈ X)((x ∗ y) ∗ z ≤ y ∗ (a ∗ z)) (2.18)

Definition 1. [7] A nonempty subset S of X is called a BCC-subalgebra of X if it satisfies
the following properties:

(∀x, y ∈ S)(x ∗ y ∈ S) (2.19)

A fuzzy set [12] in a nonempty set X is defined to be a function µ : X → [0, 1], where
[0, 1] is the unit closed interval of real numbers.

Definition 2. [11] A fuzzy set µ in X is called a fuzzy BCC-subalgebra of X if it satisfies
the following property:

(∀x, y ∈ X)(µ(x ∗ y) ≥ min{µ(x), µ(y)}). (2.20)

A fuzzy set µ in a set X of the form

µ(x) =

{
t ∈ (0, 1] if x = a

0 if x ̸= a,

is said to be a fuzzy point with support a and value t and is denoted by [a/t].
For a fuzzy set µ in a set X, we say that a fuzzy point [a/t] is

(1) contained in µ, denoted by [a/t] ∈ µ, (see [10]) if µ(a) ≥ t,

(2) quasi-coincident with µ, denoted by [a/t]qµ, (see [10]) if µ(a) + t > 1.

Proposition 1. If µ is a fuzzy set in a set X and ε ∈ (0, 1), then its ε- Lukasiewicz fuzzy
set Lε

µ satisfies the following property:

(1) (∀x, y ∈ X)(µ(x) ≥ µ(y) ⇒ Lε
µ(x) ≥ Lε

µ(y))

(2) (∀x ∈ X)([x/ε]qµ ⇒ Lε
µ(x) = µ(x) + ε− 1)

(3) (∀x ∈ X,∀δ ∈ (0, 1))(ε ≥ δ ⇒ Lε
µ(x) ≥ Lδ

µ(x))

3. ε- Lukasiewicz fuzzy BCC-subalgebra of a BCC-algebra

In this section, we will recall the definition of ε- Lukasiewicz fuzzy sets and introduce
a new concept called ε- Lukasiewicz fuzzy BCC-subalgebras.

Definition 3. Let µ be a fuzzy set in a set X and let ε ∈ [0, 1]. A function Lε
µ : X → [0, 1];

x 7→ max{0, µ(x) + ε− 1} is called an ε- Lukasiewicz fuzzy set of µ in X.
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Definition 4. Let µ be a fuzzy set in X. Then its ε- Lukasiewicz fuzzy set Lε
µ in X is

called an ε- Lukasiewicz fuzzy BCC-subalgebra of X if it satisfies the following property:

(∀x, y ∈ X,∀ta, tb ∈ (0, 1])([x/ta] ∈ Lε
µ, [y/tb] ∈ Lε

µ ⇒ [(x ∗ y)/min{ta, tb}] ∈ Lε
µ) (3.1)

Theorem 1. If µ is a fuzzy BCC-subalgebra of X, then its ε- Lukasiewicz fuzzy set Lε
µ in

X is an ε- Lukasiewicz fuzzy BCC-subalgebra of X.

Proof. Assume that µ is a fuzzy BCC-subalgebra of X. Let x, y ∈ X and ta, tb ∈ (0, 1]
be such that [x/ta] ∈ Lε

µ and [y/tb] ∈ Lε
µ. Then Lε

µ(x) ≥ ta and Lε
µ(y) ≥ tb. Thus

Lε
µ(x ∗ y) = max{0, µ(x ∗ y) + ε− 1}

≥ max{0,min{µ(x), µ(y)} + ε− 1}
= max{0,min{µ(x) + ε− 1, µ(y) + ε− 1}}
= min{max{0, µ(x) + ε− 1},max{0, µ(y) + ε− 1}}
= min{Lε

µ(x), Lε
µ(y)}

≥ min{ta, tb}.

Hence, [(x∗y)/min{ta, tb}] ∈ Lε
µ. Therefore, Lε

µ is an ε- Lukasiewicz fuzzy BCC-subalgebra
of X.

The following example shows that the converse of Theorem 1 may not be true.

