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Abstract. In this paper, we address several scientific and technological challenges with a novel
He’s non-perturbative approach (NPA), it simplifying processing time compared to traditional
methods. The proposed approach transforms nonlinear ordinary differential equations (ODEs)
into linear ones, analogous to simple harmonic motion, and producing a new frequency. Studying
the periodic solutions leads to enhanced design, performance, reliability, and efficiency across
these fields. This new approach is based mainly on the He’s frequency formulation (HFF). This
method yields highly accurate outcomes, surpassing well-known approximate methodologies, as
validated through numerical comparisons in the Mathematical Software (MS). The congruence
between numerical solution tests and theoretical predictions further supports our findings. While
classical perturbation methods rely on Taylor expansions to simplify restoring forces, the NPA
also enables stability analysis. Consequently, for analyzing approximations of highly non-linear
oscillators in MS, the NPA serves as a more reliable tool.
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1. Introduction

Differential equations, both linear and nonlinear, are used in many domains to charac-
terize concerns appropriate to mathematics, physics, biology, chemistry, and engineering.
The solutions of a linear ODE can be readily found using some of the well-established
techniques, in comparison with nonlinear ODE, which are typically considered to have ap-
proximate solutions via several perturbation techniques. Moreover, nonlinear oscillations
have drawn an interest of the increasing number of scientists since most vibration-related
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issues are of nonlinear features. Therefore, the nonlinear ODE is very useful in describ-
ing scientific and engineering phenomena, which often took the form of nonlinear types.
For this reason, nonlinear ODEs are fundamental in engineering, physics, and applied
mathematics [17]. It is important to highlight the role of mathematical computations in
numerous research works of literature that deal with nonlinear ODEs that arise in diverse
scientific and engineering areas [13]. While many nonlinear ODEs have numerical approx-
imations, only insufficient of them have direct solutions. Many approximation analytical
methods are applied in the literature to determine the connection between the amplitude
and frequency of the non-linear oscillators. The perturbation approach, which is widely
used to obtain approximate analytical solutions to nonlinear ODEs, is the most multi-
purpose tool for analyzing nonlinear engineering problems [37]. The explosive growth of
nonlinear sciences over the past two decades led to a growing interest among scientists
and engineers in analytical techniques for nonlinear challenges. It is created to investigate
how these nonlinear ODEs behaved through the use of approximation techniques, both
numerical and otherwise [18, 19, 21, 23, 24, 28, 39]. Recently, several new methods have
been developed for solving the nonlinear ODEs analytically [9–11, 36]. Consequently, nu-
merous researchers created a few unique techniques. To achieve analytical responses that
are approximately near the exact solutions, a number of scientists were explored a range of
innovative and unique approaches. The Lindstedt-Poincaré methodology was conducted
[14]. Among these methods is the homotopy perturbation method (HPM) [6].

