EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 3, 2024, 2142-2154 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Upper and Lower Slight $\alpha(\tau_1, \tau_2)$ -Continuity

Chokchai Viriyapong¹ , Supannee Sompong² , Chawalit Boonpok1,[∗]

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand ² Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

Abstract. This paper deals with the notions of upper and lower slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunctions. Furthermore, several characterizations of upper and lower slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunctions are discussed.

2020 Mathematics Subject Classifications: 54C08, 54C60, 54E55

Key Words and Phrases: $\alpha(\tau_1, \tau_2)$ -open set, upper slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunction, lower slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunction

1. Introduction

In 1980, Jain [25] introduced the notion of slightly continuous functions. Nour [32] defined slightly semi-continuous functions as a weak form of slight continuity and investigated some characterizations of slightly semi-continuous functions. Noiri and Chae [30] have further investigated slightly semi-continuous functions. Pal and Bhattacharyya [33] introduced and studied the concept of faintly precontinuous functions. Slight continuity implies both slight semi-continuity and faint precontinuity. Noiri [29] introduced and studied the notion of slight β -continuity which is implied by both slight semi-continuity and faint precontinuity. Duangphui et al. [21] introduced and investigated the notion of almost $(\mu, \mu')^{(m,n)}$ -continuous functions. Thongmoon and Boonpok [42] introduced and studied the notion of strongly $\theta(\Lambda, p)$ -continuous functions. Moreover, several characterizations of almost (Λ, p) -continuous functions, almost strongly $\theta(\Lambda, p)$ -continuous functions, $\theta(\Lambda, p)$ -continuous functions, weakly (Λ, b) -continuous functions, $\theta(\star)$ -precontinuous functions, \star -continuous functions, θ - \mathscr{I} -continuous functions, almost (q, m) -continuous functions, (Λ, sp) -continuous functions, $\delta p(\Lambda, s)$ -continuous functions, $(\Lambda, p(\star))$ -continuous functions, pairwise almost M-continuous functions, (τ_1, τ_2) -continuous functions, almost (τ_1, τ_2) -continuous functions and weakly (τ_1, τ_2) -continuous functions were presented in

Email addresses: chokchai.v@msu.ac.th (C. Viriyapong),

s−sompong@snru.ac.th (S. Sompong), chawalit.b@msu.ac.th (C. Boonpok)

https://www.ejpam.com 2142 © 2024 EJPAM All rights reserved.

[∗]Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v17i3.5321

[40], [11], [37], [16], [10], [9], [5], [2], [44], [41], [8], [3], [17], [15] and [12], respectively. Sangviset et al. [39] introduced the notion of slightly (m, μ) -continuous functions as functions from an m-spaces into a generalized topological space and investigated several characterizations of slightly (m, μ) -continuous functions.

In 2005, Ekici [23] introduced and investigated the notion of upper (lower) slightly α -continuous multifunctions as a generalization of upper (lower) α -continuous multifunctions due to Neubrunn [28]. Popa and Noiri [36] introduced and studied the notion of upper (lower) β -continuous multifunctions. Furthermore, Ekici [22] introduced and studied upper (lower) slightly β -continuous multifunctions as a generalization of upper (lower) semicontinuous multifunctions, upper (lower) α -continuous multifunctions, upper (lower) precontinuous multifunctions [35], upper (lower) quasi-continuous multifunctions [34], upper (lower) γ-continuous multifunctions [24], upper (lower) β-continuous multifunctions and slightly β -continuous functions. Noiri and Popa [31] introduced the notion of slightly m -continuous multifunctions and established the relationships among m -continuity, almost m -continuity, weak m -continuity and slight m -continuity for multifunctions. Laprom et al. [27] introduced and investigated the notion of $\beta(\tau_1, \tau_2)$ -continuous multifunctions. Furthermore, several characterizations of (τ_1, τ_2) δ-semicontinuous multifunctions, almost weakly \star -continuous multifunctions, weakly \star -continuous multifunctions, weakly α - \star -continuous multifunctions, ι^* -continuous multifunctions, almost $\beta(\star)$ -continuous multifunctions, almost weakly (τ_1, τ_2) -continuous multifunctions, almost (τ_1, τ_2) -continuous multifunctions and (τ_1, τ_2) α -continuous multifunctions were investigated in [6], [18], [4], [14], [13], [7], [19], [26] and [43], respectively. Pue-on et al. [38] introduce and studied the notions of upper and lower (τ_1, τ_2) -continuous multifunctions. In this paper, we introduce the concepts of upper and lower slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunctions. We also investigate several characterizations of upper and lower slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for $i = 1, 2$. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [20] if $A = \tau_1\text{-Cl}(\tau_2\text{-Cl}(A))$. The complement of a $\tau_1\tau_2\text{-closed set}$ is called $\tau_1\tau_2\text{-open}$. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [20] of A and is denoted by $\tau_1\tau_2$ -Cl(A). The union of all $\tau_1\tau_2$ -open sets of X contained in A is called the $\tau_1\tau_2$ -interior [20] of A and is denoted by $\tau_1 \tau_2$ -Int (A) .