Example 1. Let X = {0, 1, 2, 3, 4} with the following Cayley table:

∗ 0 1 2 3 4

0 0 1 2 3 4
1 0 0 2 3 0
2 0 1 0 0 4
3 0 1 2 0 4
4 0 4 2 3 0

Then X is a BCC-algebra. Define a fuzzy set µ as follows:

µ(x) =


1.0 if x = 0
0.4 if x = 1
0.2 if x = 2
0.3 if x = 3
0.6 if x = 4.

Given ε = 0.9, the ε- Lukasiewicz fuzzy set Lε
µ of µ in X is given as follows:

Lε
µ(x) =


0.9 if x = 0
0.3 if x = 1
0.1 if x = 2
0.2 if x = 3.
0.5 if x = 4.

Then Lε
µ is an ε- Lukasiewicz fuzzy BCC-subalgebra of X.
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Theorem 2. Let µ be a fuzzy set in X. Then its ε- Lukasiewicz fuzzy set Lε
µ in X is an

ε- Lukasiewicz fuzzy BCC-subalgebra of X if and only if it satisfies the following property:

(∀x, y ∈ X)(Lε
µ(x ∗ y) ≥ min{Lε

µ(x), Lε
µ(y)}) (3.2)

Proof. Suppose Lε
µ is an ε- Lukasiewicz fuzzy BCC-subalgebra of X. Let x, y ∈ X.

Then [x/Lε
µ(x)] ∈ Lε

µ and [y/Lε
µ(y)] ∈ Lε

µ. Thus, [(x ∗ y)/min{Lε
µ(x), Lε

µ(y)}] ∈ Lε
µ by

(3.1), which implies that Lε
µ(x ∗ y) ≥ min{Lε

µ(x), Lε
µ(y)}.

Conversely, suppose that Lε
µ satisfies the condition (3.2). Let x, y ∈ X and ta, tb ∈ (0, 1]

be such that [x/ta] ∈ Lε
µ and [y/tb] ∈ Lε

µ. Then Lε
µ(x) ≥ ta and Lε

µ(y) ≥ tb, which implies
from (3.2) that Lε

µ(x∗y) ≥ min{Lε
µ(x), Lε

µ(y)} ≥ min{ta, tb}. Thus, [(x∗y)/min{ta, tb}] ∈
Lε
µ. Hence, Lε

µ is an ε- Lukasiewicz fuzzy BCC-subalgebra of X.

Proposition 2. If µ is a fuzzy BCC-subalgebra of X, then its ε- Lukasiewicz fuzzy set Lε
µ

satisfies the following property:

(∀x ∈ X)(Lε
µ(0) ≥ Lε

µ(x)) (3.3)

Proof. If µ is a fuzzy BCC-subalgebra of X, then µ(0) = µ(x∗x) ≥ min{µ(x), µ(x)} =
µ(x) for all x ∈ X. It follows from Proposition 1 (1) that Lε

µ(0) ≥ Lε
µ(x) for all x ∈ X.

The following example shows that the converse of Proposition 2 is not true in general.

Example 2. [5] Let X = {0, 1, 2, 3} with the following Cayley table:

∗ 0 1 2 3

0 0 1 2 3
1 0 0 1 2
2 0 0 0 1
3 0 0 0 0

Then X is a BCC-algebra. Define a fuzzy set µ as follows:

µ : X → [0, 1];x 7→


1 if x = 0
0 if x = 1
1 if x = 2
1 if x = 3

Given ε = 0.9, the ε- Lukasiewicz fuzzy set Lε
µ of µ in X is given as follows:

Lε
µ : X → [0, 1];x 7→


0.9 if x = 0
0 if x = 1

0.9 if x = 2
0.9 if x = 3

Then Lε
µ(0) ≥= Lε

µ(x) for all x ∈ X but µ is not a fuzzy BCC-subalgebra of X because
µ(2 ∗ 3) = µ(1) = 0 ≱ 1 = min{µ(2), µ(3)}.
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Proposition 3. If µ is a fuzzy BCC-subalgebra of X, then its ε- Lukasiewicz fuzzy set Lε
µ

satisfies the following property:

