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1. Introduction

In 1980, Jain [25] introduced the notion of slightly continuous functions. Nour [32]
defined slightly semi-continuous functions as a weak form of slight continuity and inves-
tigated some characterizations of slightly semi-continuous functions. Noiri and Chae [30]
have further investigated slightly semi-continuous functions. Pal and Bhattacharyya [33]
introduced and studied the concept of faintly precontinuous functions. Slight continu-
ity implies both slight semi-continuity and faint precontinuity. Noiri [29] introduced and
studied the notion of slight β-continuity which is implied by both slight semi-continuity
and faint precontinuity. Duangphui et al. [21] introduced and investigated the notion of
almost (µ, µ′)(m,n)-continuous functions. Thongmoon and Boonpok [42] introduced and
studied the notion of strongly θ(Λ, p)-continuous functions. Moreover, several charac-
terizations of almost (Λ, p)-continuous functions, almost strongly θ(Λ, p)-continuous func-
tions, θ(Λ, p)-continuous functions, weakly (Λ, b)-continuous functions, θ(⋆)-precontinuous
functions, ⋆-continuous functions, θ-I -continuous functions, almost (g,m)-continuous
functions, (Λ, sp)-continuous functions, δp(Λ, s)-continuous functions, (Λ, p(⋆))-continuous
functions, pairwise almost M -continuous functions, (τ1, τ2)-continuous functions, almost
(τ1, τ2)-continuous functions and weakly (τ1, τ2)-continuous functions were presented in
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[40], [11], [37], [16], [10], [9], [5], [2], [44], [41], [8], [3], [17], [15] and [12], respectively.
Sangviset et al. [39] introduced the notion of slightly (m,µ)-continuous functions as func-
tions from an m-spaces into a generalized topological space and investigated several char-
acterizations of slightly (m,µ)-continuous functions.

In 2005, Ekici [23] introduced and investigated the notion of upper (lower) slightly
α-continuous multifunctions as a generalization of upper (lower) α-continuous multifunc-
tions due to Neubrunn [28]. Popa and Noiri [36] introduced and studied the notion of
upper (lower) β-continuous multifunctions. Furthermore, Ekici [22] introduced and stud-
ied upper (lower) slightly β-continuous multifunctions as a generalization of upper (lower)
semicontinuous multifunctions, upper (lower) α-continuous multifunctions, upper (lower)
precontinuous multifunctions [35], upper (lower) quasi-continuous multifunctions [34], up-
per (lower) γ-continuous multifunctions [24], upper (lower) β-continuous multifunctions
and slightly β-continuous functions. Noiri and Popa [31] introduced the notion of slightly
m-continuous multifunctions and established the relationships amongm-continuity, almost
m-continuity, weak m-continuity and slight m-continuity for multifunctions. Laprom et al.
[27] introduced and investigated the notion of β(τ1, τ2)-continuous multifunctions. Further-
more, several characterizations of (τ1, τ2)δ-semicontinuous multifunctions, almost weakly
⋆-continuous multifunctions, weakly ⋆-continuous multifunctions, weakly α-⋆-continuous
multifunctions, ı⋆-continuous multifunctions, almost β(⋆)-continuous multifunctions, al-
most weakly (τ1, τ2)-continuous multifunctions, almost (τ1, τ2)-continuous multifunctions
and (τ1, τ2)α-continuous multifunctions were investigated in [6], [18], [4], [14], [13], [7], [19],
[26] and [43], respectively. Pue-on et al. [38] introduce and studied the notions of upper
and lower (τ1, τ2)-continuous multifunctions. In this paper, we introduce the concepts of
upper and lower slightly α(τ1, τ2)-continuous multifunctions. We also investigate several
characterizations of upper and lower slightly α(τ1, τ2)-continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [20] if
A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. Let A be
a subset of a bitopological space (X, τ1, τ2). The intersection of all τ1τ2-closed sets of X
containing A is called the τ1τ2-closure [20] of A and is denoted by τ1τ2-Cl(A). The union
of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [20] of A and is denoted
by τ1τ2-Int(A).