Because nonlinearity exists in many practical aspects, it has been difficult for investi-
gators and physicists to arrive at a precise solution, or even one that was very close to the
exact one. Weak non-linear ODEs were demonstrated using the averaging method and
the least factor methodology, respectively [12]. In the situation of low-intensity noises,
the exact asymptotic equations were calculated using the HPM. The method of multiple
time scales was applied to determine the solutions of the oscillation systems. Finding the
minor parameter necessary to describe the fundamental equations in a more realistic and
useful manner was a crucial first step in any perturbation or asymptotic method. Many
HPM-based methods were become more popular recently for estimating a wide range of
nonlinear ODEs with the initial and arbitrary constants and getting them somewhat closer
to their closed-form solutions [3, 7]. Consequently, the procedure would diverge and fail
to produce the intended results if the original guess did not match the approach employed
to solve the problem. These techniques are dependent on the initial approximation solu-
tion. Analytical approximations for magnetic spherical pendulums were analyzed using
the HPM [20]. In the case of non-conservative oscillators, the HPM proved to be difficult
to operate even with the seeming many advancements. To solve the non-linear oscillators,
Prof. He proposed a simple but effective approach named HFF [4]. The HFF was used by
many authors with great success. When dealing with nonlinear oscillator problems, the
HFF method was a simple and efficient way to create a conservation nonlinear oscillator
[40]. Under generalized beginning conditions, an analysis of the Duffing oscillator (DO)
in vibration periodic behavior was conducted [15]. Numerical testing showed that the
HFF was practically beneficial, physically perceptive, and mathematically simple. En-
gineers can use the novel method in quickly and accurately analyze nonlinear vibration
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systems utilizing the HFF. It was proposed to separate the oscillators into two extreme
situations in order to change the HFF as a new method [16]. When the approximate
and exact frequencies for various amplitudes were compared, there was good agreement.
The Hamiltonian-based on the HFF was addressed as a remarkable accomplishment since
it made a complex nonlinear vibration system easily comprehensible through computing.
The cubic-quintic DO was given as an example to show how remarkably accurate and
straightforward calculation. A simple approach to the cubic-quintic DO was described [5].
The method provided a very efficient and reasonably accurate means of estimating the fre-
quency of a nonlinear conservative oscillator. The simplified HFF of nonlinear oscillators
was presented and demonstrated [2]. A fractal vibration was shown in a porous medium,
and its low-frequency characteristic was explained by the HFF. In a fractal space, it was
discovered that the inertia force was equivalent to a few damping and inertia forces. A
modification was suggested, and the most straightforward frequency formulation for non-
linear oscillators was presented and validated [1]. It was demonstrated that the inertia
force for the standard differential model is equal to the total of the damping force and the
inertia force in a fractal space. In the event of any non-linearity, a modification to the HFF
was recommended [38]. A simple frequency formula for fractal systems, obtained from the
HFF, was examined [22]. The coupled simple calculation with reliable results produced a
valuable instrument of detailed study of fractal vibration phenomena. The non-Newtonian
fluids were essential in numerous fields, including manufacture and technology. Investi-
gation into these fluids was therefore quite appealing. The work of nonlinear stability
assessment was directed towards some of the non-Newtonian fluids. A representation was
constructed for the composition of a flat disturbed interface as well as some dynamical
systems. Using the NPA, as an addition performance, was the main goal of the theoretical
inquiry [25–27, 29–35]. In the current study, we will suggest an alternative form of the
HFF to analyze some highly non-linear oscillators.

The NPA is a key technique in the current study, for locating the analytical approx-
imation solutions of some nonlinear ODEs. Comparing the numerical solution (NS) and
the present results to show the effectiveness and precision of the NPA. It is evident that
the present method yields more precise results than similar the approximations for the
previously discussed problems. The NPA has wonderful potential and may be applied
to address additional substantially nonlinear situations, as is proven at the conclusion.
When combined, the NPA resolves several real-world situations. Previously, these real-
world cases were resolved with other well-known analytical methods that were previously
documented in the literature. However, the best results are obtained faster using our
existing methods. On the other hand, the calculations using MS assistance are even more
straightforward with the NPA than they are with other analytical techniques, and the
procedures for determining the analytical solutions are fully illustrated. Other calcula-
tion methods were extensive to use or required a lengthy time to analyze the solution.
Regarding the unique approach used or notable results, the following details have been
emphasized:

(i) The current non-linear ODE is equivalent to the alternate comparable linear one.
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(ii) These two equations match each other exactly when using the NS.

(iii) Every traditional method employs expansion of Taylor to simplify the challenge of
restoring forces. The current NPA eliminates this issue

(iv) In contrast to other traditional methods, the NPA enables us to investigate the
stability analysis of the problem.

(v) The new technique seems to be a simple, convenient, and intriguing instrument. It
can be utilized for studying various categories of nonlinear oscillators. Finally, the
NPA is beneficial in the fields of science, technology, and applied research as it can
easily be adjusted to address various nonlinear issues.

There are five sections in the current paper, which help readers to clarify how it is
accessible. We demonstrate and briefly review the NPA description in § 2. Using the
NPA, few nonlinear ODEs from the actual world are examined in § 3. In § 4, a summary
is given of the dissections of the current study. Finally, § 5 provides a summary of the
final explanations.