Lemma 1. [20] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1 \tau_2$ closure, the following properties hold:

(1) $A \subseteq \tau_1 \tau_2\text{-}Cl(A)$ and $\tau_1 \tau_2\text{-}Cl(\tau_1 \tau_2\text{-}Cl(A)) = \tau_1 \tau_2\text{-}Cl(A)$.

- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ -Cl(A) $\subseteq \tau_1 \tau_2$ -Cl(B).
- (3) $\tau_1 \tau_2$ -Cl(A) is $\tau_1 \tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2\text{-}Cl(X A) = X \tau_1 \tau_2\text{-}Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -clopen [20] if A is both $\tau_1\tau_2$ -open and $\tau_1\tau_2$ -closed. A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r\text{-open}$ [43] (resp. $(\tau_1, \tau_2)s\text{-open}$ [6], $(\tau_1, \tau_2)p\text{-open}$ [6], $(\tau_1, \tau_2)\beta\text{-open}$ [6]) if $A = \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int(A)), $A \subseteq \tau_1 \tau_2$ -Int($\tau_1 \tau_2$ -Cl(A)), $A \subseteq \tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(\tau_1\tau_2\text{-Cl}(A))))$. The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is called $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open [45] if $A \subseteq \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int $(A))$). The complement of an $\alpha(\tau_1, \tau_2)$ -open set is said to be $\alpha(\tau_1, \tau_2)$ -closed. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $\alpha(\tau_1, \tau_2)$ -closed sets of X containing A is called the $\alpha(\tau_1, \tau_2)$ -closure of A and is denoted by $\alpha(\tau_1, \tau_2)$ -Cl(A). The union of all $\alpha(\tau_1, \tau_2)$ open sets of X contained in A is called the $\alpha(\tau_1, \tau_2)$ -interior of A and is denoted by $\alpha(\tau_1, \tau_2)$ -Int (A) .

Lemma 2. For subsets A and B of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $A \subseteq \alpha(\tau_1, \tau_2)$ -Cl(A) and $\alpha(\tau_1, \tau_2)$ -Cl($\alpha(\tau_1, \tau_2)$ -Cl(A)) = $\alpha(\tau_1, \tau_2)$ -Cl(A).
- (2) If $A \subseteq B$, then $\alpha(\tau_1, \tau_2)$ -Cl(A) $\subseteq \alpha(\tau_1, \tau_2)$ -Cl(B).
- (3) $\alpha(\tau_1, \tau_2)$ -Cl(A) is $\alpha(\tau_1, \tau_2)$ -closed.
- (4) A is $\alpha(\tau_1, \tau_2)$ -closed if and only if $A = \alpha(\tau_1, \tau_2)$ -Cl(A).
- (5) $\alpha(\tau_1, \tau_2)$ -Cl(X A) = X $\alpha(\tau_1, \tau_2)$ -Int(A).

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F : X \to Y$, following [1] we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^{-}(B)$, respectively, that is, $F^{+}(B) = \{x \in X \mid F(x) \subseteq B\}$ and

$$
F^{-}(B) = \{ x \in X \mid F(x) \cap B \neq \emptyset \}.
$$

In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}\$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x).$

3. Upper and lower slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunctions

In this section, we introduce the notions of upper and lower slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunctions. Moreover, some characterizations of upper and lower slightly $\alpha(\tau_1, \tau_2)$ continuous multifunctions are discussed.

Definition 1. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper slightly $\alpha(\tau_1, \tau_2)$ -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -clopen set V of Y containing $F(x)$, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that $F(U) \subseteq V$. A multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper slightly $\alpha(\tau_1, \tau_2)$ -continuous if F has this property at every point of X .