Lemma 1. [20] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-
closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).
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(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be τ1τ2-clopen [20] if A is
both τ1τ2-open and τ1τ2-closed. A subset A of a bitopological space (X, τ1, τ2) is said
to be (τ1, τ2)r-open [43] (resp. (τ1, τ2)s-open [6], (τ1, τ2)p-open [6], (τ1, τ2)β-open [6])
if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)),
A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-
open, (τ1, τ2)p-open, (τ1, τ2)β-open) set is called (τ1, τ2)r-closed (resp. (τ1, τ2)s-closed,
(τ1, τ2)p-closed, (τ1, τ2)β-closed). A subset A of a bitopological space (X, τ1, τ2) is said
to be α(τ1, τ2)-open [45] if A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))). The complement of an
α(τ1, τ2)-open set is said to be α(τ1, τ2)-closed. Let A be a subset of a bitopological
space (X, τ1, τ2). The intersection of all α(τ1, τ2)-closed sets of X containing A is called
the α(τ1, τ2)-closure of A and is denoted by α(τ1, τ2)-Cl(A). The union of all α(τ1, τ2)-
open sets of X contained in A is called the α(τ1, τ2)-interior of A and is denoted by
α(τ1, τ2)-Int(A).

Lemma 2. For subsets A and B of a bitopological space (X, τ1, τ2), the following properties
hold:

(1) A ⊆ α(τ1, τ2)-Cl(A) and α(τ1, τ2)-Cl(α(τ1, τ2)-Cl(A)) = α(τ1, τ2)-Cl(A).

(2) If A ⊆ B, then α(τ1, τ2)-Cl(A) ⊆ α(τ1, τ2)-Cl(B).

(3) α(τ1, τ2)-Cl(A) is α(τ1, τ2)-closed.

(4) A is α(τ1, τ2)-closed if and only if A = α(τ1, τ2)-Cl(A).

(5) α(τ1, τ2)-Cl(X −A) = X − α(τ1, τ2)-Int(A).

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y ,
following [1] we shall denote the upper and lower inverse of a set B of Y by F+(B) and
F−(B), respectively, that is, F+(B) = {x ∈ X | F (x) ⊆ B} and

F−(B) = {x ∈ X | F (x) ∩B ̸= ∅}.

In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x).
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3. Upper and lower slightly α(τ1, τ2)-continuous multifunctions

In this section, we introduce the notions of upper and lower slightly α(τ1, τ2)-continuous
multifunctions. Moreover, some characterizations of upper and lower slightly α(τ1, τ2)-
continuous multifunctions are discussed.

Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper slightly
α(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-clopen set V of Y containing
F (x), there exists an α(τ1, τ2)-open set U of X containing x such that F (U) ⊆ V . A
multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper slightly α(τ1, τ2)-continuous
if F has this property at every point of X.

Recall that a net (xγ) in a topological space (X, τ) is said to be eventually in the set
U ⊆ X if there exists an index γ0 ∈ ∇ such that xγ ∈ U for all γ ≥ γ0.

Definition 2. A sequence (xn) is called α(τ1, τ2)-converge to a point x if for every
α(τ1, τ2)-open set V containing x, there exists an index n0 such that for n ≥ n0, xn ∈ V .

Theorem 1. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper slightly α(τ1, τ2)-continuous;

(2) for each x ∈ X and for each σ1σ2-clopen set V of Y such that x ∈ F+(V ), there
exists an α(τ1, τ2)-open set U of X containing x such that U ⊆ F+(V );

(3) for each x ∈ X and for each σ1σ2-clopen set V of Y such that x ∈ F+(Y −V ), there
exists an α(τ1, τ2)-closed set H of X such that x ∈ X −H and F−(V ) ⊆ H;

(4) F+(V ) is α(τ1, τ2)-open in X for every σ1σ2-clopen set V of Y ;

(5) F−(V ) is α(τ1, τ2)-closed in X for every σ1σ2-clopen set V of Y ;

(6) F−(Y − V ) is α(τ1, τ2)-closed in X for every σ1σ2-clopen set V of Y ;

(7) F+(Y − V ) is α(τ1, τ2)-open in X for every σ1σ2-clopen set V of Y ;

(8) for each x ∈ X and for each net (xγ) which α(τ1, τ2)-converges to x in X and for
each σ1σ2-clopen set V of Y such that x ∈ F+(V ), the net (xγ) is eventually in
F+(V ).

