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Abstract. Chemical graph theory can be studied with the aid of mathematical tools called m-
polynomials. M-Polynomials offer a potent tool for computing different topological indices associ-
ated with vertex degrees and analyzing degree-based structural information in graphs. By counting
specific substructure types within them, they are able to encode information about the structure
of molecules or networks. In this article, we have developed M-Polynomials with the help of differ-
ent topological invariants such as first Zagreb (M1(β)), second Zagreb (M2(β)), second modified
Zagreb (Mm

2 (β)), inverse sum (I(β)), harmonic index (H(β)) and Randic index (Rα0
(β)) for the

molecular structures of Triangular oxide TOX(r), Regular triangular oxide RTOX(r), Triangular
silicate TSL(r) & Regular triangular silicate RTSL(r) networks to introduce new closed formulas
to get better understanding the applications of M-Polynomials and topological indices in mathe-
matical chemistry especially in the field of QSAR and QSPR study with the help of some software
like MATLAB. We have also discussed the graphical behaviors of the above-mentioned structures.
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1. Introduction

A topological invariant in graph theory is a numerical or mathematical property of a
graph that does not change while the graph is continuously deformed, provided that the
deformation does not cause edges or vertices to break or glue together. As long as no
new connections are made or old ones are severed, the graph can be deformed in many
ways, such as bending, shrinking, or stretching. Consider a graph as a flexible model.
The fundamental characteristics reflected by the topological invariant will not change no
matter how you bend and twist it. This is because the connections between the vertices,
or nodes, are what hold the structure together. A successful approach for computing
closed-form expressions for an assortment of degree-based topological indices is to use M-
polynomials. Rather than computing each index independently, the M-polynomial offers
a single formula that may be used to generate various topological indices. Because of
this, M-Polynomials are an effective tool for researching the connection between chemical
characteristics and graph structure. Topological invariants are very effective to calculate
the chemical, physical, biological properties of a chemical compound. It has so many uses
in chemistry, information, biology, quantitative structure-property relationships, online
networking software, industries, electronics and medicines.

Definition 1. Let β be the graph of the molecular structure of the chemical compound
then its M-polynomial can be computed as:

M(β, x0, y0) =
∑

δ0≤i≤j≤∆0

mij(β)x
i
0y

j
0 (1)

Where δ0 = min{dv0 : v0 ∈ V0(β)}, ∆0 = max{dv0 : v0 ∈ V0(β)}, and mij(β) the number
of the edges u0v0 ∈ E0(β) such that du0 , dv0 = i, j.

In 1947, Weiner [4–6] developed the formula for the boiling point of alkanes which is given
by: αW (⅁) + βP3 + γ, for empirical constants α, β and γ, Weiner index W (⅁) and path’s
length P3. Bollobas and Erdos [8, 9] presented the general Randic index and has been
studied by both mathematicians and chemists [11, 24, 26]. For more detail, we can study
the book [27].
The general Randic index is computed as

Rα0(β) =
∑

u0v0∈E(β)

(du0dv0)
α. (2)

The Randic index is a very essential index among all indices such as [27, 28, 30]. Gutman
and Trinajstic [16] introduced first Zagreb and second Zagreb indices by

M1(β) =
∑

u0v0∈E(β)

(du0 + dv0) (3)

and
M2(β) =

∑
u0v0∈E(β)

(du0 × dv0), (4)
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respectively. For more detail [2, 14] are referred. The second modified Zagreb index is
formulated by

mM2(β) =
∑

u0v0∈E(β)

1

du0dv0
(5)

The symmetric division index (SDD) is the one among 148 discrete Adriatic indices and is
a good predictor of the total surface area for polychlorobiphenyls, see [1]. The symmetric
division index of a connected graph β, is determined as

SDD(β) =
∑

u0v0∈E(β)

{
min(du0 , dv0)

max(du0 , dv0)
+

max(du0 , dv0)

min(du0 , dv0)

}
(6)

Harmonic index is

H(β) =
∑

u0v0∈E(β)

2

du0 + dv0
(7)

The inverse sum index [13, 20] is formulated as

I(β) =
∑

u0v0∈E(β)

du0dv0
du0 + dv0

(8)

The augmented Zagreb index of β presented by Furtula et al. [19] and is computed as

A(β) =
∑

u0v0∈E(β)

{
du0dv0

du0 + dv0 − 2

}3

(9)

The above equation is also known as the minimal augmented Zagreb.

