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Abstract. Our main purpose is to introduce the concepts of upper and lower s-(τ1, τ2)p-continuous
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1. Introduction

In 1965, Lee [27] studied the notion of semiconnected functions. Kohli [24] intro-
duced the notion of s-continuous functions and investigated several characterizations of
semilocally connected spaces in terms of s-continuous functions. The class of s-continuity
is a generalization of continuity and semiconnectedness. Furthermore, Kohli [25] intro-
duced the concepts of s-regular spaces and completely s-regular spaces and proved that
s-regularity and complete s-regularity are preserved under certain s-continuous functions.
Duangphui et al. [21] introduced and investigated the notion of almost (µ, µ′)(m,n)-
continuous functions. Thongmoon and Boonpok [35] introduced and studied the no-
tion of strongly θ(Λ, p)-continuous functions. Moreover, several characterizations of al-
most (Λ, p)-continuous functions, almost strongly θ(Λ, p)-continuous functions, θ(Λ, p)-
continuous functions, weakly (Λ, b)-continuous functions, θ(⋆)-precontinuous functions,
⋆-continuous functions, θ-I -continuous functions, almost (g,m)-continuous functions,
(Λ, sp)-continuous functions, δp(Λ, s)-continuous functions, (Λ, p(⋆))-continuous functions,
pairwise almost M -continuous functions, (τ1, τ2)-continuous functions, almost (τ1, τ2)-
continuous functions and weakly (τ1, τ2)-continuous functions were presented in [33], [11],
[31], [16], [10], [9], [5], [2], [37], [34], [8], [3], [17], [15] and [12], respectively.
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In 1989, Lipski [28] extended the concept of s-continuous functions to the setting
of multifunctions. Popa [29] introduced the concept of precontinuous multifunctions and
showed that H-almost continuity and precontinuity are equivalent for multifunctions. Ew-
ert and Lipski [22] introduced and investigated the concept of s-quasi-continuous multi-
functions. Popa and Noiri [30] introduced and studied the notion of s-precontinuous multi-
functions as a generalization of s-continuous multifunctions and precontinuous multifunc-
tions. Laprom et al. [26] introduced and investigated the concept of β(τ1, τ2)-continuous
multifunctions. In particular, some characterizations of (τ1, τ2)δ-semicontinuous multi-
functions, almost weakly ⋆-continuous multifunctions, weakly ⋆-continuous multifunc-
tions, weakly α-⋆-continuous multifunctions, ı⋆-continuous multifunctions, almost β(⋆)-
continuous multifunctions, almost weakly (τ1, τ2)-continuous multifunctions, almost (τ1, τ2)-
continuous multifunctions and (τ1, τ2)α-continuous multifunctions were established in [6],
[18], [4], [14], [13], [7], [19], [23] and [36], respectively. Pue-on et al. [32] introduce and
studied the concepts of upper and lower (τ1, τ2)-continuous multifunctions. In this paper,
we introduce the notions of upper and lower s-(τ1, τ2)p-continuous multifunctions. We
also investigate several characterizations of upper and lower s-(τ1, τ2)p-continuous multi-
functions.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [20]
if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. The
intersection of all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [20] of A
and is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in A is called
the τ1τ2-interior [20] of A and is denoted by τ1τ2-Int(A).

Lemma 1. [20] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-
closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A bitopological space (X, τ1, τ2) is said to be τ1τ2-connected [20] if X cannot be writ-
ten as the union of two nonempty disjoint τ1τ2-open sets. A subset A of a bitopo-
logical space (X, τ1, τ2) is called (τ1, τ2)r-open [36] (resp. (τ1, τ2)s-open [6], (τ1, τ2)p-
open [6], (τ1, τ2)β-open [6], α(τ1, τ2)-open) [38]) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆
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τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A))), A ⊆
τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A)))). The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-open,
(τ1, τ2)p-open, (τ1, τ2)β-open, α(τ1, τ2)-open) set is called (τ1, τ2)r-closed (resp. (τ1, τ2)s-
closed, (τ1, τ2)p-closed, (τ1, τ2)β-closed, α(τ1, τ2)-closed). Let A be a subset of a bitopo-
logical space (X, τ1, τ2). The intersection of all (τ1, τ2)p-closed sets of X containing A
is called the (τ1, τ2)p-closure of A and is denoted by (τ1, τ2)-pCl(A). The union of all
(τ1, τ2)p-open sets of X contained in A is called the (τ1, τ2)p-interior of A and is denoted
by (τ1, τ2)-pInt(A).

Lemma 2. For a subset A of a bitopological space (X, τ1, τ2), the following properties
hold:

(1) A is (τ1, τ2)p-closed if and only if (τ1, τ2)-pCl(A) = A;

(2) (τ1, τ2)-pCl(A) = τ1τ2-Cl(τ1τ2-Int(A)) ∪A;

(3) (τ1, τ2)-pCl((τ1, τ2)-pCl(A)) = (τ1, τ2)-pCl(A).