(∀x, y ∈ X)(Lε
µ(y) = Lε

µ(0) ⇔ Lε
µ(x ∗ y) ≥ Lε

µ(x)) (3.4)

Proof. Assume that Lε
µ(y) = Lε

µ(0) for all y ∈ X. Then Lε
µ(x∗y) ≥ min{Lε

µ(x), Lε
µ(y)} =

min{Lε
µ(x), Lε

µ(0)} = Lε
µ(x) for all x, y ∈ X by the combination of Theorem 1 and Propo-

sition 2.
Conversely, suppose that Lε

µ(x ∗ y) ≥ Lε
µ(x) for all x, y ∈ X. Using (2.2) induces

Lε
µ(y) = Lε

µ(0 ∗ y) ≥ Lε
µ(0). The combination of this and Proposition 2 leads to Lε

µ(y) =
Lε
µ(0) for all y ∈ X.

Proposition 4. If µ is a fuzzy BCC-subalgebra of X, then its ε- Lukasiewicz fuzzy set Lε
µ

satisfies the following property:

(∀x, y ∈ X,∀ta, tb ∈ (0, 1])

(
[x/ta] ∈ Lε

µ, [y/tb] ∈ Lε
µ

⇒ [(x ∗ (0 ∗ y))/min{ta, tb}] ∈ Lε
µ

)
(3.5)

Proof. Let x, y ∈ X and ta, tb ∈ (0, 1] be such that [x/ta] ∈ Lε
µ and [y/tb] ∈ Lε

µ. Then
Lε
µ(x) ≥ ta and Lε

µ(y) ≥ tb. Thus

Lε
µ(x ∗ (0 ∗ y)) = max{0, µ(x ∗ (0 ∗ y)) + ε− 1}

≥ max{0,min{µ(x), µ(0 ∗ y)} + ε− 1}
≥ max{0,min{µ(x),min{µ(0), µ(y)}} + ε− 1}
= max{0,min{µ(x), µ(y)} + ε− 1}
= max{0,min{µ(x) + ε− 1, µ(y) + ε− 1}}
= min{max{0, µ(x) + ε− 1},max{0, µ(y) + ε− 1}}
= min{Lε

µ(x), Lε
µ(y)}

≥ min{ta, tb}.

Hence, [(x ∗ (0 ∗ y))/min{ta, tb}] ∈ Lε
µ.

We provide conditions for an ε- Lukasiewicz fuzzy set to be an ε- Lukasiewicz fuzzy
BCC-subalgebra.

Theorem 3. Let µ be a fuzzy set in X. If its ε- Lukasiewicz fuzzy set Lε
µ satisfies the

following property:

[y/tb] ∈ Lε
µ, [z/tc] ∈ Lε

µ ⇒ [(x ∗ y)/min{tb, tc}] ∈ Lε
µ (3.6)

for all tb, tc ∈ (0, 1] and x, y, z ∈ X with z ≤ x, then Lε
µ is an ε- Lukasiewicz fuzzy BCC-

subalgebra of X.

Proof. Let x, y ∈ X and ta, tb ∈ (0, 1] be such that [x/ta] ∈ Lε
µ and [y/tb] ∈ Lε

µ. Since
x ≤ x for all x ∈ X, it follows from (3.6) that [(x ∗ y)/min{ta, tb}] ∈ Lε

µ. Hence, Lε
µ is an

ε- Lukasiewicz fuzzy BCC-subalgebra of X.
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Proposition 5. Let µ be a fuzzy set in X. Then every ε- Lukasiewicz fuzzy BCC-subalgebra
Lε
µ of X satisfies the following property:

(∀x, y ∈ X,∀ta, tb ∈ (0, 1])([x/ta] ∈ Lε
µ, [y/tb] ∈ Lε

µ ⇒ [(x ∗ (0 ∗ y))/min{tb, tc}] ∈ Lε
µ)

(3.7)

Proof. Let x, y ∈ X and ta, tb ∈ (0, 1] be such that [x/ta] ∈ Lε
µ and [y/tb] ∈ Lε

µ. Then
Lε
µ(x) ≥ ta and Lε

µ(y) ≥ tb. It follows from Theorem 2 and Proposition 2 that

Lε
µ(x ∗ (0 ∗ y)) ≥ min{Lε

µ(x), Lε
µ(0 ∗ y)}

≥ min{Lε
µ(x),min{Lε

µ(0), Lε
µ(y)}}

= min{Lε
µ(x), Lε

µ(y)}
≥ min{ta, tb}.

