EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 4, 2024, 3557-3566 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Prime Labeling of Union of Some Graphs

Omar A. Abughneim^{1,*}, Baha' Abughazaleh²

¹ Department of Mathematics, Faculty of Sciences, The University of Jordan, Amman, Jordan

² Department of Mathematics, Faculty of Sciences, Isra University, Amman, Jordan

Abstract. A prime labeling of a graph G is a map from the vertex set of $G, V(G)$, to the set $\{1, 2, ..., |V(G)|\}$ such that any two adjacent vertices in the graph G have labels that are relatively prime. In this paper, we discuss when the disjoint union of some graphs is a prime graph.

2020 Mathematics Subject Classifications: 05C78

Key Words and Phrases: Independence number, Even cycles, Wheels, Prime labeling, Prime graphs, Maximal prime graphs

1. Introduction

A path P_m in a graph is an alternative sequence of vertices and edges with no repeated vertices, a cycle C_m in a graph is a path that begins and ends at the same vertex and a wheel graph W_m is formed by joining a single vertex, known as the apex vertex, to all vertices of a cycle C_m , these vertices are known as the rim vertices.

A bijective map f from the vertex set of a graph G to $\{1, 2, ..., |V(G)|\}$ such that $f(u)$ and $f(v)$ are relatively prime whenever u and v are adjacent in G is called a prime labeling (PL) of G and a graph G is called a prime graph (PG) if G has a PL. Entringer defined the PL that was introduced by Tout et. al. in [1]. Entringer conjectured that all trees could be prime labeled, a hypothesis supported by Haxell et. al. in [8] proving that all sufficiently large trees have this property. Seoud et. al. in [7] further contributed by providing necessary and sufficient conditions for a graph to admit a prime labeling. For more details about prime graphs see for example [2], [5], [6], [10].

In this paper, we discuss when the disjoint union of some graphs is a PG. We prove that $W_m \cup P_n$ is a PG if and only if m is even or n is odd. Also, we show that $C_{2n} \cup C_{2n} \cup W_{2m}$ and $C_{2n} \cup C_{2n} \cup C_{2n} \cup W_{2m}$ are PGs. Finally, we study some properties of the disjoint union between a complete graph and any graph such that this union is a PG. Readers are advised to refer to the appropriate references or sources for clarification on terms and concepts that have not been defined in the text in [3] and [4].

[∗]Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v17i4.5336

Email addresses: o.abughneim@ju.edu.jo (O.A. Abughneim), baha.abughazaleh@iu.edu.jo (B. Abughazaleh)

2. Prime labeling of union of some graphs

In this section, we generalize a result in [11], we prove that $W_m \cup P_n$ is a PG if and only if m is even or n is odd. Also, we show that $C_{2n} \cup C_{2n} \cup W_{2m}$ and $C_{2n} \cup C_{2n} \cup C_{2n} \cup W_{2m}$ are PGs.

The following lemma imposes certain restrictions on the independence number of PGs.

Lemma 1. [14] "For any PG G, we have $\alpha(G) \geq \left[\frac{|V(G)|}{2}\right]$ $\left[\frac{(G)|}{2}\right]$."

The authors in [11] proved that "the disjoint union of a PG of even order and a graph of order 3 is a PG." In the following theorem, we generalize this result.

Theorem 1. Let G_1 and G_2 be PGs of orders n and m respectively. If for any prime $p \leq m-1$, we get p divides n, then $G_1 \cup G_2$ is a PG.

Proof. Let $u_1, u_2, ..., u_n$ be the vertices of $G_1, v_1, v_2, ...v_m$ be the vertices of G_2 , $f: V(G_1) \longrightarrow \{1, 2, ..., n\}$ be a PL of G_1 and $g: V(G_2) \longrightarrow \{1, 2, ..., m\}$ be a PL of G_2 . Define $h: V(G_1 \cup G_2) \longrightarrow \{1, 2, ..., n+m\}$ by

$$
h(u_i) = f(u_i) \text{ for all } 1 \le i \le n, \text{ and}
$$

$$
h(v_j) = n + g(v_j) \text{ for all } 1 \le j \le m.
$$

If u_i and u_j are adjacent in G_1 . Then $(h(u_i), h(u_j)) = (f(u_i), f(u_j)) = 1$ because f is a PL.