2. Explanation of the NPA

Consider a highly non-linear ODE, up to the third order, of the form:

η′′ + F (η, η′, η′′) +G(η, η′, η′′) = H(η, η′, η′′), (1)

where both F (η, η′, η′′) and G(η, η′, η′′) are functions of the third order. Simultaneously,
H(η, η′, η′′) is a quadratic function. Generally, these functions may be represented as:

F (η, η′, η′′) = a1η
′ + b1ηη

′η′′ + c1η
2η′′ + d1η

′3 + e1η
′′η′

2

G(η, η′, η′′) = ω2η + b2η
2η′ + c2ηη

′2 + d2η
3 + e2η

′′η
2

H(η, η′, η′′) = a3ηη
′ + b3η

′2 + c3η
2 + d3η

′η′′ + e3ηη
′′

 , (2)

where aj , bj , cj , dj , ej (j = 1, 2, 3) are constant coefficients, and ω represents the natural
frequency of the given structure.

As previously demonstrated throughout the conventional perturbation techniques [37],
the first two functions yield secular terms, but the third function does not generate secular
terms. Now, as well-known, the NPA aims mainly to obtaining an alternative linear ODE.
Three constants will be established in order to create the necessary linear differential
equation for this objective. It should be noted that the intention in generating the linear
ODE is to behave similar to the simple harmonic motion. To accomplish this aim, following
He [4], where a guessing solution of the given nonlinear ODE in the form:

x = A cosΩt, (3)

the initial conditions (ICs) are given as: x(0) = A, and x′(0) = 0.
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The parameter Ω represents the overall frequency, which will be specified at a later
time.

The required linear differential equation may be expressed as:

x′′ + σeqvx
′ + ω2

eqvx = Λ, (4)

As previously shown [1], the above three parameters may be evaluated as follows:

σeqv =

2π/Ω∫
0

x′F
(
x, x′, x′′

)
dt/

2π/Ω∫
0

x′2dt = σeqv(Ω). (5)

Consider a comparable frequency ω2
eqv , which can be calculated using the total frequency

according to the following function:

ω2
eqv =

2π/Ω∫
0

x G
(
x, x′, x′′

)
dt/

2π/Ω∫
0

x2dt = ω2
eqv(Ω). (6)

It should be understood that the non-secular portion includes the quadratic formula.
Therefore, the inhomogeneity will be computed by replacing: η → kA, η′ → kAΩ, and η′′ →
kAΩ2 in the even non-secular function H (η, η′, η′′). As shown by El-Dib [1], the parameter
k is defined as k = 1/2

√
n− r, where n indicates the order of the system and r signifies

the degree of freedom of the system. Therefore, in the present case, one gets n = 2 and,
r = 1 then the value of k becomes k = 1/2. It follows that the value of the quadratic
(non-secular term). Consequently, the inhomogeneity part will be computed by replacing:

η → A
2 , η′ → AΩ

2 , and η′′ → AΩ2

2 .
For simplicity, Eq. (4) can be stated in the ordinary normal form using the following

substitution:
x(t) = f(t)Exp (−σeqvt/2) . (7)

Putting Eq. (7) into Eq. (4) yields

f ′′ +

(
ω2
eqv −

1

4
σ2
eqv

)
f = Λ Exp (σeqvt/2) . (8)

Finally, the overall frequency is expressed as Ω2 = ω2
eqv − 1

4σ
2
eqv .

3. Applications

In this section, we will test the validity of the NPA as previously indicated to analyze
some different illustrations that characterize some highly nonlinear constructions. The
physical interpretation with plot structure agrees well with the proposed technique.
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3.1. Application 1

Consider the motion of a particle of mass m moving without friction along a circle of
radius R and center, which is located at the origin 0 and rotating with uniform angular
velocity Ω about its vertical diameter [37]. The forces acting on the particle are the
gravitational force mg , the centrifugal force becomes mΩ2R sin θ , where θ is the central
angle between the radius that containing the particle and the vertically downwards. The
moments about the origin and equation their sum to the rate of change of the angular
momentum of the particle about the origin 0 are reflected. Following Nayfeh and Mook
[37], the equation that governs motion can be simplified as follows:

θ̈ − Ω2 sin θ cos θ + g sin θ/R = 0. (9)

In the previous example, the nonlinearity comes due to both the inertia and large defor-
mation.