Proof. (1) ⇔ (2): Obvious.
(2) ⇔ (3): Let x ∈ X and V be any σ1σ2-clopen set of Y such that x ∈ F+(Y − V ).

By (2), there exists an α(τ1, τ2)-open set U of X containing x such that U ⊆ F+(Y − V ).
Then, F−(V ) ⊆ X−U . Put H = X−U . Then, H is α(τ1, τ2)-closed in X and x ∈ X−H.
The converse is similar.

(1) ⇔ (4): Let V be any σ1σ2-clopen set of Y and x ∈ F+(V ). By (1), there exists an
α(τ1, τ2)-open set Ux of X containing x such that Ux ⊆ F+(V ). It follows that F+(V ) =
∪x∈F+(V )Ux and hence F+(V ) is α(τ1, τ2)-open in X. The converse can be shown easily.
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(4) ⇒ (5): Let V be any σ1σ2-clopen set of Y . Then, Y − V is σ1σ2-clopen in Y and
by (4), F+(Y − V ) = X − F−(V ) is α(τ1, τ2)-open in X. Thus, F−(V ) is α(τ1, τ2)-closed
in X.

(5) ⇒ (4): It is similar to that of (4) ⇒ (5).
(4) ⇔ (6) and (5) ⇔ (7): It follows from the fact that F−(Y −B) = X − F+(B) and

F+(Y −B) = X − F−(B) for every subset B of Y .
(1) ⇒ (8): Let (xγ) be a net which α(τ1, τ2)-converges to x in X and let V be any σ1σ2-

clopen set of Y such that x ∈ F+(V ). Since F is an upper slightly α(τ1, τ2)-continuous
multifunction, there exists an α(τ1, τ2)-open set U ofX containing x such that U ⊆ F+(V ).
Since (xγ) α(τ1, τ2)-converges to x, it follows that there exists an index γ0 ∈ ∇ such that
xγ ∈ U for all γ ≥ γ0. Therefore, xγ ∈ U ⊆ F+(V ) for all γ ≥ γ0. Thus, the net (xγ) is
eventually in F+(V ).

(8) ⇒ (1): Suppose that F is not upper slightly α(τ1, τ2)-continuous. There exists a
point x and a σ1σ2-clopen set V of Y with x ∈ F+(V ) such that U ̸⊆ F+(V ) for each
α(τ1, τ2)-open set U of X containing x. Let xU ∈ U and xU ̸∈ F+(V ) for each α(τ1, τ2)-
open set U of X containing x. Then, for the α(τ1, τ2)-neighbourhood net (xU ), (xU )
α(τ1, τ2)-converges to x, but (xU ) is not eventually in F+(V ). This is a contradiction.
Thus, F is upper slightly α(τ1, τ2)-continuous.

Definition 3. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called lower slightly α(τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-clopen set V of Y such that F (x) ∩ V ̸= ∅,
there exists an α(τ1, τ2)-open set U of X containing x such that F (z) ∩ V ̸= ∅ for each
z ∈ U . A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called lower slightly α(τ1, τ2)-
continuous if F has this property at every point of X.