Suppose v_i and v_j are adjacent in G_2 and

$$
d = (h(v_i), h(v_j)) = (n + g(u_i), n + g(u_j)).
$$

Thus d divides $g(u_i) - g(u_j)$ and $|g(u_i) - g(u_j)| \leq m - 1$. If $d > 1$, then d has a prime divisor say p. Therefore, $p \leq d \leq m-1$ and by assumption p divides n. But p divides $n + g(u_i)$ and p divides $n + g(u_j)$. Thus p divides $g(u_i)$ and p divides $g(u_j)$ and hence $(g(u_i), g(u_j)) \geq p$ which is a contradiction, because g is a PL. Therefore, $(h(v_i), h(v_j)) = 1$ and so h is a PL of $G_1 \cup G_2$.

Vaidya et. al. in [13] proved the following theorem

Theorem 2. [13] " $W_{2k} \cup P_m$ is a PG."

Next, we show when, in general, $W_m \cup P_n$ is a PG.

Theorem 3. $W_m \cup P_n$ is a PG if and only if m is even or n is odd.

Proof. We separate the proof in the following cases,

(i) Suppose m is odd and n is even. Let $m = 2k + 1$ and $n = 2h$. Then

$$
\alpha(W_m \cup P_n) = \alpha(W_m) + \alpha(P_n) = k + h < \left[\frac{|W_m \cup P_n|}{2}\right] = \left[\frac{2k + 2 + 2h}{2}\right] = k + h + 1.
$$

By Lemma 1, we get $W_m \cup P_n$ is not a PG.

- (ii) Suppose m is even. By Theorem 2, $W_m \cup P_n$ is a PG.
- (iii) Suppose m and n are odd. Let u_0 be the apex vertex of W_m , $u_1, u_2, ..., u_m$ be the consecutive rim vertices of W_m and $v_1v_2...v_n$ be the path P_n and define f: $V(W_m \cup P_n) \longrightarrow \{1, 2, ..., m+n+1\}$ as follows:

$$
f(u_i) = \begin{cases} i+1, 0 \le i \le 2 \\ i+2, 3 \le i \le m \end{cases}
$$
 and
\n
$$
f(v_j) = \begin{cases} m+j+2, 1 \le j \le n-1 \\ 4, j = n \end{cases}
$$
.

Since $f(u_0) = 1$, $f(u_0)$ is relatively prime to $f(u_i)$ for all $1 \leq i \leq m$. Also,

$$
(f(u_2), f(u_3)) = (3, 5) = 1, (f(u_1), f(u_m)) = (2, n + 2) = 1, \text{ because } m \text{ is odd.}
$$

Now, $(f(v_{n-1}), f(v_n)) = (m + n + 1, 4) = 1$, because $m + n + 1$ is odd.

The labels assigned to adjacent vertices within the graph $W_m \cup P_n$ exhibit a property of being mutually prime because these labels are two consecutive integers. So f is a PL.

Theorem 4. The disjoint union of two wheels is not a PG.

Proof. Let W_n and W_m be any two wheels. Then

$$
\alpha(W_n \cup W_m) = \alpha(W_n) + \alpha(W_m) = \left[\frac{n}{2}\right] + \left[\frac{m}{2}\right] \n\leq \left[\frac{n+m}{2}\right] < \left[\frac{|W_n \cup W_m|}{2}\right] = \left[\frac{n+m+2}{2}\right] = \left[\frac{n+m}{2}\right] + 1.
$$

By Lemma 1, we get $W_n \cup W_m$ is not a PG.

Patel et. al. in [9] proved that "the disjoint union of an even wheel and an even cycle is a PG." In Theorem 5, we prove that $C_{2n} \cup C_{2n} \cup W_{2m}$ and $C_{2n} \cup C_{2n} \cup C_{2n} \cup W_{2m}$ are PGs.