2. Material and Methods

In this study we calculate M-polynomial for Triangular oxide TOX(r), Regular trian-
gular oxide RTOX(r), Triangular silicate TSL(r) & Regular triangular silicate RTSL(r)
networks. M-Polynomial was invented by Klavzar and Deutsch. They also give some op-
erators to find degree based topological indices directly from the M-polynomial [15]. To
get different topological indices [17, 21] with their M-Polynomials we use the following
table.

Table-1: Shows Topological indices with their corresponding M-Polynomials

Topological indices M-Polynomials

First Zagreb (M1(β)) (Da +Db)(M(β; a, b))|a=b=1

Second Zagreb (M2(β)) (DaDb)(M(β; a, b))|a=b=1

Second Modified Zagreb (Mm
2 (β)) (SaSb)(M(β; a, b))|a=b=1

Inverse sum I(β) SaJDaDb(M(β; a, b))|a=b=1

Harmonic index H (β) 2SaJ(M(β; a, b))|a=b=1

Randic index Rα0(β) (Dα0
a Dα0

b )(M(β); a, b))|a=b=1
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Da =
a∂f(a, b)

da
, Db =

b∂f(a, b)

db
, Sa =

∫ a

0

f(t, b)

t
dt,

Sb =

∫ b

0

f(a, t)

t
dt, J(f(a, b)) = f(a, a).

3. Motivation

In this paper, motivated by the regularity notion, we introduce a uniformity notion
of graphs conceived depending on the degrees of vertices. It is natural to try to relate
the regularity to uniformity of a graph. Some properties and fundamental structural
characteristics of these graphs are studied. It is possible that the properties of the graphs,
that we are defining in this paper may have some applications in chemistry as well as in
other areas. The following results will be useful in the proof of our main results.

4. Main Results

In this section of the article, we derive the closed formulas using M-Polynomials for
the molecular structures of Triangular oxide TOX(r), Regular triangular oxide RTOX(r),
Triangular silicate TSL(r) & Regular triangular silicate RTSL(r) networks.

4.1. Triangular oxide network TOX(r)

Lemma 1. The cardinalities of the graph TOX(r) are
r2 + 3r + 2

2
with respect to node

set

and
3(r2 + r)

2
with respect to edge set.

Theorem 1. For TOX(r), the M-polynomial is

M(TOX (r); a, b) = 6a2b4 + 3(r − 1)a4b4 + 6(r − 2)a4b4 +
3((r − 3)2 + (r − 3))

2
a6b6 (10)

Proof : Let TOX(r) be a graph. Then we have by above lemma

|V (TOX (r))| = r2 + 3r + 2

2

|E(TOX (r))| = 3(r2 + r)

2

Now, the TOX(r) has four edge partitions such as:

|E1(TOX (r))| = {e = lm ∈ E(TOX (r)) : dl = 2, dm = 4}
|E2(TOX (r))| = {e = lm ∈ E(TOX (r)) : dl = dm = 4}
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|E3(TOX (r))| = {e = lm ∈ E(TOX (r)) : dl = 4, dm = 6}
|E4(TOX (r))| = {e = lm ∈ E(TOX (r)) : dl = dm = 6}

Where dl, dm are degree of edges l, m respectively.
We get

|E1(TOX (r))| = 6, |E2(TOX (r))| = 3(r − 1), |E3(TOX (r))| = 6(r − 2),

|E4(TOX (r))| =
3((r − 3)2) + (r − 3)

2

Now using the definition of M-polynomial

M(TOX (r); a, b) =
∑
r≤s

mrs(TOX (r))xrys

=
∑
2≤4

m24(TOX (r))a2b4 +
∑
4≤4

m44(TOX (r))a4b4

+
∑
4≤6

m46(TOX (r))a4b6 +
∑
6≤6

m66(TOX (r))a6b6

=
∑

lm∈E1

m24(TOX (r))a2b4 +
∑

lm∈E2

m44(TOX (r))a4b4

+
∑

lm∈E3

m46(TOX (r))a4b6 +
∑

lm∈E4

m66(TOX (r))a6b6

= |E1|a2b4 + |E2|a4b4 + |E3|a4b6 + |E4|a6b6

= 6a2b4 + 3(r − 1)a4b4 + 6(r − 2)a4b6 +
3((r − 3)2 + (r − 3))

2
a6b6

Theorem 2. For triangle oxide network TOX(r) some degree based topological indices are