Theorem 2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower slightly α(τ1, τ2)-continuous;

(2) for each x ∈ X and for each σ1σ2-clopen set V of Y such that x ∈ F−(V ), there
exists an α(τ1, τ2)-open set U of X containing x such that U ⊆ F−(V );

(3) for each x ∈ X and for each σ1σ2-clopen set V of Y such that x ∈ F−(Y −V ), there
exists an α(τ1, τ2)-closed set H of X such that x ∈ X −H and F+(V ) ⊆ H;

(4) F−(V ) is α(τ1, τ2)-open in X for every σ1σ2-clopen set V of Y ;

(5) F+(V ) is α(τ1, τ2)-closed in X for every σ1σ2-clopen set V of Y ;

(6) F+(Y − V ) is α(τ1, τ2)-closed in X for every σ1σ2-clopen set V of Y ;

(7) F−(Y − V ) is α(τ1, τ2)-open in X for every σ1σ2-clopen set V of Y ;

(8) for each x ∈ X and for each net (xγ) which α(τ1, τ2)-converges to x in X and for
each σ1σ2-clopen set V of Y such that x ∈ F−(V ), the net (xγ) is eventually in
F−(V ).
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Proof. The proof is similar to that of Theorem 1.

Definition 4. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be slightly α(τ1, τ2)-
continuous if for each x ∈ X and each σ1σ2-clopen set V of Y containing f(x), there
exists an α(τ1, τ2)-open set U of X containing x such that f(U) ⊆ V .

Corollary 1. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) f is slightly α(τ1, τ2)-continuous;

(2) f−1(V ) is α(τ1, τ2)-open in X for each σ1σ2-clopen set V of Y ;

(3) f−1(V ) is α(τ1, τ2)-closed in X for each σ1σ2-clopen set V of Y ;

(4) for each x ∈ X and for each σ1σ2-clopen set V of Y containing f(x), there exists an
α(τ1, τ2)-open set U of X containing x such that f(U) ⊆ V .

Definition 5. A bitopological space (X, τ1, τ2) is said to be mildly τ1τ2-compact if every
cover of X by τ1τ2-clopen sets of X has a finite subcover.

Definition 6. A bitopological space (X, τ1, τ2) is said to be α(τ1, τ2)-compact if if every
cover of X by α(τ1, τ2)-open sets of X has a finite subcover.

Theorem 3. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be an upper slightly α(τ1, τ2)-continuous sur-
jective multifunction such that F (x) is mildly σ1σ2-compact for each x ∈ X. If (X, τ1, τ2)
is α(τ1, τ2)-compact, then (Y, σ1, σ2) is mildly σ1σ2-compact.

Proof. Let {Vγ | γ ∈ Γ} be any σ1σ2-clopen cover of Y . Since F (x) is mildly σ1σ2-
compact for each x ∈ X, there exists a finite subset Γ(x) of Γ such that

F (x) ⊆ ∪{Vγ | γ ∈ Γ(x)}.

Put V (x) = ∪{Vγ | γ ∈ Γ(x)}. Since F is upper slightly α(τ1, τ2)-continuous, there exists
an α(τ1, τ2)-open set U(x) of X containing x such that F (U(x)) ⊆ V (x). Then, the family
{U(x) | x ∈ X} is an α(τ1, τ2)-open cover of X. Since (X, τ1, τ2) is α(τ1, τ2)-compact, there
exists a finite number of points, say, x1, x2, ..., xn inX such thatX = ∪{U(xi) | 1 ≤ i ≤ n}.
Thus,

Y = F (X) = ∪ {F (U(xi)) | 1 ≤ i ≤ n}
⊆ ∪{V (xi) | 1 ≤ i ≤ n}
⊆ ∪{Vγ | γ ∈ Γ(xi), 1 ≤ i ≤ n}.

This shows that (Y, σ1, σ2) is mildly σ1σ2-compact.

Recall that a bitopological space (X, τ1, τ2) is said to be τ1τ2-connected [20] if X cannot
be written as the union of two disjoint nonempty τ1τ2-open sets.
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Definition 7. A bitopological space (X, τ1, τ2) is said to be α(τ1, τ2)-connected provided
that X is not the union of two disjoint nonempty α(τ1, τ2)-open sets.

Definition 8. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called punctually τ1τ2-
connected if, for each x ∈ X, F (x) is σ1σ2-connected.