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y ,
following [1] we shall denote the upper and lower inverse of a set B of Y by F+(B) and
F−(B), respectively, that is, F+(B) = {x ∈ X | F (x) ⊆ B} and

F−(B) = {x ∈ X | F (x) ∩B ̸= ∅}.

In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x).

3. Upper and lower s-(τ1, τ2)p-continuous multifunctions

In this section, we introduce the notions of upper and lower s-(τ1, τ2)p-continuous
multifunctions. Moreover, some characterizations of upper and lower s-(τ1, τ2)p-continuous
multifunctions are discussed.

Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper s-(τ1, τ2)p-
continuous if for x ∈ X and each σ1σ2-open set V of Y containing F (x) and having
σ1σ2-connected complement, there exists a (τ1, τ2)p-open set U of X containing x such
that F (U) ⊆ V .

Theorem 1. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper s-(τ1, τ2)p-continuous;

(2) F+(V ) is (τ1, τ2)p-open in X for every σ1σ2-open set V of Y having σ1σ2-connected
complement;
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(3) F−(K) is (τ1, τ2)p-closed in X for every σ1σ2-connected σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(τ1τ2-Int(F
−(B))) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y having the

σ1σ2-connected σ1σ2-closure;

(5) (τ1, τ2)-pCl(F
−(B)) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y having the σ1σ2-

connected σ1σ2-closure;

(6) F+(σ1σ2-Int(B)) ⊆ (τ1, τ2)-pInt(F
+(B)) for every subset B of Y such that

Y − σ1σ2-Int(B)

is σ1σ2-connected.

Proof. (1) ⇒ (2): Let V be any σ1σ2-open set of Y having σ1σ2-connected complement
and x ∈ F+(V ). Then, there exists a (τ1, τ2)p-open set U of X containing x such that
F (U) ⊆ V . Therefore, we have x ∈ U ⊆ τ1τ2-Int(τ1τ2-Cl(F

+(V ))). Thus,

F+(V ) ⊆ τ1τ2-Int(τ1τ2-Cl(F
+(V )))

and hence F+(V ) is (τ1, τ2)p-open in X.
(2) ⇒ (3): The proof follows immediately from the fact that F+(Y −B) = X−F−(B)

for every subset B of Y .
(3) ⇒ (4): Let B be any subset of Y having the σ1σ2-connected σ1σ2-closure. Then,

F−(σ1σ2-Cl(B)) is a (τ1, τ2)p-closed set of X. By Lemma 2, we have

τ1τ2-Cl(τ1τ2-Int(F
−(B))) ⊆ τ1τ2-Cl(τ1τ2-Int(F

−(σ1σ2-Cl(B))))

⊆ (τ1, τ2)-pCl(F
−(σ1σ2-Cl(B)))

= F−(σ1σ2-Cl(B)).

(4) ⇒ (5): Let B be any subset of Y having the σ1σ2-connected σ1σ2-closure. It
follows from Lemma 2 that

(τ1, τ2)-pCl(F
−(B)) = F−(B) ∪ τ1τ2-Cl(τ1τ2-Int(F

−(B)))

⊆ F−(σ1σ2-Cl(B)).

(5) ⇒ (6): Let B be any subset of Y such that Y −σ1σ2-Int(B) is σ1σ2-connected. By
(5),

X − (τ1, τ2)-Int(F
+(B)) = (τ1, τ2)-pCl(X − F+(B))

= (τ1, τ2)-pCl(F
−(Y −B))

⊆ F−(σ1σ2-Cl(Y −B))

= F−(Y − σ1σ2-Int(B))

= X − F+(σ1σ2-Int(B)).
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Thus, F+(σ1σ2-Int(B)) ⊆ (τ1, τ2)-pInt(F
+(B)).

(6) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y containing F (x) and having
σ1σ2-connected complement. By (6), we have

F+(V ) = F+(σ1σ2-Int(V )) ⊆ (τ1, τ2)-pInt(F
+(V )).

Put U = (τ1, τ2)-pInt(F
+(V )). Then, U is a (τ1, τ2)p-open set of X containing x such that

F (U) ⊆ V . This shows that F is upper s-(τ1, τ2)p-continuous.

Definition 2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower s-(τ1, τ2)p-
continuous if for each x ∈ X and each σ1σ2-open set V of Y having σ1σ2-connected
complement such that F (x)∩ V ̸= ∅, there exists a (τ1, τ2)p-open set U of X containing x
such that F (z) ∩ V ̸= ∅ for each z ∈ U .