Theorem 5. $C_{2n} \cup C_{2n} \cup W_{2m}$ and $C_{2n} \cup C_{2n} \cup C_{2n} \cup W_{2m}$ are PGs for all n, m.

Proof. Let $u_1, u_2, ..., u_{2n}$ be the vertices of the first cycle, $u_{2n+1}, u_{2n+2}, ..., u_{4n}$ be the vertices of the second cycle, $u_{4n+1}, u_{4n+2}, ..., u_{6n}$ be the vertices of the third cycle, v_0 be the apex vertex of W_n and $v_1, v_2, ..., v_{2m}$ be the consecutive rim vertices of W_{2m} .

- (i) To show that $C_{2n} \cup C_{2n} \cup W_{2m}$ is a PG. We have the following two cases:
	- (a) i. If 3 does not divide $n + 1$, define $f: V(C_{2n} \cup C_{2n} \cup W_{2m}) \longrightarrow \{1, 2, ..., 4n + 2m + 1\}$ as follows:
		- $f(u_i) = i + 2$, for all $1 \le i \le 4n$,

$$
f(v_j) = j + 1 \text{ for } j = 0 \text{ and } 1,
$$

$$
f(v_j) = 4n + j + 1, \text{ for all } 2 \le j \le 2m.
$$

We get $(f(u_1), f(u_{2n})) = (3, 2n + 2) = 1$, because 3 does not divide $n + 1$. Also, $(f(u_{2n+1}), f(u_{4n})) = (2n+3, 4n+2) = 1$ because if $d = (f(u_{2n+1}), f(u_{4n}))$, then d divids $2n+3$ and hence d is odd and d divids $2(2n+3)-(4n+2)=4$. Thus $d = 1$. Clearly, any other adjacent vertices have relatively prime labels. So, f is a PL.

- ii. If 3 divides $n + 1$, define
	- $f: V(C_{2n} \cup C_{2n} \cup W_{2m}) \longrightarrow \{1, 2, ..., 4n + 2m + 1\}$ as follows:
		- $f(u_i) = i + 3$, for all $1 \leq i \leq 4n 1$, $f (u_{4n}) = 3,$ $f(v_i) = j + 1$ for $j = 0$ and 1, $f(v_i) = 4n + j + 1$, for all $2 \leq j \leq 2m$.

Since 3 divides $n+1$, 3 does not divide $2n+4$ and $4n+2$. So, $(f(u_{2n+1}), f(u_{4n})) =$ $(2n+4, 3) = 1$ and $(f(u_{4n-1}), f(u_{4n})) = (4n+2, 3) = 1$. It is clear that all other adjacent vertices have relatively prime labels. Therefore, f is a PL.

- (ii) To show that $C_{2n} \cup C_{2n} \cup C_{2n} \cup W_{2m}$ is a PG. We have the following two cases:
	- (a) If 3 does not divide $4n + 1$, define

 $f: V(C_{2n} \cup C_{2n} \cup C_{2n} \cup W_{2m}) \longrightarrow \{1, 2, ..., 6n + 2m + 1\}$ as follows

 $f(u_i) = 6n + i$ for $i = 1, 2$. $f(u_i) = i$ for all $3 \leq i \leq 6n$, $f(v_i) = i + 1$ for $i = 0$ and 1, $f(v_i) = 6n + j + 1$ for all $2 \leq j \leq 2m$.

We have

$$
(f(u_2), f(u_3)) = (6n + 2, 3) = 1
$$
, because 3 does not divide $6n + 2$,
 $(f(u_1), f(u_{2n})) = (6n + 1, 2n) = 1$, because $1 = (6n + 1) - 3(2n)$

and

$$
(f(u_{2n+1}), f(u_{4n})) = (2n + 1, 4n) = 1,
$$

because $2 = 2(2n + 1) - 4n$ and 2 does not divide $2n + 1$.