M1(TOX (r)) = (Da +Db)(f(a, b)|a=b=1 = 18r2 − 6r

M2(TOX (r)) = (DaDb)(f(a, b)|a=b=1 = 54r2 − 78r + 36

Mm
2 (TOX (r)) = (SaSb)(f(a, b)|a=b=1 =

r2

24
+

11

48
r +

1

16

H(TOX (r)) = (2SaJ)(f(a, b)|a=b=1 =
r2

4
+

7

10
r +

7

20

I(TOX (r)) = (SaJDaDb)(f(a, b)|a=b=1 =
9

2
r2 +

21

10
r +

1

5
Rα(TOX (r)) = (Dα

aD
α
b )(f(a, b)|a=b=1 = 6× 8α + 3× 16α(r − 1)

+ 6× 24α(r − 2) +
3

2
× 108α(r2 − 5r + 6)

Proof : As the M-polynomial of TOX(r) is

M(TOX (r); a, b) = 6a2b4 + 3(r − 1)a4b4 + 6(r − 2)a4b6 +
3((r − 3)2 + (r − 3))

2
a6b6
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= f(a, b)

then

Da(f(a, b)) = 12a2b4 + 12(r − 1)a4b4 + 24(r − 2)a4b6 + 9((r − 3)2 + (r − 3))a6b6

Db(f(a, b)) = 24a2b4 + 12(r − 1)a4b4 + 36(r − 2)a4b6 + 9((r − 3)2 + (r − 3))a6b6

(Dα
aD

α
b ) = 6× 8αa2b4 + 3× 16αa4b4 + 6× 24α(r − 2)a4b6

+
3

2
× 108α((r − 3)2 + (r − 3))a6b6

Sa(f(a, b)) = 3a2b4 +
3

4
(r − 1)a4b4 +

3

2
(r − 2)a4b6 +

((r − 3)2 + (r − 3))

4
a6b6

Sb(f(a, b)) =
3

2
a2b4 +

3

4
(r − 1)a4b4 + (r − 2)a4b6 +

((r − 3)2 + (r − 3))

4
a6b6

SaSb(f(a, b)) =
1

2
a2b4 +

3

16
(r − 1)a4b4 +

1

4
(r − 2)a4b6 +

((r − 3)2 + (r − 3))

24
a6b6

J(f(a, b)) = 6a6 + 3(r − 1)a8 + 6(r − 2)a10 +
3((r − 3)2 + (r − 3))

2
a12

SaJ(f(a, b)) = a6 +
3

8
(r − 1)a8 +

3

5
(r − 2)a10 +

1

8
((r − 3)2 + (r − 3))a12

SaJDaDb(f(a, b)) = 8a6 + 6(r − 1)a8 +
72

5
(r − 2)a10 +

18

4
((r − 3)2 + (r − 3))

Now, by using the operators of table

(1) First Zagreb index

M1(TOX (r)) = (Dx +Db)(f(a, b)|a=b=1 = 18r2 − 6r

(2) Second Zagreb index

M2(TOX (r)) = (DaDb)(f(a, b)|a=b=1 = 54r2 − 78r + 36

(3) Second Modified Zagreb index

Mm
2 (TOX (r)) = (SaSb)(f(a, b)|a=b=1 =

r2

24
+

11

48
r +

1

16

(4) Harmonic index

H(TOX (r)) = (2SaJ)(f(a, b)|a=b=1 =
r2

4
+

7

10
r +

7

20

(5) Inverse sum

I(TOX (r)) = (SaJDaDb)(f(a, b)|a=b=1 =
9

2
r2 +

21

10
r +

1

5
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(6) Randic index

Rα(TOX (r)) = (Dα
aD

α
b )(f(a, b)|a=b=1 = 6× 8α + 3× 16α(r − 1)

+ 6× 24α(r − 2) +
3

2
× 108α(r2 − 5r + 6)

4.2. Regular triangular oxide network RTOX(r)

Lemma 2. The regular triangular oxide network RTOX(r) has 3r2 +6r edges and
3

2
r2 +

9

2
r + 1 vertices.

Theorem 3. The M-polynomial for a regular triangular oxide network RTOX(r) is

M(RTOX (r); a, b) = 2a2b2 + 6ra2b4 + (3r2 − 2)a4b4 (11)

Proof : From the above lemma

|V (RTOX (r)| =
3

2
r2 +

9

2
r + 1

|E(RTOX (r)| = 3r2 + 6r

RTOX(r) has three edge partitions as

|E1(RTOX (r))| = {e = lm ∈ E(RTOX (r) : dl = dm = 2}
|E2(RTOX (r))| = {e = lm ∈ E(RTOX (r) : dl = 2, dm = 4}
|E3(RTOX (r))| = {e = lm ∈ E(RTOX (r) : dl = dm = 4}