Hence, [(x ∗ (0 ∗ y))/min{ta, tb}] ∈ Lε
µ.

Let µ be a fuzzy set in X. For an ε- Lukasiewicz fuzzy set Lε
µ of µ in X and t ∈ (0, 1],

consider the sets
(Lε

µ, t)∈ = {x ∈ X : [x/t] ∈ Lε
µ},

(Lε
µ, t)q = {x ∈ X : [x/t]qLε

µ},

which are called the ∈-set and q-set, respectively, of Lε
µ (with value t).

We explore the conditions under which the ∈-set and q-set of ε- Lukasiewicz fuzzy sets
can be BCC-subalgebras.

Theorem 4. Let Lε
µ be an ε- Lukasiewicz fuzzy set of a fuzzy set µ in X. Then the ∈-set

(Lε
µ, t)∈ of Lε

µ with value t ∈ (0.5, 1] is a BCC-subalgebra of X if and only if the following
assertion is valid:

(∀x, y ∈ X)(min{Lε
µ(x), Lε

µ(y)} ≤ max{Lε
µ(x ∗ y), 0.5}) (3.8)

Proof. Assume that the ∈-set (Lε
µ, t)∈ of Lε

µ with value t ∈ (0.5, 1] is a BCC-subalgebra
of X. If the condition (3.8) is not valid, then there exist a, b ∈ X such that min{Lε

µ(a), Lε
µ(b)} >

max{Lε
µ(a ∗ b), 0.5}. If we take s = min{Lε

µ(a), Lε
µ(b)}, then s ∈ (0.5, 1] and [a/s], [b/s] ∈

Lε
µ, that is, a, b ∈ (Lε

µ, s)∈. Since (Lε
µ, s)∈ is a BCC-subalgebra of X, we have a ∗

b ∈ (Lε
µ, s)∈. But [(a ∗ b)/s] /∈ Lε

µ implies a ∗ b /∈ (Lε
µ, s)∈, a contradiction. Thus,

min{Lε
µ(x), Lε

µ(y)} ≤ max{Lε
µ(x ∗ y), 0.5} for all x, y ∈ X.

Conversely, suppose that Lε
µ satisfies the condition (3.8). Let t ∈ (0.5, 1] and x, y ∈ X

be such that x ∈ (Lε
µ, t)∈ and y ∈ (Lε

µ, t)∈. Then Lε
µ(x) ≥ t and Lε

µ(y) ≥ t, which imply
from (3.8) that 0.5 < t ≤ min{Lε

µ(x), Lε
µ(y)} ≤ max{Lε

µ(x∗y), 0.5}. Thus, [(x∗y)/t] ∈ Lε
µ,

that is, x ∗ y ∈ (Lε
µ, t)∈. So, (Lε

µ, t)∈ is a BCC-subalgebra of X for t ∈ (0.5, 1].

Theorem 5. Let Lε
µ be an ε- Lukasiewicz fuzzy set of a fuzzy set µ in X. If µ is a fuzzy

BCC-subalgebra of X, then the nonempty q-set (Lε
µ, t)q of Lε

µ with value t ∈ (0, 1] is a
BCC-subalgebra of X.



A. Iampan, R. Subasini, N. Rajesh / Eur. J. Pure Appl. Math, 17 (3) (2024), 2235-2245 2242

Proof. Let t ∈ (0, 1] and x, y ∈ (Lε
µ, t)q. Then [x/t]qLε

µ and [y/t]qLε
µ, that is, Lε

µ(x) +
t > 1 and Lε

µ(y) + t > 1. It follows from Theorems 1 and 2 that Lε
µ(x ∗ y) + t ≥

min{Lε
µ(x), Lε

µ(y)} + t = min{Lε
µ(x) + t, Lε

µ(y) + t} > 1. Thus, [(x ∗ y)/t]qLε
µ. So, x ∗ y ∈

(Lε
µ, t)q. Hence, (Lε

µ, t)q is a BCC-subalgebra of X.