Also,

$$
(f(u_{4n+1}), f(u_{6n})) = (4n+1, 6n) = 1,
$$

because $3 = 3(4n+1) - 2(6n)$ and 3 does not divide $4n + 1$.

Thus f is a PL.

(b) If 3 divides $4n + 1$, define

 $f: V(C_{2n} \cup C_{2n} \cup C_{2n} \cup W_{2m}) \longrightarrow \{1, 2, ..., 6n + 2m + 1\}$ as follows

$$
f (u_i) = 6n + i \text{ for } i = 1 \text{ and } 2,
$$

\n
$$
f (u_{2n}) = 4n,
$$

\n
$$
f (u_{4n}) = 6n,
$$

\n
$$
f (u_{6n}) = 2n,
$$

\n
$$
f (u_i) = i \text{ for all } i \neq 1, 2, 2n, 4n \text{ and } 6n,
$$

\n
$$
f (v_j) = j + 1 \text{ for } j = 0 \text{ and } 1,
$$

\n
$$
f (v_j) = 6n + j + 1 \text{ for all } 2 \leq j \leq 2m.
$$

Then,

$$
(f(u_1), f(u_{2n})) = (6n + 1, 4n) = 1,
$$

because $2 = 2(6n + 1) - 3(4n)$ and $6n + 1$ is odd,

$$
(f(u_{2n-1}), f(u_{2n})) = (2n - 1, 4n) = (2n - 1, 2n) = 1,
$$

$$
(f(u_2), f(u_3)) = (6n + 2, 3) = 1,
$$

because 3 does not divide $6n + 2$.

$$
(f(u_{4n+1}), f(u_{6n})) = (4n+1, 2n) = 1,
$$

because 1 = (4n+1) - 2(2n).

$$
(f(u_{6n-1}), f(u_{6n}))
$$
 = $(6n - 1, 2n) = 1,$
because 1 = $3(2n) - (6n - 1).$

Now, since $1 = 2(2n + 1) - (4n + 1)$ and 3 divides $4n + 1$, 3 does not divide $2n + 1$. Therefore,

$$
(f(u_{2n+1}), f(u_{4n})) = (2n + 1, 6n) = (2n + 1, 2n) = 1.
$$

Also, 3 does not divide $4n - 1$ because 3 divides $4n + 1$. Thus

$$
(f(u_{4n-1}), f(u_{4n})) = (4n - 1, 6n) = (4n - 1, 2n) = 1.
$$

Therefore f is a PL.

3. prime labeling of union of complete graphs and graphs with maximal size

In this section, we will study some properties of the disjoint union between a complete graph and any graph such that this union is a PG. Seoud et. al. in [12] define a maximal PG as follows:

Definition 1. [12] "A maximal PG is a PG of n vertices such that adding any new edge yields a non-PG. Usually this graph is denoted by $R(n)$."

Theorem 6. $[14]$ "The largest complete subgraph in the maximal PG of n vertices is of order $\pi(n) + 1$, where $\pi(n)$ is the number of primes less than or equal to n."

Remark 1. Let H be the largest complete subgraph in the maximal PG of n vertices. Then we can label the vertices of H by the primes less than or equal to n together with 1 namely, $1, p_1, p_2, \ldots, p_{\pi(n)}$. Also, we can replace the label p_i by p_i^k for some $k \geq 2$ and $p_i^k \leq n$ because for any $a \in \mathbb{Z}^+$, $(a, p_i) = 1$ if and only if $(a, p_i^k) = 1$.

Theorem 7. Suppose K_n is the complete graph of order n and G_m is any graph of order m such that $K_n \cup G_m$ is a PG. Then

- (i) $\pi (n+m) \geq n-1$.
- (ii) $\alpha(G_m) \geq \left\lceil \frac{n+m}{2} \right\rceil$ $\frac{+m}{2}$ | -1 .

Proof.