Where,

|E1(RTOX (r))| = 2, |E2(RTOX (r))| = 6r, |E3(RTOX (r))| = 3r2 − 2

From the definition of M-polynomial

M(RTOX (r); a, b) =
∑
r≤s

mrs(RTOX (r))arbs

=
∑
2≤2

m22(RTOX (r))a2b2 +
∑
2≤4

m24(RTOX (r))a2b4

+
∑
4≤4

m44(RTOX (r))a4b4

=
∑

lm∈E1

m22(RTOX (r))a2b2 +
∑

lm∈E2

m24(RTOX (r))a2b4

+
∑

lm∈E3

m44(RTOX (r))a4b4
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= |E1|a2b2 + |E2|a2b4 + |E3|a4b4

= 2a2b2 + 6ra2b4 + (3r2 − 2)a4b4

Theorem 4. For a regular triangular oxide network RTOX(r) some degree based topolog-
ical indices are

M1(RTOX (r)) = (Da +Db)(f(a, b)|a=b=1 = 24r2 + 36r − 8

M2(RTOX (r)) = (DaDb)(f(a, b)|a=b=1 = 48r2 + 48r − 24

Mm
2 (RTOX (r)) = (SaSb)(f(a, b)|a=b=1 =

3

16
r2 +

3

4
r +

3

8

H(RTOX (r)) = (2SaJ)(f(a, b)|a=b=1 =
3

4
r2 + 2r +

1

2
I(RTOX (r)) = SaJDaDb(M(G; a, b))|a=b=1 = 6r2 + 8r − 2

Rα(RTOX (r)) = (Dα
aD

α
b )(f(a, b))|a=b=1 = 2× 4α + 6× 8αr + (3r2 − 2)× 16α

Proof : From the previous theorem

M(RTOX (r); a, b) = f(a, b) = 2a2b2 + 6ra2b4 + (3r2 − 2)a4b4

then,

Da(f(a, b)) = 4a2b2 + 12ra2b4 + 4(3r2 − 2)a4b4

Db(f(a, b)) = 4a2b2 + 24ra2b4 + 4(3r2 − 2)a4b4

DaDb(f(a, b)) = 8a2b2 + 48ra2b4 + 16(3r2 − 2)a4b4

Sa(f(a, b)) = a2b2 + 3ra2b4 +
(3r2 − 2)

4
a4b4

Sb(f(a, b)) = a2b2 +
3

2
ra2b4 +

(3r2 − 2)

4
a4b4

SaSb(f(a, b)) =
1

2
a2b2 +

3

4
ra2b4 +

(3r2 − 2)

16
a4b4

Dα
aD

α
b (f(a, b)) = 2× 4α + 6× 8αr + (3r2 − 2)× 16α

J(f(a, b)) = f(a, a) = 2a4 + 6ra6 + (3r2 − 2)a8

SaJ(f(a, b)) =
1

2
a4 + ra6 +

(3r2 − 2)

8
a8

SaJDaDb(f(a, b)) = 2a4 + 8ra6 + 2(3r2 − 2)a8

Now using the operators given in table

(1) First Zagreb index

M1(RTOX (r)) = (Da +Db)(f(a, b))|a=b=1 = 24r2 + 36r − 8
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(2) Second Zagreb index

M2(RTOX (r)) = (DaDb)(f(a, b))|a=b=1 = 48r2 + 48r − 24

(3) Second Modified Zagreb index

Mm
2 (RTOX (r)) = (SaSb)(f(a, b))|a=b=1 =

3

16
r2 +

3

4
r +

3

8

(4) Harmonic index

H(RTOX (r)) = (2SaJ)(f(a, b))|a=b=1 =
3

4
r2 + 2r +

1

2

(5) Inverse sum

I(RTOX (r)) = (SaJDaDb)(f(a, b))|a=b=16r
2 + 8r − 2

(6) Randic index

Rα(RTOX (r)) = (Dα
aD

α
b )(f(a, b))|a=b=1 = 2 × 4α + 6 × 8αr + (3r2 − 2) × 16α

4.3. Triangular silicate network TSL(r)

Lemma 3. The triangular silicate network TSL(r) has 3(r2 + r) edges and r2 + 2r + 1
vertices.