Theorem 4. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be an upper slightly α(τ1, τ2)-continuous
multifunction such that F is punctually τ1τ2-connected. If (X, τ1, τ2) is α(τ1, τ2)-connected,
then (Y, σ1, σ2) is σ1σ2-connected.

Proof. Suppose that (Y, σ1, σ2) is not σ1σ2-connected. Then, there exist nonempty
σ1σ2-open sets U and V of Y such that U∩V = ∅ and U∪V = Y . Since F is upper slightly
α(τ1, τ2)-continuous, F

+(U) and F+(V ) are α(τ1, τ2)-open sets of X. In view of the fact
that F+(U), F+(V ) are disjoint and F is punctually τ1τ2-connected, X = F+(U)∪F+(V )
is a partition of X. This is contrary to the α(τ1, τ2)-connectedness of (X, τ1, τ2). This
shows that (Y, σ1, σ2) is σ1σ2-connected.

Theorem 5. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a lower slightly α(τ1, τ2)-continuous
multifunction such that F is punctually τ1τ2-connected. If (X, τ1, τ2) is α(τ1, τ2)-connected,
then (Y, σ1, σ2) is σ1σ2-connected.

Proof. The proof is similar to that of Theorem 4.

Definition 9. A bitopological space (X, τ1, τ2) is called strongly (τ1, τ2)-normal if, for any
disjoint τ1τ2-closed sets F and K of X, there exist τ1τ2-clopen sets U and V of X such
that F ⊆ U , K ⊆ V and U ∩ V = ∅.

Definition 10. A bitopological space (X, τ1, τ2) is called α(τ1, τ2)-Hausdorff if, for each
pair of distinct points x and y in X, there exist disjoint α(τ1, τ2)-open sets U and V of X
such that x ∈ U and y ∈ V .

Definition 11. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called punctually (τ1, τ2)-
closed if, for each x ∈ X, F (x) is σ1σ2-closed.

Theorem 6. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be an upper slightly α(τ1, τ2)-continuous mul-
tifunction and punctually (τ1, τ2)-closed from a bitopological space (X, τ1, τ2) to a strongly
(σ1, σ2)-normal bitopological space (Y, σ1, σ2) and let F (x) ∩ F (y) = ∅ for each pair of
distinct points x, y ∈ X. Then, (X, τ1, τ2) is an α(τ1, τ2)-Hausdorff space.

Proof. Let x and y be any two distinct points in X. Then, we have F (x) ∩ F (y) = ∅.
Since (Y, σ1, σ2) is strongly (σ1, σ2)-normal, it follows that there exist disjoint σ1σ2-clopen
sets U and V of Y containing F (x) and F (y), respectively. Thus, F+(U) and F+(V )
are disjoint α(τ1, τ2)-open sets of X containing x and y, respectively. This shows that
(X, τ1, τ2) is an α(τ1, τ2)-Hausdorff space.
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4. Slight α(τ1, τ2)-continuity and other forms of α(τ1, τ2)-continuity

We begin this section by introducing the concept of upper α(τ1, τ2)-continuous multi-
functions.

Definition 12. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper α(τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-open set V of Y containing F (x), there
exists an α(τ1, τ2)-open set U of X containing x such that F (U) ⊆ V . A multifunction
F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper α(τ1, τ2)-continuous if F has this property
at each point of X.

Theorem 7. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper α(τ1, τ2)-continuous,
then F is upper slightly α(τ1, τ2)-continuous.

Proof. Let x ∈ X and V be any σ1σ2-clopen set of Y containing F (x). Since F is
upper α(τ1, τ2)-continuous, there exists an α(τ1, τ2)-open set of X containing x such that
F (U) ⊆ V . This shows that F is upper slightly α(τ1, τ2)-continuous.

Definition 13. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called lower α(τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-open set V of Y such that F (x) ∩ V ̸= ∅,
there exists an α(τ1, τ2)-open set U of X containing x such that F (z) ∩ V ̸= ∅ for every
z ∈ U . A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called lower α(τ1, τ2)-continuous if
F has this property at each point of X.