Eq. (9) can be written as follows:

θ̈ + f(θ) = 0, (10)

where f(θ) = −Ω2 sin θ cos θ + g sin θ/R.
It should be noted that the previous function represent an odd function without any

damping terms. As previously seen, assuming a predicting solution, where the guessing
solution is given by

u = A cosΩt, ICs u(0) = A, and u̇(0) = 0. (11)

The equivalent frequency may be determined from the following integration:

ω2
eqv =

2π/Ω∫
0

uf(u) dt /

2π/Ω∫
0

u2dt. (12)

By means of the MS, Eq. (12) yields

ω2
eqv =

1

AR

(
2gJ1(A)−RΩ2J1(2A)

)
, (13)

where J1(A), and J1(2A) are the Bessel function in the arguments A, and 2A respectively.
Since there is no equivalent damping, in considered problem, it follows that the total

frequency becomes

Ω2 =
1

AR

(
2gJ1(A)−RΩ2J1(2A)

)
. (14)

The equivalent linear differential equation is then given as:

ü +Ω2u = 0. (15)

The stability criterion requires that Ω2 > 0. The following figure displays this criterion
for various values of the radius of the circle.
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Fig. 1 shows that the increasing of the radius has a destabilizing influence. As seen,
the small values of the radius of the circle improvement a larger stability zones. For more
convenience, with the aid of the MS, a matching between the original nonlinear differential
equation as given in Eq. (9) with the equivalent linear ODE as given in Eq. (15) can be
drawn for the sample chosen system Ω = 0.5, g = 12, R = 14, and A = 0.5:
From the NS in Fig. 2, it is found that the absolute error between the two solutions is
0.00367. It should be noted that, in contrast with the traditional perturbation techniques,
the present NPA does not use the Taylor expansion for the restoring forces. Additionally,
it enables us to discuss the stability criterion.

3.2. Application 2

A simple pendulum with viscous damping, the governing equation of motion is given
by [37]:

θ̈ + 2µθ̇ + ω2 sin θ = 0. (16)

Eq. (16) can be rewritten as follows:

θ̈ + f1(θ̇) + f2(θ) = 0, (17)

where f1(θ̇) = 2µθ̇, and f2(θ) = ω2 sin θ
Assuming that the guessing solution is given by

w = A cosΩt, ICs w(0) = A, and ẇ(0) = 0. (18)

The equivalent frequency may be determined from the following integration:

ω2
eqv =

2π/Ω∫
0

wf2(w) dt /

2π/Ω∫
0

w2dt. (19)

By means of the MS, Eq. (19) yields

ω2
eqv =

2ω2

A
J1(A). (20)

The equivalent damping may be evaluated from the integral form:

σeqv =

2π/Ω∫
0

ẇ f1 (ẇ) dt/

2π/Ω∫
0

ẇ2dt = 2µ. (21)

From Eqs. (20) and (21), it follows that the equivalent linear ODE may be written as
follows:

ẅ + 2µẇ + ω2
eqv = 0. (22)
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From the standard normal form, it follows that the equivalent linear ODE is then given
as

ẅ +Ω2w = 0. (23)

The stability criterion requires that Ω2 = 2ω2

A J1(A) − µ2. This means that 2ω2

A J1(A) −
µ2 > 0, or µ2 < 2ω2

A J1(A). For more convenience, with the aid of the MS, a matching
between the original non-linear ODE as given in Eq. (16) with the equivalent linear
differential equation as given in Eq. (22) can be drawn for the sample chosen system
ω = 2.0, µ = 0.1,and A = 0.5:
From the NS in Fig. 3, it is found that the absolute error between the two solutions is
0.0345. It should be noted that, in contrast with the traditional perturbation techniques,
the present NPA enables us to discuss the stability criterion.
The stability criterion may be plotted as follows:
From Fig. 4, it is found that the stable regions increase as the frequency ω increases.
Therefore, this parameter has a stabilizing influence.

