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1. Introduction

Consider the variational problem:

b
(CP) Minimize ff(t,x,fc)dt

Subjectto x(a) =0 = x(b),
g(tzx)x) é 0) te I)
where I = [a,b] is a real interval, f : | XR" xR" > R, g : | X R" XxR" —» R™, x(t) is an

n-dimensional piecewise smooth function of t and x(t) is the derivative of x(t) with respect
to t in I. For notational simplicity, we write x(t) and x(t) as x and x, respectively.

Mond and Hanson [11] studied duality for the above problem under convexity. The
work in [11] was generalized to invex functions in [10, 12] and to multiobjective varia-
tional problems by Bector and Husain [2], Bhatia and Mehra [3], Kim and Kim [9], Ahmad
and Gulati [1] among others. In the work mentioned above, the boundary conditions are
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x(a)=a, x(b)=p.

Recently, Husain et al. [8] formulated the following second-order dual (CD) for (CP):

b
(CD) Maximize f{f(t,u,d)—%[o’(t)TF[J’(t)}dt

Subject to u(a) =0=u(b), (1)
futy(@O) g =D(fy +y() g)+(F+H)B()=0,tel, (2

b
f{y(t)Tg(t,u,it) - %ﬁ(t)TH/D’(t)}dt =0 3)
y(t)=0, tel, 4

where the symbols are as defined in [8].

They established the following converse duality theorem :

Theorem 1._[Converse duality ] Suppose that f and g are thrice continuously differentiable. Let
(x(t), ¥(t), B(t)) be an optimal solution of (CD) at which

(A1) the Hessian matrices F and H are not the multiple of each other;

(A2) y(t)" g, —Dy(t)" g #0,

b b
M43 @ [BWO'F® g, —Dy(t) g )dt Z0and [ ()T HB(t)dt >0, or
b b
(@ [B) G g —Dy(t) g:)dt £0and [ B()THB(t)dt <O.

b
If, for all feasible (x(t), y(t), B(t)), f f(t,.,.)dt is second-order pseudoinvex and
a

b
f y(t)T g(t,.,.)dt is second-order quasiinvex with respect to the same ), then x(t) is an optimal

;lolution of (CP).

This result has been established by first proving that f(t) = 0, t € I. It is obvious that the
b

assumption f B(OTHB(t)dt > 0 (or < 0) and the conclusion 3(t) = 0, t € I, are inconsis-

tent. More_over, assumption (A}) and equation (3.11) in [8], namely )

(A(t)+ a_[a’(t))TF + M) +yB(t)TH =0, t €I, do not imply A(t) + af(t) =0, t €1 and
A(t)+yB(t) =0, t € I. One needs to assume that the rows of F and H are linearly indepen-
dent.
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This paper is organized as follows. In Section 2, we prove a converse duality theorem
modifying Theorem 1. In Section 3, we consider the multiobjective analogue of problem (CP).
This section also contains notations and preliminaries. The necessary optimality conditions for
an efficient solution are obtained in Section 4. The duality results are established in Section
5. The static case of our problems has been given in the last section.

2. Converse Duality

We denote the first partial derivatives of f with respect to t, x and X, respectively, by f, f,

af @ 3 af @ 3 .
and f; such that f, = (a—i,a—;,..., a){n)T and f; = (a—)&,a—;,..., 5;)? The matrices f,,
and g, are of order n X n and n x m, respectively. Similarly f, ., ;s and the partial derivatives
of g/ are also defined. All derivative of x, and all partial and total derivatives of f and g used

in this section are assumed to be continuous. Let the set M = {1,2,...,m}.

Remark 1. It may be noted that if we write

d
fx(t’ x) ‘x“) - Efx(t) x")‘c) = L(tJ x) ‘X.‘J‘jé)i

then the function F should be

.. d . 2 o
F = Lx(t,x,x,x)—ELX(t,x,x,x)+WLX(t,x,x,x)

Y o d 3 o d .

- E(fx(t’x3x)_af>k(t’x3x))_E(E(fx(t’x3x)_Ef)'c(ax’x)))
2 5 4 _

+@(E(fx(t3x’x)_Ef)'c(t3x’x)))

= fex = Dfix = Dfiesx + D*fix — D fix
= fex —2Dfyi + D*fix — D> fis.

Thus F is a function of t, x(t), x(t), x(t), x(t), X (t) and is given by

F(t,x,x,%,%,X) = fioo(t,x,%)—2Df,.(t,x,%)
+ Dij(x(t,X,J.C)—Dgfkje(t,x,).(’), tel.

Therefore, it seems to us, that the function F should be as given above, while in Chen [6] and
Husain et al. [8], F has been taken as fy, —2Dfy4+D?fii and fyy —Dfy s+ D?f.y, respectively.

We formulate the following dual problem for (CP) :

b
(CD) Maximize f(f(t,u,u)—%[o’(t)TF[J’(t))dt

Subject to u(a) =0 =u(b), (5)
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fx(t) u, u) + gx(tz u, u).y(t) - D(fx(t> u, u) +

g:(t,u,u)y(t))+(F+H)B(t)=0, t €I, (6)
J’(t)Tg(t,u,d)—%fv’(t)TH/?’(t)20, tel, 7
y(t) =0, tel, (8)

where

H(t) u, u) u: u) u) J’(t): }’(t): }’(t): y(t)) = (gx(tn U:U)J’(t))x - ZD(gX(tJ u, U)J’(t))x
+D2(gx(t) u, u)}’(t))x - Dg(gx(ta u, u)y(t))X) te I:

Like [8], we shall use Fritz John necessary optimality conditions [4] for the dual problem
to establish the converse duality theorem. Since the constraints in the problem considered in
[4] do not involve integrals, we have not taken integral in the dual constraint (7). Moreovet,
some terms in (EB) are in different form than in (CD). It has been done so to make all the
terms in an expression to be of the same dimension. However, the weak duality theorem given
in [8] holds for problems (CP) and (EB).