Recall that a net (x_{γ}) in a topological space (X, τ) is said to be *eventually* in the set $U \subseteq X$ if there exists an index $\gamma_0 \in \nabla$ such that $x_{\gamma} \in U$ for all $\gamma \geq \gamma_0$.

Definition 2. A sequence (x_n) is called $\alpha(\tau_1, \tau_2)$ -converge to a point x if for every $\alpha(\tau_1, \tau_2)$ -open set V containing x, there exists an index n_0 such that for $n \geq n_0, x_n \in V$.

Theorem 1. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is upper slightly $\alpha(\tau_1, \tau_2)$ -continuous;
- (2) for each $x \in X$ and for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $x \in F^+(V)$, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that $U \subseteq F^+(V)$;
- (3) for each $x \in X$ and for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $x \in F^+(Y-V)$, there exists an $\alpha(\tau_1, \tau_2)$ -closed set H of X such that $x \in X - H$ and $F^-(V) \subseteq H$;
- (4) $F^+(V)$ is $\alpha(\tau_1, \tau_2)$ -open in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (5) $F^-(V)$ is $\alpha(\tau_1, \tau_2)$ -closed in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (6) $F^-(Y-V)$ is $\alpha(\tau_1, \tau_2)$ -closed in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (7) $F^+(Y-V)$ is $\alpha(\tau_1, \tau_2)$ -open in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (8) for each $x \in X$ and for each net (x_{γ}) which $\alpha(\tau_1, \tau_2)$ -converges to x in X and for each $\sigma_1\sigma_2$ -clopen set V of Y such that $x \in F^+(V)$, the net (x_γ) is eventually in $F^+(V)$.

Proof. (1) \Leftrightarrow (2): Obvious.

(2) \Leftrightarrow (3): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -clopen set of Y such that $x \in F^+(Y-V)$. By (2), there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that $U \subseteq F^+(Y-V)$. Then, $F^-(V) \subseteq X - U$. Put $H = X - U$. Then, H is $\alpha(\tau_1, \tau_2)$ -closed in X and $x \in X - H$. The converse is similar.

(1) \Leftrightarrow (4): Let V be any $\sigma_1\sigma_2$ -clopen set of Y and $x \in F^+(V)$. By (1), there exists an $\alpha(\tau_1, \tau_2)$ -open set U_x of X containing x such that $U_x \subseteq F^+(V)$. It follows that $F^+(V)$ $\cup_{x\in F^+(V)} U_x$ and hence $F^+(V)$ is $\alpha(\tau_1, \tau_2)$ -open in X. The converse can be shown easily.

(4) \Rightarrow (5): Let V be any $\sigma_1 \sigma_2$ -clopen set of Y. Then, Y – V is $\sigma_1 \sigma_2$ -clopen in Y and by (4), $F^+(Y-V) = X - F^-(V)$ is $\alpha(\tau_1, \tau_2)$ -open in X. Thus, $F^-(V)$ is $\alpha(\tau_1, \tau_2)$ -closed in X .

 $(5) \Rightarrow (4)$: It is similar to that of $(4) \Rightarrow (5)$.

 $(4) \Leftrightarrow (6)$ and $(5) \Leftrightarrow (7)$: It follows from the fact that $F^{-}(Y - B) = X - F^{+}(B)$ and $F^+(Y-B) = X - F^-(B)$ for every subset B of Y.

(1) \Rightarrow (8): Let (x_γ) be a net which $\alpha(\tau_1, \tau_2)$ -converges to x in X and let V be any $\sigma_1 \sigma_2$ clopen set of Y such that $x \in F^+(V)$. Since F is an upper slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunction, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that $U \subseteq F^+(V)$. Since $(x_{\gamma}) \alpha(\tau_1, \tau_2)$ -converges to x, it follows that there exists an index $\gamma_0 \in \nabla$ such that $x_{\gamma} \in U$ for all $\gamma \geq \gamma_0$. Therefore, $x_{\gamma} \in U \subseteq F^+(V)$ for all $\gamma \geq \gamma_0$. Thus, the net (x_{γ}) is eventually in $F^+(V)$.