3.3. Application 3

A system composed of a mass on a spring with cubic and quantic nonlinearity is
described by a strongly non-linear oscillator with a cubic and harmonic restoring force
equation, as illustrated in Figure 5, where k is the linear stiffness coefficients, M is the
mass, b sinx is the driving force and x(t) is the system response.
The strongly non-linear oscillator with cubic/quantic and harmonic restoring force is mod-
eled mathematically by the following non-linear ODE [8]:

ẍ+ x+ ax3 + cx5 + b sinx = 0, (24)

where a, b, and c are constants and the dot denotes to the time derivative.
The ICs are assumed as follows: x(0) = A, and ẋ(0) = 0.
Eq. (24) can be rewritten as follows:

ẍ+ f(x) = 0, (25)

where f(x) = x+ ax3 + cx5 + b sinx
Assuming that the guessing solution is given by

h = A cosΩt, ICs h(0) = A, and ḣ(0) = 0. (26)

The equivalent frequency may be determined from the following integration:

ω2
eqv =

2π/Ω∫
0

hf(h)dt /

2π/Ω∫
0

h2dt. (27)

By means of the MS, Eq. (27) yields

ω2
eqv = 1 +

3

4
aA2 +

5

8
cA4 +

2b

A
J1(A). (28)
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Since the original nonlinear differential is independent of damping terms, the forgoing
equivalent frequency represents the same total frequency. Therefore, the stability criterion
becomes:

Ω2 = 1 +
3

4
aA2 +

5

8
cA4 +

2b

A
J1(A) > 0 (29)

The equivalent linear ODE becomes:

ḧ+Ω2h = 0. (30)

For more convenience, with the aid of the MS, a matching between the original non-linear
ODE as given in Eq. (24) with the equivalent linear ODE as given in Eq. (30) can be
drawn for the sample chosen system a = 1, b = 1, c = 1, and A = 0.5:

From the NS in Fig. 6, it is found that the absolute error between the two solutions
is 0.00948421. It should be noted that, in contrast with the traditional perturbation
techniques, the present NPA enables us to discuss the stability criterion.

Table 1: validates the convergence of the numerical and NPA solutions.

t Numerical Approximate Absolute error

0 0.5 0.5 0

5 0.21334 0.215293 0.00215861

10 -0.31025 -0.314596 0.00434554

15 -0.486305 -0.486214 0.00009056

20 -0.105488 -0.104118 0.00137032

25 0.391676 0.396551 0.00487468

30 0.446169 0.445617 0.000552448

35 -0.0072927 -0.0127984 0.00550568

40 -0.452727 -0.456639 0.0039112

45 -0.382264 -0.380446 0.00181781

50 0.119721 0.129009 0.00928869

Additionally, Table 1 displays the absolute error between the numerical and approximate
solutions. As seen, this Table demonstrates that the changes between the two solutions
are very small.

3.4. Application 4

Consider the system generated by Nayfeh and Mook [37], the governing equation of
motion is may be simplified as follows:

ü+ µ sin u̇+ u = 0. (31)

In the abovementioned example, the nonlinearity arises from inertia and significant defor-
mation.
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Eq. (31) can be written as follows:

ü+ f1(u̇) + f2(u) = 0, (32)

where f1(u̇) = µ sin u̇, and f2(u) = u
Assuming that the guessing solution is given by

p = A cosΩt, ICs p(0) = A, and ṗ(0) = 0. (33)

The equivalent frequency may be determined from the following integration:

ω2
eqv =

2π/Ω∫
0

pf2(p)dt /

2π/Ω∫
0

p2dt = 1. (34)

The equivalent damping may be determined from the following integral

σeqv =

2π/Ω∫
0

f1(ṗ)dt /

2π/Ω∫
0

ṗ2dt. (35)

By means of the MS, Eq. (35) yields

σeqv =
2µ

AΩ
J1(AΩ). (36)

As previously seen, the equivalent linear equation may be written as follows:

p̈+ σeqvṗ+ p = 0. (37)

By making use of the standard normal form, the total frequency of the considered system
can be written as:

Ω2 = 1−
( µ

AΩ
J1(AΩ)

)2
. (38)

The stability criterion requires that Ω2 > 0 or
( µ
AΩJ1(AΩ)