Theorem 8. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower α(τ1, τ2)-continuous,
then F is lower slightly α(τ1, τ2)-continuous.

Proof. The proof is similar to that of Theorem 7.

Recall that a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-extremally disconnected
[45] if the τ1τ2-closure of every τ1τ2-open set U of X is τ1τ2-open.

Lemma 3. [45] For a bitopological space (X, τ1, τ2), the following properties are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-extremally disconnected.

(2) Every (τ1, τ2)r-open set of X is τ1τ2-closed.

(3) Every (τ1, τ2)r-closed set of X is τ1τ2-open.

Definition 14. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper almost
α(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y containing F (x),
there exists an α(τ1, τ2)-open set U of X containing x such that

F (U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )).

A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper almost α(τ1, τ2)-continuous
if F has this property at each point of X.
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Lemma 4. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper almost α(τ1, τ2)-continuous;

(2) for each x ∈ X and each (σ1, σ2)r-open set V of Y containing F (x), there exists an
α(τ1, τ2)-open set of X containing x such that F (U) ⊆ V .

Theorem 9. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper slightly α(τ1, τ2)-
continuous and (Y, σ1, σ2) is (σ1, σ2)-extremally disconnected, then F is upper almost
α(τ1, τ2)-continuous.

Proof. Let x ∈ X and V be any (σ1, σ2)r-open set of Y containing F (x). Then, by
Lemma 3 we have V is σ1σ2-clopen in Y . Since F is upper slightly α(τ1, τ2)-continuous,
there exists an α(τ1, τ2)-open set of X containing x such that F (U) ⊆ V . By Lemma 4,
F is upper almost α(τ1, τ2)-continuous.

Definition 15. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called lower almost α(τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-open set V of Y such that F (x) ∩ V ̸= ∅,
there exists an α(τ1, τ2)-open set U of X containing x such that

σ1σ2-Int(σ1σ2-Cl(V )) ∩ F (z) ̸= ∅

for every z ∈ U . A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called lower almost
α(τ1, τ2)-continuous if F has this property at each point of X.

Lemma 5. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower almost α(τ1, τ2)-continuous;

(2) for each x ∈ X and each (σ1, σ2)r-open set V of Y such that F (x) ∩ V ̸= ∅, there
exists an α(τ1, τ2)-open set of X containing x such that U ⊆ F−(V ).

Theorem 10. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower slightly α(τ1, τ2)-
continuous and (Y, σ1, σ2) is (σ1, σ2)-extremally disconnected, then F is lower almost
α(τ1, τ2)-continuous.

Proof. By utilizing Lemma 5, this can be proved similarly to that of Theorem 9.

Definition 16. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper weakly
α(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y containing F (x),
there exists an α(τ1, τ2)-open set U of X containing x such that

F (U) ⊆ σ1σ2-Cl(V ).

A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper weakly α(τ1, τ2)-continuous
if F has this property at each point of X.
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Theorem 11. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper weakly α(τ1, τ2)-
continuous, then F is upper slightly α(τ1, τ2)-continuous.

Proof. Let x ∈ X and V be any σ1σ2-clopen set of Y containing F (x). Since F is upper
weakly α(τ1, τ2)-continuous, there exists an α(τ1, τ2)-open set of X containing x such that
F (U) ⊆ σ1σ2-Cl(V ) = V . This shows that F is upper slightly α(τ1, τ2)-continuous.

Definition 17. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called lower weakly α(τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-open set V of Y such that F (x) ∩ V ̸= ∅,
there exists an α(τ1, τ2)-open set U of X containing x such that

σ1σ2-Cl(V ) ∩ F (z) ̸= ∅

for every z ∈ U . A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called lower weakly
α(τ1, τ2)-continuous if F has this property at each point of X.

Theorem 12. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower weakly α(τ1, τ2)-
continuous, then F is lower slightly α(τ1, τ2)-continuous.

Proof. The proof is similar to that of Theorem 11.
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