 $(8) \Rightarrow (1)$: Suppose that F is not upper slightly $\alpha(\tau_1, \tau_2)$ -continuous. There exists a point x and a $\sigma_1 \sigma_2$ -clopen set V of Y with $x \in F^+(V)$ such that $U \nsubseteq F^+(V)$ for each $\alpha(\tau_1, \tau_2)$ -open set U of X containing x. Let $x_U \in U$ and $x_U \notin F^+(V)$ for each $\alpha(\tau_1, \tau_2)$ open set U of X containing x. Then, for the $\alpha(\tau_1, \tau_2)$ -neighbourhood net (x_U) , (x_U) $\alpha(\tau_1, \tau_2)$ -converges to x, but (x_U) is not eventually in $F^+(V)$. This is a contradiction. Thus, F is upper slightly $\alpha(\tau_1, \tau_2)$ -continuous.

Definition 3. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called lower slightly $\alpha(\tau_1, \tau_2)$ continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $F(x) \cap V \neq \emptyset$, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that $F(z) \cap V \neq \emptyset$ for each $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called lower slightly $\alpha(\tau_1, \tau_2)$ continuous if F has this property at every point of X .

Theorem 2. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower slightly $\alpha(\tau_1, \tau_2)$ -continuous;
- (2) for each $x \in X$ and for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $x \in F^-(V)$, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that $U \subseteq F^-(V)$;
- (3) for each $x \in X$ and for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $x \in F^{-}(Y-V)$, there exists an $\alpha(\tau_1, \tau_2)$ -closed set H of X such that $x \in X - H$ and $F^+(V) \subseteq H$;
- (4) $F^-(V)$ is $\alpha(\tau_1, \tau_2)$ -open in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (5) $F^+(V)$ is $\alpha(\tau_1, \tau_2)$ -closed in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (6) $F^+(Y-V)$ is $\alpha(\tau_1, \tau_2)$ -closed in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (7) $F^-(Y-V)$ is $\alpha(\tau_1, \tau_2)$ -open in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (8) for each $x \in X$ and for each net (x_{γ}) which $\alpha(\tau_1, \tau_2)$ -converges to x in X and for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $x \in F^-(V)$, the net (x_γ) is eventually in $F^{-}(V)$.

Proof. The proof is similar to that of Theorem 1.

Definition 4. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be slightly $\alpha(\tau_1, \tau_2)$ continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -clopen set V of Y containing $f(x)$, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that $f(U) \subseteq V$.

Corollary 1. For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is slightly $\alpha(\tau_1, \tau_2)$ -continuous;
- (2) $f^{-1}(V)$ is $\alpha(\tau_1, \tau_2)$ -open in X for each $\sigma_1 \sigma_2$ -clopen set V of Y;
- (3) $f^{-1}(V)$ is $\alpha(\tau_1, \tau_2)$ -closed in X for each $\sigma_1 \sigma_2$ -clopen set V of Y;
- (4) for each $x \in X$ and for each $\sigma_1 \sigma_2$ -clopen set V of Y containing $f(x)$, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that $f(U) \subseteq V$.

Definition 5. A bitopological space (X, τ_1, τ_2) is said to be mildly $\tau_1 \tau_2$ -compact if every cover of X by $\tau_1 \tau_2$ -clopen sets of X has a finite subcover.

Definition 6. A bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -compact if if every cover of X by $\alpha(\tau_1, \tau_2)$ -open sets of X has a finite subcover.

Theorem 3. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an upper slightly $\alpha(\tau_1, \tau_2)$ -continuous surjective multifunction such that $F(x)$ is mildly $\sigma_1 \sigma_2$ -compact for each $x \in X$. If (X, τ_1, τ_2) is $\alpha(\tau_1, \tau_2)$ -compact, then (Y, σ_1, σ_2) is mildly $\sigma_1 \sigma_2$ -compact.

Proof. Let $\{V_{\gamma} \mid \gamma \in \Gamma\}$ be any $\sigma_1 \sigma_2$ -clopen cover of Y. Since $F(x)$ is mildly $\sigma_1 \sigma_2$ compact for each $x \in X$, there exists a finite subset $\Gamma(x)$ of Γ such that

$$
F(x) \subseteq \cup \{V_{\gamma} \mid \gamma \in \Gamma(x)\}.
$$

Put $V(x) = \bigcup \{V_{\gamma} \mid \gamma \in \Gamma(x)\}\.$ Since F is upper slightly $\alpha(\tau_1, \tau_2)$ -continuous, there exists an $\alpha(\tau_1, \tau_2)$ -open set $U(x)$ of X containing x such that $F(U(x)) \subseteq V(x)$. Then, the family ${U(x) | x \in X}$ is an $\alpha(\tau_1, \tau_2)$ -open cover of X. Since (X, τ_1, τ_2) is $\alpha(\tau_1, \tau_2)$ -compact, there exists a finite number of points, say, $x_1, x_2, ..., x_n$ in X such that $X = \bigcup \{U(x_i) \mid 1 \leq i \leq n\}.$ Thus,

$$
Y = F(X) = \bigcup \{ F(U(x_i)) \mid 1 \le i \le n \}
$$

$$
\subseteq \bigcup \{ V(x_i) \mid 1 \le i \le n \}
$$

$$
\subseteq \bigcup \{ V_{\gamma} \mid \gamma \in \Gamma(x_i), 1 \le i \le n \}.
$$