Theorem 5. The M-polynomial of triangular silicate network TSL(r) for r ≥ 4 is:

M(TSL(r); a, b) = 3a3b3 + 6ra3b6 + 3(r − 1)a6b6 +
3

4
(r2 − 3r + 2)a3b9

+6(r − 2)a6b9 +
3

4
(r2 − 5r + 6)a9b9

Proof From the above lemma we have

|V (TSL(r))| = r2 + 2r + 1

|E(TSL(r))| = 3(r2 + r)

We know that TSL(r) has six edge partitions

|E1(TSL(r))| = {e = lm ∈ E(TSL(r) : dl = dm = 3}
|E2(TSL(r))| = {e = lm ∈ E(TSL(r) : dl = 3, dm = 6}
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|E3(TSL(r))| = {e = lm ∈ E(TSL(r) : dl = dm = 6}
|E4(TSL(r))| = {e = lm ∈ E(TSL(r) : dl = 3, dm = 9}
|E5(TSL(r))| = {e = lm ∈ E(TSL(r) : dl = 6, dm = 9}
|E6(TSL(r))| = {e = lm ∈ E(TSL(r) : dl = dm = 9}

|E1(TSL(r))| = 3 , |E2(TSL(r))| =6r, |E3(TSL(r))| = 3(r − 1),
|E4(TSL(r))| =3

2(r
2 − 3r + 2), |E5(TSL(r))| = 6(r − 2) , |E6(TSL(r))| =3

2(r
2 − 5r + 6)

Now putting the values in the definition of M-polynomials as

M(TSL(r); a, b) =
∑
r≤s

mrs(TSL(r))a
rbs

=
∑
3≤3

m33(TSL(r))a
3b3 +

∑
3≤6

m36(TSL(r))a
3b6

+
∑
6≤6

m66(TSL(r))a
6b6 +

∑
3≤9

m39(TSL(r))a
3b9

+
∑
6≤9

m69(TSL(r))a
6b9 +

∑
9≤9

m99(TSL(r))a
9b9

=
∑

lm∈E1

m33(TSL(r))a
3b3 +

∑
lm∈E2

m36(TSL(r))a
3b6

+
∑

lm∈E3

m66(TSL(r))a
6b6 +

∑
lm∈E4

m39(TSL(r))a
3b9

+
∑

lm∈E5

m69(TSL(r))a
6b9 +

∑
lm∈E6

m99(TSL(r))a
9b9

= |E1|a3b3 + |E2|a3b6 + |E3|a6b6 + |E4|a3b9 + |E5|a6b9 + |E6|a9b9

= 3a3b3 + 6ra3b6 + 3(r − 1)a6b6 +
3

2
(r2 − 3r + 2)a3b9

+ 6(r − 2)a6b9 +
3

2
(r2 − 5r + 6)a9b9

Theorem 6. Some degree based topological indices of triangular silicate network TSL(r)
are

M1(TSL(r)) = (Da +Db)(f(a, b)|a=b=1 = 45r2 − 9r

M2(TSL(r)) = (DaDb)(f(a, b)|a=b=1 = 162r2 − 189r + 81

Mm
2 (TSL(r)) = (SaSb)(f(a, b)|a=b=1 =

2

27
r2 +

29

108
r +

5

36

H(TSL(r)) = (2SaJ)(f(a, b)|a=b=1 =
5

12
r2 +

21

20
r +

2

5
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I(TSL(r)) = (SaJDaDb)(f(a, b)|a=b=1 =
81

8
r2 − 51

40
r − 9

20
Rα(TSL(r)) = (Dα

aD
α
b )(f(a, b)|a=b=1 = 3× 9α + 6× 18αr + 3× 36α(r − 1)

+
3

2
× 27α(r2 − 3r + 2) + 6× 54α(r − 2) +

3

2
× 81α(r2 − 5r + 6)

Proof : From the above theorem we have

M(TSL(r); a, b) = 3a3b3 + 6ra3b6 + 3(r − 1)a6b6 +
3

2
(r2 − 3r + 2)a3b9 + 6(r − 2)a6b9

+
3

2
(r2 − 5r + 6)a9b9 = f(a, b)

Now,

Da(f(a, b)) = 9a3b3 + 18ra3b6 + 18(r − 1)a6b6 +
9

2
(r2 − 3r + 2)a3b9

+ 36(r − 2)a6b9 +
27

2
(r2 − 5r + 6)a9b9 (12)

Db(f(a, b)) = 9a3b3 + 36ra3b6 + 18(r − 1)a6b6 +
27

2
(r2 − 3r + 2)a3b9

+ 54(r − 2)a6b9 +
27

2
(r2 − 5r + 6)a9b9 (13)