The following example shows that the converse of Theorem 5 is not true in general.

Example 3. From the BCC-algebra X in Example 2, define a fuzzy set µ as follows:

µ : X → [0, 1];x 7→


0.1 if x = 0
0 if x = 1

0.1 if x = 2
0.1 if x = 3

Given ε = 0.2, the ε- Lukasiewicz fuzzy set Lε
µ of µ in X is given as follows:

Lε
µ : X → [0, 1];x 7→


0 if x = 0
0 if x = 1
0 if x = 2
0 if x = 3

Then the q-set (Lε
µ, t)q of Lε

µ with value t ∈ (0, 1] is empty but µ is not a fuzzy BCC-
subalgebra of X because µ(2 ∗ 3) = µ(1) = 0 ≱ 0.1 = min{µ(2), µ(3)}.

Theorem 6. Let µ be a fuzzy set in X. For an ε- Lukasiewicz fuzzy set Lε
µ of µ in X, if

the q-set (Lε
µ, t)q is a BCC-subalgebra of X, then Lε

µ satisfies the following property:

(∀x, y ∈ X,∀ta, tb ∈ (0, 0.5])

(
[x/ta]qLε

µ, [y/tb]qL
ε
µ

⇒ [(x ∗ y)/max{ta, tb}] ∈ Lε
µ

)
(3.9)

Proof. Let x, y ∈ X and ta, tb ∈ (0, 0.5] be such that [x/ta]qLε
µ and [y/tb]qL

ε
µ. Then

x ∈ (Lε
µ, ta)q ⊆ (Lε

µ,max{ta, tb})q and y ∈ (Lε
µ, tb)q ⊆ (Lε

µ,max{ta, tb})q. Thus, x ∗
y ∈ (Lε

µ,max{ta, tb})q. Since max{ta, tb} ≤ 0.5, we have Lε
µ(x ∗ y) > 1 − max{ta, tb} ≥

max{ta, tb}. Hence, [(x ∗ y)/max{ta, tb}] ∈ Lε
µ.

Let µ be a fuzzy set in X. For an ε- Lukasiewicz fuzzy set Lε
µ of µ in X, consider the

set: O(Lε
µ) = {x ∈ X : Lε

µ(x) > 0}, which is called the O-set of Lε
µ. It is observed that

O(Lε
µ) = {x ∈ X : µ(x) + ε− 1 > 0}.

Theorem 7. Let Lε
µ be an ε- Lukasiewicz fuzzy set of a fuzzy set µ in X. If µ is a fuzzy

BCC-subalgebra of X, then the nonempty O-set O(Lε
µ) of Lε

µ is a BCC-subalgebra of X.

Proof. Let x, y ∈ O(Lε
µ). Then µ(x) + ε − 1 > 0 and µ(y) + ε − 1 > 0. If µ

is a fuzzy BCC-subalgebra of X, then Lε
µ is an ε- Lukasiewicz fuzzy BCC-subalgebra of

X by Theorem 1. It follows from Theorem 2 that Lε
µ(x ∗ y) ≥ min{Lε

µ(x), Lε
µ(y)} =

min{µ(x) + ε − 1, µ(y) + ε − 1} > 0. Thus, x ∗ y ∈ O(Lε
µ). Hence, O(Lε

µ) is a BCC-
subalgebra of X.
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Theorem 8. Let µ be a fuzzy set in X. If an ε- Lukasiewicz fuzzy set Lε
µ of µ in X

satisfies the following property:

[x/ta] ∈ Lε
µ, [y/tb] ∈ Lε

µ ⇒ [(x ∗ y)/max{ta, tb}]qLε
µ (3.10)

for all x, y ∈ X and ta, tb ∈ (0, 1], then the nonempty O-set O(Lε
µ) of Lε

µ is a BCC-
subalgebra of X.