This shows that (Y, σ_1, σ_2) is mildly $\sigma_1 \sigma_2$ -compact.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -connected [20] if X cannot be written as the union of two disjoint nonempty $\tau_1\tau_2$ -open sets.

Definition 7. A bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -connected provided that X is not the union of two disjoint nonempty $\alpha(\tau_1, \tau_2)$ -open sets.

Definition 8. A multifunction $F : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called punctually $\tau_1 \tau_2$ connected if, for each $x \in X$, $F(x)$ is $\sigma_1 \sigma_2$ -connected.

Theorem 4. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an upper slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunction such that F is punctually $\tau_1\tau_2$ -connected. If (X, τ_1, τ_2) is $\alpha(\tau_1, \tau_2)$ -connected, then (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -connected.

Proof. Suppose that (Y, σ_1, σ_2) is not $\sigma_1 \sigma_2$ -connected. Then, there exist nonempty $\sigma_1 \sigma_2$ -open sets U and V of Y such that $U \cap V = \emptyset$ and $U \cup V = Y$. Since F is upper slightly $\alpha(\tau_1, \tau_2)$ -continuous, $F^+(U)$ and $F^+(V)$ are $\alpha(\tau_1, \tau_2)$ -open sets of X. In view of the fact that $F^+(U)$, $F^+(V)$ are disjoint and F is punctually $\tau_1 \tau_2$ -connected, $X = F^+(U) \cup F^+(V)$ is a partition of X. This is contrary to the $\alpha(\tau_1, \tau_2)$ -connectedness of (X, τ_1, τ_2) . This shows that (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -connected.

Theorem 5. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a lower slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunction such that F is punctually $\tau_1\tau_2$ -connected. If (X, τ_1, τ_2) is $\alpha(\tau_1, \tau_2)$ -connected, then (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -connected.

Proof. The proof is similar to that of Theorem 4.

Definition 9. A bitopological space (X, τ_1, τ_2) is called strongly (τ_1, τ_2) -normal if, for any disjoint $\tau_1\tau_2$ -closed sets F and K of X, there exist $\tau_1\tau_2$ -clopen sets U and V of X such that $F \subseteq U$, $K \subseteq V$ and $U \cap V = \emptyset$.

Definition 10. A bitopological space (X, τ_1, τ_2) is called $\alpha(\tau_1, \tau_2)$ -Hausdorff if, for each pair of distinct points x and y in X, there exist disjoint $\alpha(\tau_1, \tau_2)$ -open sets U and V of X such that $x \in U$ and $y \in V$.

Definition 11. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called punctually (τ_1, τ_2) closed if, for each $x \in X$, $F(x)$ is $\sigma_1 \sigma_2$ -closed.

Theorem 6. Let $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an upper slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunction and punctually (τ_1, τ_2) -closed from a bitopological space (X, τ_1, τ_2) to a strongly (σ_1, σ_2) -normal bitopological space (Y, σ_1, σ_2) and let $F(x) \cap F(y) = \emptyset$ for each pair of distinct points $x, y \in X$. Then, (X, τ_1, τ_2) is an $\alpha(\tau_1, \tau_2)$ -Hausdorff space.

Proof. Let x and y be any two distinct points in X. Then, we have $F(x) \cap F(y) = \emptyset$. Since (Y, σ_1, σ_2) is strongly (σ_1, σ_2) -normal, it follows that there exist disjoint $\sigma_1 \sigma_2$ -clopen sets U and V of Y containing $F(x)$ and $F(y)$, respectively. Thus, $F^+(U)$ and $F^+(V)$ are disjoint $\alpha(\tau_1, \tau_2)$ -open sets of X containing x and y, respectively. This shows that (X, τ_1, τ_2) is an $\alpha(\tau_1, \tau_2)$ -Hausdorff space.