- (i) By Theorem 6, $n = |V(K_n)| \le \pi (n + m) + 1$. So, $\pi (n + m) \geq n - 1.$
- (ii) Since at most one of the vertices of K_n has even label, the set $S = \{u \in V(G_m) : \text{the label of } u \text{ is even}\}\$ is an independent set of G_m with cardinality at least $\left\lceil \frac{n+m}{2} \right\rceil$ $\left[\frac{m}{2}\right] - 1$. So, $\alpha(G_m) \geq \left[\frac{n+m}{2}\right]$ $\frac{+m}{2}$ - 1.

Let G_m be a graph with maximum size such that $K_n \cup G_m$ be a PG. We will examine when G_m is connected. Firstly, we need the following lemma and corollary.

Lemma 2. [4]"(Bonse's inequality) Let $k \geq 5$ and $p_1, p_2, ..., p_k$ be the first k primes. Then $p_{k+1}^2 < \prod^k$ $i=1$ p_i where p_{k+1} is the prime next to p_k ."

Also, if $k = 4$, then $p_k = 7$ and $p_{k+1} = 11$ and its clear $11^2 < (2)(3)(5)(7)$. So, we have the following corollary.

Corollary 1. Let $k \geq 4$ and $p_1, p_2, ..., p_k$ be the first k primes. Then $p_{k+1}^2 < \prod^k$ $i=1$ p_i where p_{k+1} is the prime next to p_k .

Theorem 8. Let G_m be a graph with maximum size such that $K_n \cup G_m$ be a PG and $\pi(n+m) \geq n$. Then G_m is connected.

Proof. Since $\pi (n + m) \geq n$, then the number of primes less than or equal to $n + m$ is greater than or equal to the number of vertices of K_n and these primes are mutually relatively prime. So, we can use a subset of these primes to label the vertices of K_n and hence one of the vertices of G_m will be labeled by 1. This vertex is adjacent to all other vertices of G_m , because G_m is a graph with maximum size such that $K_n \cup G_m$ is a PG. Thus, G_m is connected.

Theorem 9. Let G_m be a graph with maximum size such that $K_n \cup G_m$ be a PG and $\pi (n+m) = n-1$. Then

- (i) G_m is the trivial graph $(m = 1)$ whenever $n + m = 4$ or 5.
- (ii) G_m is disconnected whenever $6 \le n + m < 25$ or $30 \le n + m < 49$.
- (iii) G_m is connected whenever $25 \leq n+m < 30$ or $n+m \geq 49$.

Proof. By Remark 1, label the vertices of K_n by the primes less than or equal to $n+m$ together with 1 and label the vertices of G_m by the composite numbers less than or equal to $n + m$.

- (i) If $n+m=4$, then $\pi (n+m)=2$. So $n=\pi (n+m)+1=3$. Thus $m=1$. Similarly, if $n + m = 5$.
- (ii) If $6 \leq n+m < 25$, then the vertex of G_m whose label is 6 must be an isolated vertex in G_m because any composite number less than 25 is not relatively prime to 6. Thus G_m is disconnected. If $30 \leq n+m < 49$, then any composite number less than 49 is not relatively prime to 30 So, 30 is isolated and thus G_m is disconnected.
- (iii) Let $p_1, p_2, ..., p_k$ be the primes less than or equal \sqrt{n} in ascending order. We refer to the vertices of G_m by their labels. We partition the vertices of G_m into the following sets

$$
A_0 = \{p_1^2, p_2^2, ..., p_k^2\}
$$

and

$$
A_i = \{s : p_i \text{ does not divide } s\} - \bigcup_{j=0}^{j=i-1} A_j \quad \text{ for all } i = 1, 2, ...k.
$$

Notice that $A_0, A_1, A_2, ..., A_k$ are mutually disjoint sets. We want to show that $G_m =$ $\bigcup_{i=k}^{i=k} A_i$. Suppose there is a composite number t less than or equal to $n+m$ such that $i=0 \n p_i$ divides t for all $i=1,2,...k$. If $25 \leq n+m < 30$, then 2 divides t, 3 divides t and 5 divides t. So, $t > 30$ which is a contradiction. If $n + m > 49$, then by Corollary 1 we

get $p_{k+1}^2 < \prod^k$ $\frac{i=1}{i}$ p_i where p_{k+1} is the prime next to p_k . So, $n + m < p_{k+1}^2 < \prod_{k=1}^k$ $i=1$ $p_i < t$ because p_i divides t for all $i = 1, 2, ..., k$ which is a contradiction. Now, Let $u, v \in G_m$. We want to find a path between u and v and this shows that G_m is connected. We have the following cases:

- (a) If $u, v \in A_0$, then $u v$ is a path in G_m .
- (b) If $u, v \in A_i$ for some $i = 1, 2, \dots k$, then $u p_i^2 v$ is a path in G_m .
- (c) If $u \in A_i$ for some $i = 1, 2, \dots k$ and $v \in A_j$ for some $j = 1, 2, \dots k$ such that $i \neq j$, then $u - p_i^2 - p_j^2 - v$ is a path in G_m .
- (d) If $u \in A_0$ and $v \in A_j$ for some $j = 1, 2, \dots k$, then $u p_j^2 v$ is a path in G_m whenever $u \neq p_j^2$ and $u - v$ is a path in G_m whenever $u = p_j^2$. Therefore, G_m is connected.
- **Example 1.** (i) Consider the complete graph K_5 and let G_4 be a graph with maximum size such that $K_5 \cup G_4$ is a PG.
	- Then, $\pi(9) = 4 = 5 1$ and since $K_5 \cup G_4$ is a PG, we can label the vertices of K_5 by the numbers $1, 2, 3, 5, 7$ and hence G_4 is the following graph

So, G⁴ is disconnected.

(ii) Consider the complete graph K_{10} and let G_{15} be a graph with maximum size such that $K_{10} \cup G_{15}$ is a PG.

Then, $\pi(25) = 9 = 10 - 1$ and since $K_{10} \cup G_{15}$ is a PG, we can label the vertices of K_{10} by the numbers 1, 2, 3, 5, 7, 11, 13, 17, 19, 23 and hence G_{15} is the following graph

REFERENCES 3565

So, G¹⁵ is connected.

References

- [1] AN Dabboucy A Tout and K Howalla. Prime labeling of graphs. Nat. Acad. Sci. Lett., 11:365–368, 1982.
- [2] B Abughazaleh and OA Abughneim. Prime labeling of graphs constructed from wheel graph. Heliyon, 10(2):e23979, 2024.
- [3] G Agnarsson and R Greenlaw. Graph Theory: Modeling, Applications, and Algorithms, 1st ed.. Pearson Education, Ann Arbor, Michigan, 2007.
- [4] David M. Burton. Elementary Number Theory. Tata McGraw Hill Education, New York, 7th edition, 2009.
- [5] HL Fu and KC Huang. On prime labellings. Discrete Math, 127:181–186, 1994.
- [6] JA Gallian. A dynamic survey of graph labeling. Electron. J. Comb., 6(25):4–623, 2022.
- [7] A el Sonbaty MA Seoud and AEA Mahran. On prime graphs. Ars Comb., 104:241– 260, 2012.
- [8] O Pikhurko P Haxell and A Taraz. Primality of trees. J. Combinatorics, 2:481–500, 2011.
- [9] SK Patel and JB Vasava. On prime labeling of some union graphs and circulant graphs. Inter. J. Sci. Res. Math. Stat. Sci., 5(6):248–254, 2018.
- [10] O Pikhurko. Trees are almost prime. Discrete Math, 307:1455–1462, 2007.
- [11] UM Prajapati and SJ Gajjar. Some results on prime labeling. Open J. Discrete Math, 4:60–66, 2014.
- [12] MA Seoud and MZ Youssef. On prime labelings of graphs. Congr. Numer., 141:203– 215, 1999.

-
- [13] SK Vaidya and UM Prajapati. Some results on prime and k-prime labeling. J. Math. Res., 3(1):248–254, 2011.
- [14] MZ Youssef. On Graceful, Harmonious and Prime Labelings of graphs. PhD thesis, Department of Mathematics, Ain Shams University, 2000.