Proof. Assume that Lε
µ satisfies the condition (3.10) for all x, y ∈ X and ta, tb ∈ (0, 1].

Let x, y ∈ O(Lε
µ). Then µ(x) + ε− 1 > 0 and µ(y) + ε− 1 > 0. Since [x/Lε

µ(x)] ∈ Lε
µ and

[y/Lε
µ(y)] ∈ Lε

µ, it follows from (3.10) that

[(x ∗ y)/max{Lε
µ(x ∗ (y ∗ z)), Lε

µ(y)}]qLε
µ. (3.11)

If x ∗ y /∈ O(Lε
µ), then Lε

µ(x ∗ y) = 0. Thus,

Lε
µ(x ∗ y) + max{Lε

µ(x), Lε
µ(y)}

= max{Lε
µ(x), Lε

µ(y)}
= max{max{0, µ(x) + ε− 1},max{0, µ(y) + ε− 1}}
= max{µ(x) + ε− 1, µ(y) + ε− 1}
= max{µ(x), µ(y)} + ε− 1
≤ 1 + ε− 1
= ε
≤ 1,

which shows that (3.11) is not valid. This is a contradiction. Hence, x ∗ y ∈ O(Lε
µ).

Therefore, O(Lε
µ) is a BCC-subalgebra of X.

Theorem 9. Let µ be a fuzzy set in X. If an ε- Lukasiewicz fuzzy set Lε
µ of µ in X

satisfies the condition (3.9) for all x, y ∈ X and ta, tb ∈ (0, 1], then the nonempty O-set
O(Lε

µ) of Lε
µ is a BCC-subalgebra of X.

Proof. Let x, y ∈ O(Lε
µ). Then µ(x) + ε − 1 > 0 and µ(y) + ε − 1 > 0. Thus,

Lε
µ(x) + 1 = max{0, µ(x) + ε− 1} + 1 = µ(x) + ε− 1 + 1 = µ(x) + ε > 1 and Lε

µ(y) + 1 =
max{0, µ(y) + ε−1}+ 1 = µ(y) + ε−1 + 1 = µ(y) + ε > 1, that is, [x/1]qLε

µ and [y/1]qLε
µ.

It follows from (3.9) that

[(x ∗ y)/1] = [(x ∗ y)/max{1, 1}] ∈ Lε
µ. (3.12)

If x∗ y /∈ O(Lε
µ), then Lε

µ(x∗ y) = 0 < 1 and so (3.12) is not valid. This is a contradiction.
Thus, x ∗ y ∈ O(Lε

µ). Hence, O(Lε
µ) is a BCC-subalgebra of X.
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4. Conclusions

The concept of ε- Lukasiewicz fuzzy sets using  Lukasiewicz t-norm was introduced by
Jun [8]. In this paper, the ε- Lukasiewicz fuzzy set has been applied to BCC-subalgebras
in BCC-algebras, introducing the concept of ε- Lukasiewicz fuzzy BCC-subalgebras, and
examining several properties. We discussed the characterization of ε- Lukasiewicz fuzzy
BCC-subalgebras and considered the relationship between fuzzy BCC-subalgebras and ε-
 Lukasiewicz fuzzy BCC-subalgebras. We provided conditions under which ε- Lukasiewicz
fuzzy sets can be ε- Lukasiewicz fuzzy BCC-subalgebras and further explored conditions
under which three subsets: ∈-set, q-set, and O-set, will be BCC-subalgebras. The ideas
and results obtained in this paper will be applied to the relevant algebraic systems in
the future, further examining their usability as a mathematical tool applicable to decision
theory, medical diagnosis systems, automation systems, etc.

Acknowledgements

This research was supported by the University of Phayao and the Thailand Science
Research and Innovation Fund (Fundamental Fund 2024).

References

[1] B. Ahmad and A. Kharal. On fuzzy soft sets. Adv. Fuzzy Syst., 2009:Article ID
586507, 6 pages, 2009.

[2] M. Atef, M. I. Ali, and T. Al-Shami. Fuzzy soft covering based multi-granulation
fuzzy rough sets and their applications. Comput. Appl. Math., 40(4):115, 2021.
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