4. Slight $\alpha(\tau_1, \tau_2)$ -continuity and other forms of $\alpha(\tau_1, \tau_2)$ -continuity

We begin this section by introducing the concept of upper $\alpha(\tau_1, \tau_2)$ -continuous multifunctions.

Definition 12. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper $\alpha(\tau_1, \tau_2)$ continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing $F(x)$, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that $F(U) \subseteq V$. A multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper $\alpha(\tau_1, \tau_2)$ -continuous if F has this property at each point of X.

Theorem 7. If a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper $\alpha(\tau_1, \tau_2)$ -continuous, then F is upper slightly $\alpha(\tau_1, \tau_2)$ -continuous.

Proof. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -clopen set of Y containing $F(x)$. Since F is upper $\alpha(\tau_1, \tau_2)$ -continuous, there exists an $\alpha(\tau_1, \tau_2)$ -open set of X containing x such that $F(U) \subseteq V$. This shows that F is upper slightly $\alpha(\tau_1, \tau_2)$ -continuous.

Definition 13. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called lower $\alpha(\tau_1, \tau_2)$ continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that $F(z) \cap V \neq \emptyset$ for every $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called lower $\alpha(\tau_1, \tau_2)$ -continuous if F has this property at each point of X.

Theorem 8. If a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower $\alpha(\tau_1, \tau_2)$ -continuous, then F is lower slightly $\alpha(\tau_1, \tau_2)$ -continuous.

Proof. The proof is similar to that of Theorem 7.

Recall that a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) -extremally disconnected [45] if the $\tau_1\tau_2$ -closure of every $\tau_1\tau_2$ -open set U of X is $\tau_1\tau_2$ -open.

Lemma 3. [45] For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -extremally disconnected.
- (2) Every $(\tau_1, \tau_2)r$ -open set of X is $\tau_1\tau_2$ -closed.
- (3) Every $(\tau_1, \tau_2)r$ -closed set of X is $\tau_1\tau_2$ -open.

Definition 14. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper almost $\alpha(\tau_1, \tau_2)$ -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing $F(x)$, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that

$$
F(U) \subseteq \sigma_1 \sigma_2 \text{-} Int(\sigma_1 \sigma_2 \text{-} Cl(V)).
$$

A multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper almost $\alpha(\tau_1, \tau_2)$ -continuous if F has this property at each point of X .

Lemma 4. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is upper almost $\alpha(\tau_1, \tau_2)$ -continuous;
- (2) for each $x \in X$ and each (σ_1, σ_2) r-open set V of Y containing $F(x)$, there exists an $\alpha(\tau_1, \tau_2)$ -open set of X containing x such that $F(U) \subseteq V$.

Theorem 9. If a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper slightly $\alpha(\tau_1, \tau_2)$ continuous and (Y, σ_1, σ_2) is (σ_1, σ_2) -extremally disconnected, then F is upper almost $\alpha(\tau_1, \tau_2)$ -continuous.

Proof. Let $x \in X$ and V be any (σ_1, σ_2) r-open set of Y containing $F(x)$. Then, by Lemma 3 we have V is $\sigma_1 \sigma_2$ -clopen in Y. Since F is upper slightly $\alpha(\tau_1, \tau_2)$ -continuous, there exists an $\alpha(\tau_1, \tau_2)$ -open set of X containing x such that $F(U) \subseteq V$. By Lemma 4, F is upper almost $\alpha(\tau_1, \tau_2)$ -continuous.

Definition 15. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called lower almost $\alpha(\tau_1, \tau_2)$ continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that

$$
\sigma_1 \sigma_2 \text{-} Int(\sigma_1 \sigma_2 \text{-} Cl(V)) \cap F(z) \neq \emptyset
$$

for every $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called lower almost $\alpha(\tau_1, \tau_2)$ -continuous if F has this property at each point of X.

Lemma 5. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\alpha(\tau_1, \tau_2)$ -continuous;
- (2) for each $x \in X$ and each (σ_1, σ_2) r-open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists an $\alpha(\tau_1, \tau_2)$ -open set of X containing x such that $U \subseteq F^-(V)$.

Theorem 10. If a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower slightly $\alpha(\tau_1, \tau_2)$ continuous and (Y, σ_1, σ_2) is (σ_1, σ_2) -extremally disconnected, then F is lower almost $\alpha(\tau_1, \tau_2)$ -continuous.

Proof. By utilizing Lemma 5, this can be proved similarly to that of Theorem 9.