DaDb(f(a, b)) = 27a3b3 + 108ra3b6 + 108(r − 1)a6b6 +
81

2
(r2 − 3r + 2)a3b9

+ 324(r − 2)a6b9 +
243

2
(r2 − 5r + 6)a9b9 (14)

Dα
aD

α
b = 3× 9αa3b3 + 6× 18αra3b6 + 3× 36α(r − 1)a6b6

+
3

2
× 27α(r2 − 3r + 2)a3b9 + 6× 54α(r − 2)a6b9 +

3

2
× 81α(r2 − 5r + 6)a9b9 (15)

Sa(f(a, b)) = a3b3 + 2ra3b6 +
(r − 1)

2
a6b6 +

(r2 − 3r + 2)

2
a3b9

+ (r − 2)a6b9
(r2 − 5r + 6)

6
a9b9 (16)
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Sb(f(a, b)) = a3b3 + ra3b6 +
(r − 1)

2
a6b6 +

(r2 − 3r + 2)

6
a3b9

+
2

3
(r − 2)a6b9 +

(r2 − 5r + 6)

6
a9b9 (17)

SaSb(f(a, b)) =
1

3
a3b3 +

r

3
a3b6 +

(r − 1)

12
a6b6 +

(r2 − 3r + 2)

18
a3b9

+
(r − 2)

9
a6b9 +

(r2 − 5r + 6)

54
a9b9 (18)

J(f(a, b)) = 3a6 + 6ra9 +
3

2
(r2 − r)a12 + 6(r − 2)a15 +

3

2
(r2 − 5r + 6)a18 (19)

SaJ(f(a, b)) =
1

2
a6 +

2

3
ra9 +

(r2 − r)

8
a12 +

6(r − 2)

15
a15 +

(r2 − 5r + 6)

12
a18 (20)

SaJDaDb(f(a, b)) =
9

2
a6+12ra9+

9

8
(r2−3r+2)a12+

108

5
(r−2)a15+

27

4
(r2−5r+6)a18

(21)

Now, using the formula given in the table

(1) First Zagreb index

(1)M1(TSL(r)) = (Da +Db)(f(a, b)|a=b=1 = 45r2 − 9r

(2) Second Zagreb index

(2)M2(TSL(r)) = (DaDb)(f(a, b)|a=b=1 = 162r2 − 189r + 81

(3) Second Modified Zagreb index

(3)Mm
2 (TSL(r)) = (SaSb)(f(a, b)|a=b=1 =

2

27
r2 +

29

108
r +

5

36

(4) Harmonic index

(4)H(TSL(r)) = (2SaJ)(f(a, b)|a=b=1 =
5

12
r2 +

21

20
r +

2

5
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(5) Inverse sum

(5)I(TSL(r)) = (SaJDaDb)(f(a, b)|a=b=1 =
81

8
r2 − 51

40
r − 9

20

(6) Randic indea

(6)Rα(TSL(r)) = (Dα
aD

α
b )(f(a, b)|a=b=1 = 3× 9α + 6× 18αr + 3× 36α(r − 1)

+
3

2
× 27α(r2 − 3r + 2) + 6× 54α(r − 2) +

3

2
× 81α(r2 − 5r + 6)

4.4. Regular triangular silicate network RTSL(r)

Lemma 4. The regular triangular silicate network RTSL(r) has 6r2 + 12r edges and
5

2
r2 +

13

2
r + 1 vertices.

Theorem 7. The M-polynomial of regular triangular silicate network RTSL(r) is:

M(RTSL(r); a, b) = (3r + 4)a3b3 + (3r2 + 9r − 2)a3b6 + (3r2 − 2)a6b6 (22)

Proof : As lemma we have

|V (RTSL(r))| =
5

2
r2 +

13

2
r + 1

|E(RTSL(r))| = 6r2 + 12r

We know RTSL(r) has three edge partitions

|E1(RTSL(r))| = {e = lm ∈ E(RTSL(r) : dl = dm = 3}
|E2(RTSL(r)| = {e = lm ∈ E(RTSL(r) : dl = 3, dm = 6}
|E3(RTSL(r))| = {e = lm ∈ E(RTSL(r) : dl = dm = 6}

Such that:
|E1(RTSL(r))|= 3r+4, |E2(RTSL(r))| = 3r2 + 9r − 2, |E3(RTSL(r))|=3r2 − 2
Now using the definition of M-polynomial