)
< 1. It should be noted that

Eq. (30) is a transcendental equation in the total frequency Ω. By making use of the MS,
through the command FindRoot, for the data µ = 0.05 and, A = 0.5 utilizing the NS,
it follows that the approximate root of the frequency becomes: 0.999706. It should be
noted that the total frequency is very close with nature frequency of the system. For more
convenience, with the aid of the MS, a matching between the original non-linear ODE as
given in Eq. (31) with the equivalent linear ODE as given in Eq. (37) can be drawn for
the previous data system:
From the NS in Fig. 7, it is found that the absolute error between the two solutions
is 0.00347. It should be renowned that, in contrast with the traditional perturbation
techniques, the present NPA does not use the Taylor expansion for the restoring forces.
Additionally, it enables us to discuss the stability criterion.
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4. Discussion and Results

The solutions from the NPA are compared to the fourth order Runge-Kutta approxi-
mations illustrated in Figs. 2, 3, 6 and 7. The precisions of all derived analytical approxi-
mations using the NPA and RK4 are remarkably compatible. Based on these comparisons,
the current study gives assurance in the approach used to discover a quick and efficient
analytical solution of the previous ODEs. Furthermore, the accuracy of the NPA is some-
times better than that of traditional perturbation techniques, and there is a high degree
of harmony and agreement between the analytical and numerical approximations, which
contributes to the exceptional accuracy of all derived analytic approximations.

Figure 1: Displays the stability profile for Ω via A at g = 12.

Figure 2: A matching between the nonlinear/linear ODEs as given in Eqs. (9) and (15), respectively.
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Figure 3: A matching between the two nonlinear/linear ODEs as given in Eqs. (16) and (22), respectively.

Figure 4: Sketches the stability/instability zones.
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Figure 5: Geometric structure of the problem.

Figure 6: A matching between the two solutions of nonlinear/linear ODEs as given in Eqs. (24) and (30),
respectively.
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Figure 7: A matching between the two solutions nonlinear/linear ODEs as given in Eqs. (31) and (37),
respectively.

Finally, we can say that the NPA is appropriate for obtaining an accurate solution for
the strong nonlinear oscillator.

5. Conclusion

The primary goal of the current study is to employ the NPA in order to realize the
analytical explanations for many different types of exceedingly nonlinear oscillators, where
the nonlinear oscillators are growing more and more corporate. We scrutinize the rela-
tionship involving elastic forces and the solution of a certain type of oscillators with large
nonlinear damping both mathematically and numerically. It is supposed that the suitable
sum of the trigonometric functions equals the solution of a powerful nonlinear ODE that
represents motion. We give several instances from diverse arenas of science and technology.
The novel approach clearly requires less processing time and is less difficult than the con-
ventional perturbation methods that were widely employed in the field of the dynamical
systems. This new method, which is essentially a linear transformation of the nonlinear
ODE, is characterized by the NPA. This process yields a new frequency that is analogous
to a linear ODE, similar to a situation involving simple harmonic motion. When evaluated
for physiologically significant expert examples, this simple methodology produces results
that not only correspond well with the NS, but also prove to be more accurate than the
results obtained with many well-known traditional approximate methodologies. For the
advantage of the readers, a detailed description of the NPA is provided. The theoretical
conclusions are validated by a numerical comparison with the MS. The NS test results and
the theories were remarkably consistent. It is commonly known that all traditional pertur-
bation techniques use the Taylor expansion to enlarge the restoring forces when they exist,
therefore simplifying the current situation. Using the NPA eliminates this susceptibility.
Additionally, the stability analysis of the problems may be fully examined agrees to the
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NPA, which was not achievable with previous conventional methodologies. Consequently,
the NPA is a more helpful accountability tool when analyzing approximations for very
nonlinear oscillators in MS. Because the NPA is easily adaptable to address a wide range
of nonlinear challenges, it is a valuable tool in the fields of science and technology as well
as applied studies.

It should be noted that the understanding the periodic solutions of strongly nonlinear
oscillators have important applications in various fields: Improve stability and comfort
in buildings, automobiles, and marine engines. Prevent resonance and potential damage
in turbines and engines. Protect buildings and bridges during earthquakes. Mitigate
impacts of wind and traffic loads on structures. Ensure effective operation of devices like
pacemakers and respiratory machines.

As a progress work, the NPA can be developed to handling the coupled dynamical
system. Coupled dynamic systems, characterized by the mutual interaction of numerous
interacting subsystems, find extensive applications across many fields: Improves the effi-
ciency of design and maintenance processes by analyzing the interactions within machines.
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