Definition 16. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper weakly $\alpha(\tau_1, \tau_2)$ -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing $F(x)$, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that

$$
F(U) \subseteq \sigma_1 \sigma_2 \text{-} Cl(V).
$$

A multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper weakly $\alpha(\tau_1, \tau_2)$ -continuous if F has this property at each point of X .

REFERENCES 2151

Theorem 11. If a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper weakly $\alpha(\tau_1, \tau_2)$ continuous, then F is upper slightly $\alpha(\tau_1, \tau_2)$ -continuous.

Proof. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -clopen set of Y containing $F(x)$. Since F is upper weakly $\alpha(\tau_1, \tau_2)$ -continuous, there exists an $\alpha(\tau_1, \tau_2)$ -open set of X containing x such that $F(U) \subseteq \sigma_1 \sigma_2\text{-}Cl(V) = V$. This shows that F is upper slightly $\alpha(\tau_1, \tau_2)$ -continuous.

Definition 17. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called lower weakly $\alpha(\tau_1, \tau_2)$ continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists an $\alpha(\tau_1, \tau_2)$ -open set U of X containing x such that

$$
\sigma_1 \sigma_2\text{-}Cl(V) \cap F(z) \neq \emptyset
$$

for every $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called lower weakly $\alpha(\tau_1, \tau_2)$ -continuous if F has this property at each point of X.

Theorem 12. If a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower weakly $\alpha(\tau_1, \tau_2)$ continuous, then F is lower slightly $\alpha(\tau_1, \tau_2)$ -continuous.