M(RTSL(r); a, b) =
∑
r≤s

mrs(RTSL(r))a
rbs

=
∑
3≤3

m33(RTSL(r))a
3b3 +

∑
3≤6

m36(RTSL(r))a
3b6

+
∑
6≤6

m66(RTSL(r))a
6b6
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=
∑

lm∈E1

m33(RTSL(r))a
3b3 +

∑
lm∈E2

m36(RTSL(r))a
3b6

+
∑

lm∈E3

m66(RTSL(r))a
6b6

= |E1|a3b3 + |E2|a3b6 + |E3|a6b6

= (3r + 4)a3b3 + (3r2 + 9r − 2)a3b6 + (3r2 − 2)a6b6

Theorem 8. Some well-known degree based topological indices of RTSL(r) are:

M1(RTSL(r)) = (Da +Db)(f(a, b))|a=b=1 = 36r2 + 99r − 18

M2(RTSL(r)) = (DaDb)(f(a, b))|a=b=1 = 162r2 + 189r − 72

Mm
2 (RTSL(r)) = (SaSb)(f(a, b))|a=b=1 =

r2

4
+

5

6
r − 5

18

H(RTSL(r)) = (2SaJ)(f(a, b))|a=b=1 =
7

6
r2 + 3r +

5

18
I(RTSL(r)) = (SaJDaDb)(f(a, b))|a=b=1 = 15r2 + 21r − 6

Rα(RTSL(r)) = (Dα
aD

α
b )(f(a, b))|a=b=1 = (3r + 4)× 9α

+ (3r2 + 9r − 2)× 18αr + (3r2 − 2)× 36α

Proof : From the above theorem we have

M(RTSL(r); a, b) = (3r + 4)3a3b3 + (3r2 + 9r − 2)a3b6 + (3r2 − 2)a6b6

Now,

Da(f(a, b)) = 3(3r + 4)3a3b3 + 3(3r2 + 9r − 2)a3b6 + 6(3r2 − 2)a6b6

Db(f(a, b)) = 3(3r + 4)3a3b3 + 6(3r2 + 9r − 2)a3b6 + 6(3r2 − 2)a6b6

DaDb(f(a, b)) = 9(3r + 4)3a3b3 + 18(3r2 + 9r − 2)a3b6 + 36(3r2 − 2)a6b6

Dα
aD

α
b = (3r + 4)× 9αa3b3 + (3r2 + 9r − 2)× 18αa3b6 + (3r2 − 2)× 36αa6b6

Sa(f(a, b)) =
3r + 4

3
a3b3 +

3r2 + 9r − 2

3
a3b6 +

3r2 − 2

6
a6b6

Sb(f(a, b)) =
3r + 4

3
a3b3 +

3r2 + 9r − 2

6
a3b6 +

3r2 − 2

6
a6b6

SaSb(f(a, b)) = (3r + 4)a3b3 +
3r2 + 9r − 2

18
a3b6 +

3r2 − 2

36
a6b6

J(f(a, b)) = (3r + 4)a6 + (3r2 + 9r − 2)a9 + (3r2 − 2)a12

SaJ(f(a, b)) =
(3r + 4)

6
a6 +

(3r2 + 9r − 2)

9
a9 +

(3r2 − 2)

12
a12

SaJDaDb(f(a, b)) = (3r + 4)a6 + 2(3r2 + 9r − 2)a9 + 3(3r2 − 2)a12
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Now by the operators of table

(1) First Zagreb index

M1(RTSL(r)) = (Da +Db)(f(a, b))|a=b=1 = 36r2 + 99r − 18

(2) Second Zagreb index

M2(RTSL(r)) = (DaDb)(f(a, b))|a=b=1 = 162r2 + 189r − 72

(3) Second Modified Zagreb index

Mm
2 (RTSL(r)) = (SaSb)(f(a, b))|a=b=1 =

r2

4
+

5

6
r − 5

18

(4) Harmonic index

H(RTSL(r)) = (2SaJ)(f(a, b))|a=b=1 =
7

6
r2 + 3r +

5

18

(5) Inverse sum

I(RTSL(r)) = (SaJDaDb)(f(a, b))|a=b=1 = 15r2 + 21r − 6

(6) Randic index

Rα(RTSL(r)) = (Dα
aD

α
b )(f(a, b))|a=b=1 = (3r+4)×9α+(3r2+9r−2)×18αr+(3r2−2)×36α.

5. Graphical Representation

M-polynomials’ graphical behavior for different networks may provide insight into the
structural features they have and how they transform when the size or connectedness of
the network varies. Let’s examine the M-polynomials’ graphical behaviors for the networks
given below in Figures (1-4):

• First Zagreb index (FZI).

• Second Zagreb index (SZI).