Theorem 2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower s-(τ1, τ2)p-continuous;

(2) F−(V ) is (τ1, τ2)p-open in X for every σ1σ2-open set V of Y having σ1σ2-connected
complement;

(3) F+(K) is (τ1, τ2)p-closed in X for every σ1σ2-connected σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(τ1τ2-Int(F
+(B))) ⊆ F+(σ1σ2-Cl(B)) for every subset B of Y having the

σ1σ2-connected σ1σ2-closure;

(5) (τ1, τ2)-pCl(F
+(B)) ⊆ F+(σ1σ2-Cl(B)) for every subset B of Y having the σ1σ2-

connected σ1σ2-closure;

(6) F−(σ1σ2-Int(B)) ⊆ (τ1, τ2)-pInt(F
−(B)) for every subset B of Y such that

Y − σ1σ2-Int(B)

is σ1σ2-connected.

Proof. The proof is similar to that of Theorem 1.

Definition 3. A function : (X, τ1, τ2) → (Y, σ1, σ2) is said to be s-(τ1, τ2)p-continuous if
for each point x ∈ X and each σ1σ2-open set V of Y containing f(x) and having σ1σ2-
connected complement, there exists a (τ1, τ2)p-open set U of X containing x such that
f(U) ⊆ V .

Corollary 1. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) f is s-(τ1, τ2)p-continuous;



N. Viriyapong, S. Sompong, C. Boonpok / Eur. J. Pure Appl. Math, 17 (3) (2024), 2210-2220 2215

(2) f−1(V ) is (τ1, τ2)p-open in X for every σ1σ2-open set V of Y having σ1σ2-connected
complement;

(3) f−1(K) is (τ1, τ2)p-closed in X for every σ1σ2-connected σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(τ1τ2-Int(f
−1(B))) ⊆ f−1(σ1σ2-Cl(B)) for every subset B of Y having the

σ1σ2-connected σ1σ2-closure;

(5) (τ1, τ2)-pCl(f
−1(B)) ⊆ f−1(σ1σ2-Cl(B)) for every subset B of Y having the σ1σ2-

connected σ1σ2-closure;

(6) f−1(σ1σ2-Int(B)) ⊆ (τ1, τ2)-pInt(f
−1(B)) for every subset B of Y such that

Y − σ1σ2-Int(B)

is σ1σ2-connected.

Corollary 2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper s-(τ1, τ2)p-continuous
if F−(V ) is (τ1, τ2)p-closed in X for every σ1σ2-connected set V of Y .

Proof. Let V be any σ1σ2-open set of Y having σ1σ2-connected complement. Then,
Y −V is σ1σ2-connected and F−(Y −V ) is (τ1, τ2)p-closed in X. Thus, F+(V ) is (τ1, τ2)p-
open in X and by Theorem 1, F is upper s-(τ1, τ2)p-continuous.

Corollary 3. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower s-(τ1, τ2)p-continuous
if F+(V ) is (τ1, τ2)p-closed in X for every σ1σ2-connected set V of Y .

Proof. The proof is similar to that of Corollary 2.

For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), by ClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2) [20]
we denote a multifunction defined as follows: ClF⊛(x) = σ1σ2-Cl(F (x)) for each x ∈ X.

Definition 4. [20] A subset A of a bitopological space (X, τ1, τ2) is said to be:

(1) τ1τ2-paracompact if every cover of A by τ1τ2-open sets of X is refined by a cover of
A which consists of τ1τ2-open sets of X and is τ1τ2-locally finite in X;

(2) τ1τ2-regular if for each x ∈ A and each τ1τ2-open set U of X containing x, there
exists a τ1τ2-open set V of X such that x ∈ V ⊆ τ1τ2-Cl(V ) ⊆ U .

Lemma 3. [20] If A is a τ1τ2-regular τ1τ2-paracompact set of a bitopological space (X, τ1, τ2)
and U is a τ1τ2-open neighbourhood of A, then there exists a τ1τ2-open set V of X such
that A ⊆ V ⊆ τ1τ2-Cl(V ) ⊆ U .

Lemma 4. [20] If F : (X, τ1, τ2) → (Y, σ1, σ2) is a multifunction such that F (x) is τ1τ2-
regular and τ1τ2-paracompact for each x ∈ X, then ClF+

⊛ (V ) = F+(V ) for each σ1σ2-open
set V of Y .
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Theorem 3. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction such that F (x) is σ1σ2-
paracompact and σ1σ2-regular for each x ∈ X. Then, the following properties are equiva-
lent:

(1) F is upper s-(τ1, τ2)p-continuous;

(2) ClF⊛ is upper s-(τ1, τ2)p-continuous.