Proof. The proof is similar to that of Theorem 11.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] C. Berge. Espaces topologiques fonctions multivoques. Dunod, Paris, 1959.
- [2] C. Boonpok. Almost (q, m) -continuous functions. *International Journal of Mathe*matical Analysis, 4(40):1957–1964, 2010.
- [3] C. Boonpok. M-continuous functions in biminimal structure spaces. Far East Journal of Mathematical Sciences, 43(1):41–58, 2010.
- [4] C. Boonpok. On continuous multifunctions in ideal topological spaces. Lobachevskii Journal of Mathematics, 40(1):24–35, 2019.
- [5] C. Boonpok. On characterizations of \star -hyperconnected ideal topological spaces. Journal of Mathematics, 2020:9387601, 2020.
- [6] C. Boonpok. (τ_1, τ_2) δ-semicontinuous multifunctions. Heliyon, 6:e05367, 2020.
- [7] C. Boonpok. Upper and lower $\beta(\star)$ -continuity. Heliyon, 7:e05986, 2021.
- [8] C. Boonpok. On some closed sets and low separation axioms via topological ideals. European Journal of Pure and Applied Mathematics, 15(3):300–309, 2022.
- [9] C. Boonpok. On some spaces via topological ideals. Open Mathematics, 21:20230118, 2023.
- [10] C. Boonpok. $\theta(\star)$ -precontinuity. *Mathematica*, 65(1):31–42, 2023.
- [11] C. Boonpok and J. Khampakdee. Almost strong $\theta(\Lambda, p)$ -continuity for functions. European Journal of Pure and Applied Mathematics, 17(1):300–309, 2024.
- [12] C. Boonpok and C. Klanarong. On weakly (τ_1, τ_2) -continuous functions. *European* Journal of Pure and Applied Mathematics, 17(1):416–425, 2024.
- [13] C. Boonpok and P. Pue-on. Continuity for multifunctions in ideal topological spaces. WSEAS Transactions on Mathematics, 19:624–631, 2020.
- [14] C. Boonpok and P. Pue-on. Upper and lower weakly α - \star -continuous multifunctions. International Journal of Analysis and Applications, 21:90, 2023.
- [15] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:33, 2024.
- [16] C. Boonpok and N. Srisarakham. Weak forms of (Λ, b) -open sets and weak (Λ, b) continuity. European Journal of Pure and Applied Mathematics, 16(1):29–43, 2023.
- [17] C. Boonpok and N. Srisarakham. (τ_1, τ_2) -continuity for functions. Asia Pacific Journal of Mathematics, 11:21, 2024.
- [18] C. Boonpok and C. Viriyapong. Almost weak continuity for multifunctions in ideal topological spaces. WSEAS Transactions on Mathematics, 19:367–372, 2020.
- [19] C. Boonpok and C. Viriyapong. Upper and lower almost weak (τ_1, τ_2) -continuity. European Journal of Pure and Applied Mathematics, 14(1):1212–1225, 2021.
- [20] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) precontinuous multifunctions. Journal of Mathematics and Computer Science, 18:282–293, 2018.
- [21] T. Duangphui, C. Boonpok, and C. Viriyapong. Continuous functions on bigeneralized topological spaces. International Journal of Mathematical Analysis, 5(24):1165– 1174, 2011.
- [22] E. Ekici. Slightly β-continuous multifunctions. Demonstratio Mathematica, 38(2):469–484, 2005.
- [23] E. Ekici. Upper and lower slightly α -continuous multifunctions. *Miskolc Mathematical* Notes, 6(1):31–41, 2005.
- [24] M. E. Abd El-Monsef and A. A. Nasef. On multifunctions. Chaos, Solitons & Fractals, 12:2387–2394, 2001.
- [25] R. C. Jain. The role of regularly open sets in general topology. Ph.D. Thesis, Meerut University, Meerut, 1980.
- [26] C. Klanarong, S. Sompong, and C. Boonpok. Upper and lower almost (τ_1, τ_2) continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(2):1244–1253, 2024.
- [27] K. Laprom, C. Boonpok, and C. Viriyapong. $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces. Journal of Mathematics, 2020:4020971, 2020.
- [28] T. Neubrunn. Strongly quasi-continuous multivalued mappings. General Topology and its Relations to Modern Analysis and Algebra VI (Prague 1986), Heldermann, Berlin, pages 351–359, 1988.
- [29] T. Noiri. Slightly β-continuous functions. International Journal of Mathematics and Mathematical Sciences, 28(8):469–478, 2001.
- [30] T. Noiri and G. I. Chae. A note on slightly semi-continuous functions. Bulletin of the Calcutta Mathematical Society, 92(2):87–92, 2000.
- [31] T. Noiri and V. Popa. Slightly m-continuous multifunctions. Bulletin of the Institute of Mathematics Academia Sinica (New Series), 1(4):485–501, 2006.
- [32] T. M. Nour. Slightly semi-continuous functions. Bulletin of the Calcutta Mathematical Society, 87(2):187–190, 1995.
- [33] M. C. Pal and P. Bhattacharyya. Faint precontinuous functions. Soochow Journal of Mathematics, 21(3):273–289, 1995.
- [34] V. Popa. Sur certain forms faibles de continuite pour les multifunctions. Revue Roumanie de Mathematiques Pures et Appliquees, 30:539–546, 1985.
- [35] V. Popa. Some properties of H-almost continuous multifunctions. Problemy Matematyczne, 10:9–26, 1988.
- [36] V. Popa and T. Noiri. On upper and lower β -continuous multifunctions. Real Analysis Exchange, 22:362–376, 1996/97.
- [37] P. Pue-on and C. Boonpok. $\theta(\Lambda, p)$ -continuity for functions. International Journal of Mathematics and Computer Science, 19(2):491–495, 2024.
- [38] P. Pue-on, S. Sompong, and C. Boonpok. Upper and lower (τ_1, τ_2) -continuous multifunctions. International Journal of Mathematics and Computer Science, 19(4):1305– 1310, 2024.
- [39] P. Sangviset, C. Boonpok, and C. Viriyapong. Slightly (m, μ) -continuous functions. Far East Journal of Mathematical Sciences, 85(2):165–176, 2014.
- [40] N. Srisarakham and C. Boonpok. Almost (Λ, p) -continuous functions. *International* Journal of Mathematics and Computer Science, 18(2):255–259, 2023.
- [41] N. Srisarakham and C. Boonpok. On characterizations of $\delta p(\Lambda, s)$ - \mathscr{D}_1 spaces. International Journal of Mathematics and Computer Science, 18(4):743–747, 2023.
- [42] M. Thongmoon and C. Boonpok. Strongly $\theta(\Lambda, p)$ -continuous functions. *International* Journal of Mathematics and Computer Science, 19(2):475–479, 2024.
- [43] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2) \alpha$ -continuity for multifunctions. *Journal of* Mathematics, 2020:6285763, 2020.
- [44] C. Viriyapong and C. Boonpok. (Λ, sp) -continuous functions. WSEAS Transactions on Mathematics, 21:380–385, 2022.
- [45] N. Viriyapong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -extremal disconnectedness in bitopological spaces. International Journal of Mathematics and Computer Science, 19(3):855–860, 2024.