• Second modified Zagreb indices (SMZI).
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5.1. First Zagreb index for TOX(r), RTOX(r), TSL(r) & RTSL(r)

−4 −2 0 2 4 −5

0

5
0

1,000

FZI-TOX(r)

FZI-RTOX(r)

FZI-TSL(r)

FZI-RTSL(r)

Figure 1: First Zagreb index for TOX(r), RTOX(r), TSL(r) & RTSL(r)

5.2. Second Zagreb index for TOX(r), RTOX(r), TSL(r) & RTSL(r)

−4 −2 0 2 4 −5

0

5
0

2,000

4,000

SZI-TOX(r)

SZI-RTOX(r)

SZI-TSL(r)

SZI-RTSL(r)

Figure 2: Second Zagreb index for TOX(r), RTOX(r), TSL(r) & RTSL(r)
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5.3. Second Modified Zagreb index for TOX(r), RTOX(r), TSL(r)

−4 −2 0 2 4 −5

0

5
0

5

SMZI-TOX(r)

SZMI-RTOX(r)

SMZI-TSL(r)

Figure 3: Second Modified Zagreb index for TOX(r), RTOX(r), TSL(r)

5.4. Second Modified Zagreb index for RTSL(r)

−4 −2 0 2 4 −5

0

50

5

10

SMZI-TOX(r)

Figure 4: Second Modified Zagreb index for RTSL(r)

6. Applications

M-Polynomials are mostly used in graph theory because of their effectiveness in analysing
degree-based topological indices. M-Polynomials provide as a consistent source for the col-
lection of the various topological indices connected with a graph’s vertex degrees. These
numerical descriptors, known as indices, are particularly helpful in chemical graph theory,
where the graph is used to represent a molecule. Chemical Graph theory plays important
role in the everyday life applications such as image processing unit, bio sensors, math-
ematical chemistry, computer science, artificial intelligence, social science and medicine.



M.H. Aftab et al. / Eur. J. Pure Appl. Math, 17 (3) (2024), 2106-2126 2123

With the help of quantitative structure property relationship study (QSPRs) and quantita-
tive structure activity relationship study (QSARs), the topology [23, 29] of the molecular
structures Triangular oxide TOX(r), Regular triangular oxide RTOX(r), Triangular sil-
icate TSL(r) and Regular triangular silicate RTSL(r) obtained from the given chemical
compound can be correlated and further discussed for the latest research works being used
by many pharmacists, chemists and researchers to get better understanding in their fields.

7. Conclusions and Novelty

In conclusion, because of their straightforward counting schemes, the M-polynomials
for the networks of triangle oxide and triangle silicate exhibit linear behaviors on the
graph. Regular versions of these networks may show more ordered patterns in their M-
polynomial graphs, but more specific information about their structures and counting
techniques would be needed to create accurate graphical representations. In analysing
the relationship between a graph’s characteristics and structure (as represented by vertex
degrees), M-polynomials are crucial. Researchers can examine the correlation between
different topological indices and distinct chemical or physical properties of the molecule
represented by the graph, as M-Polynomials provide a practical method for obtaining
these indices. For example, research could look into the relationship between a molecule’s
boiling point and the Zagreb index, which is derived from an M-Polynomial. This may offer
insightful information about the relationship between a molecule’s structure and behavior.
Consideration of the molecular structures of Triangular oxide TOX(r), Regular triangular
oxide RTOX(r), Triangular silicate TSL(r) & Regular triangular silicate RTSL(r) networks.

• Association of the molecular structures with their corresponding mathematical graphs.

• Application of M-Polynomials on the above-mentioned molecular graphs to get new
and closed generalized formulas.

• The new developed formulas can be applied in mathematical chemistry and can also
be used by chemists, pharmacists and researchers for more scientific experiments or
lab works.

For the molecular structure of the networks of triangular oxide (TOX(r), regular
triangular oxide (RTOX(r), triangular silicate (TSL(r), and regular triangular silicate
(RTSL(r)), we have calculated the M-Polynomials [17]. The findings indicate which fea-
tures influence invariants the most [3, 7, 10, 12, 18, 22, 23, 25, 29], leading one to wonder
if networks for administrative structures could be designed to be more efficient in the flow
of information. It has also been discussed to compare the graphical behaviors of the chem-
ical compounds indicated above. Furthermore, we can obtain a variety of physicochemical
properties-such as boiling point, vaporization, enthalpy, entropy, viscosity, density of ma-
terial, and many more-without conducting laboratory tests by using linear, quadratic, and
logarithmic regression models.
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