Proof. We put G = ClF⊛. Suppose that F is upper s-(τ1, τ2)p-continuous. Let
x ∈ X and V be any σ1σ2-open set of Y containing G(x) and having σ1σ2-connected
complement. By Lemma 4, we have x ∈ G+(V ) = F+(V ) and hence there exists a τ1τ2-
open set U of X containing x such that F (U) ⊆ V . Since F (z) is σ1σ2-paracompact and
σ1σ2-regular for each z ∈ U , by Lemma 3 there exists a τ1τ2-open set W of X such that
F (z) ⊆ W ⊆ σ1σ2-Cl(W ) ⊆ V ; hence G(z) ⊆ σ1σ2-Cl(W ) ⊆ V for each z ∈ U . Thus,
G(U) ⊆ V and hence G is upper s-(τ1, τ2)p-continuous.

Conversely, suppose that G is upper s-(τ1, τ2)p-continuous. Let x ∈ X and V be any
σ1σ2-open set of Y containing F (x) and having σ1σ2-connected complement. By Lemma
4, we have x ∈ F+(V ) = G+(V ) and hence G(x) ⊆ V . There exists a τ1τ2-open set U
of X containing x such that G(U) ⊆ V . Thus, U ⊆ G+(V ) = F+(V ) and so F (U) ⊆ V .
This shows that F is upper s-(τ1, τ2)p-continuous.

Lemma 5. [20] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), ClF
−
⊛ (V ) = F−(V ) for

each σ1σ2-open set V of Y .

Theorem 4. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower s-(τ1, τ2)p-continuous;

(2) ClF⊛ is lower s-(τ1, τ2)p-continuous.

Proof. By using Lemma 5 this can be shown similarly to that of Theorem 3.

The (τ1, τ2)p-frontier of a subset A of a bitopological space (X, τ1, τ2), denoted by
(τ1, τ2)-pfr(A), is defined by

(τ1, τ2)-pfr(A) = (τ1, τ2)-pCl(A) ∩ (τ1, τ2)-pCl(X −A)

= (τ1, τ2)-pCl(A)− (τ1, τ2)-pInt(A).

Theorem 5. The set of all points x of X at which a multifunction

F : (X, τ1, τ2) → (Y, σ1, σ2)

is not upper s-(τ1, τ2)p-continuous is identical with the union of the (τ1, τ2)p-frontier of the
upper inverse images of the σ1σ2-closures of σ1σ2-open sets containing F (x) and having
σ1σ2-connected complement.
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Proof. Suppose that F is not upper s-(τ1, τ2)p-continuous at x ∈ X. Then, there exists
a σ1σ2-open set V of Y containing F (x) and having σ1σ2-connected complement such that
U ∩ (X−F+(V )) ̸= ∅ for every (τ1, τ2)p-open set U of X containing x. Therefore, we have
x ∈ (τ1, τ2)-pCl(X − F+(V )). On the other hand, we have

x ∈ F+(V ) ⊆ (τ1, τ2)-pCl(F
+(V ))

and hence x ∈ (τ1, τ2)-pfr(F
+(V )).

Conversely, suppose that V is a σ1σ2-open set of Y containing F (x) and having
σ1σ2-connected complement such that x ∈ (τ1, τ2)-pfr(F

+(V )). If F is upper s-(τ1, τ2)p-
continuous at x ∈ X, there exists a (τ1, τ2)p-open set U of X containing x such that
U ⊆ F+(V ); hence x ∈ (τ1, τ2)-pInt(F

+(V )). This is a contradiction and so F is not
upper s-(τ1, τ2)p-continuous at x.

Theorem 6. The set of all points x of X at which a multifunction

F : (X, τ1, τ2) → (Y, σ1, σ2)

is not lower s-(τ1, τ2)p-continuous is identical with the union of the (τ1, τ2)p-frontier of
the lower inverse images of the σ1σ2-closures of σ1σ2-open sets meeting F (x) and having
σ1σ2-connected complement.

Proof. The proof is similar to that of Theorem 5.

4. Conclusion

This paper deals with the notions of upper and lower s-(τ1, τ2)p-continuous multifunc-
tions. Furthermore, some characterizations and several properties concerning upper and
lower s-(τ1, τ2)p-continuous multifunctions are established. In the upcoming work, we plan
to apply the concepts initiated in this paper to study a new generalization of upper (lower)
s-(τ1, τ2)p-continuous multifunctions, namely upper (lower) almost s-(τ1, τ2)p-continuous
multifunctions. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called upper (lower) al-
most s-(τ1, τ2)p-continuous multifunctions if for each x ∈ X and each σ1σ2-open set V
of Y having σ1σ2-connected complement such that x ∈ F+(V ) (x ∈ F−(V )), there ex-
ists a (τ1, τ2)p-open set U of X containing x such that U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V )))
(U ⊆ F−(σ1σ2-Int(σ1σ2-Cl(V )))). The class of upper (lower) s-(τ1, τ2)p-continuous mul-
tifunctions included in the class of upper (lower) almost s-(τ1, τ2)p-continuous multifunc-
tions.
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