Theorem 2. [Converse duality] Let (ii(t), ¥(t), B(t)) be an optimal solution of (63). If for each
tel,

(B1) the vectors {F;,H;,i = 1,2,...,n} are linearly independent, where F; and H; are the ith
rows of F(t,il,il, i, it, it ) and H(t,i, i, i, i, i ,y(t), y(t), y(t), ¥ (t)), respectively,

(B2) g.(t,a,0)y(t) — D(g:(t,a,0)y(t)) # 0, and
(B3) either
(D) the nxnmatrix H(t,,i,, o, @, y(£), y(t), y(t), ¥ ())+(g(t, @, D)3 (), is pos-
itive definite and B(t)T (g, (t,i,i)y(t)) =0, or
(i) the nxnmatrix H(t,a,i,d, i, i, y(t), y(£), ¥(t), ¥ ())+(g,(t, &, i)y (1)), is neg-
ative definite and ()7 (g,(t,@,i)y(t)) £ 0,

then @(t) is feasible for (CP) and the two objective functionals have/:sgme value. Also, if the weak
duality theorem [8] holds for all feasible solution of (CP) and (CD), then u(t) is an optimal
solution of (CP).

Proof. Since (i(t), ¥(t), B(t)) is an optimal solution of (65), there exist a € R and piece-
wise smooth functions A : I —R", y: I — Rand u: I — R™ such that the following Fritz John
conditions [4] are satisfied at (i(t), y(t), 8(t)) (for brevity, f, = f,(t,q,u), g/ = g/(t,a,u),

g% = g (t,1,1) etc.):

1 1 1,
—a(fx = Dfi = S (B FB()), + SD(B() FB())x — 5D ()" FB(L))s
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1 - - 1 _ -
+§D3(/5(t)TF/5(t))'>z' - §D4(/5(t)TF/5(t))'3e') + (fxx = Dfes +(8x¥(8))y = D(gx ¥ (1))

~(D(fex +(827(6))2) = D(D(fix + (82 7(£))2)) + D*(D(fiesx + (827 (£)))))

+((F + H)B(t)), — D((F + H)B(t)); + D*((F + H)B(t)z — D>(F + H)B()«

HDA(CE + HOB(0) A0 ~ 108 (0) = D83 (0) ~ 5 (BT HA(D),
1 Q TrrR 1 20 TrrR 1 3R TrrR
+3D(BOTHB(0): — DB HB(O)s + 5D (BT HA(O)x

1 4R TR
DB HB(O)5) =0, t L,

S 1 . .
2(6)" (gl + g2, B(E) —y(6)(g’ - gﬁ(t)Tgixﬁ(t))—MJ(t) =0,t€l, jeM,

(AD) + af()'F + (MO +1(OBO) H=0, t 1,

1_ ~
r(OF() g~ E/D’(t)TH/?’(t)) =0,tel,

u(®)'y(0)=0, tel,
(a,7(t),u(t)) 20, tEl,
(a, A(t),y(t), u(t)) #0, t 1.

By Hypothesis (B1), equation (11) yields
AMt)+af(t)=0, t el and

M) +y(B() =0, tel.
Using (6), (16) and (17) in (9), we have

(a—71(0))(g:7(t) = D(g:7() + HB(£) + %a((ﬁ_(t)TFﬁ_(t))x — D(B()" FB(D));

)

(10)
(11)
(12)

(13)
(14)
(15)

(16)
(17)

+D*(B()FB())z — D*(B(OTFB(t))+ + DHBW)FB())-x) + (F+H)B(), —
D((F +H)B(t))x + D*((F + H)B(t))z — D*((F + H)B(t))+ + D*((F + H)B(t))x)A(t) +

1 . _ _ _ _ _ _ _
EY(t)((/D’(t)TH/J’(t))x —D(B(OTHB(0)); + D*(BO)HB())z — D*(B(OTHB(E) +

D*B(O)THB())x) =0, t €L

(18)

Let y(t) = O for some t. Suppose ty € I and y(to) = 0. Then by (17), we get A(ty) = 0 and
so af3(ty) =0, by (16). Thus (18) yields a(g, y(ty) — D(g;¥(ty))) = 0, which by Hypothesis
(B2) implies a = 0. Since A(ty) = 0 and y(to) = 0, from (10), we obtain u/(ty) =0, j € M.

Therefore (a, A(ty), y(to), u(ty)) = 0, contradicting (15). Hence y(t) >0, t € 1.

Now, multiplying (10) by yj(t), t € I, summing over j, and then using (12), (13), (17)

and y(t) >0, t €I, we get
2B6(0)" (g7 () + B (H + (g 7(1))B() =0, t €1,
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which contradicts Hypothesis (B3) unless
B(t)=0, tel. (19)
Thus from (16), A(t) =0, t € I. Therefore for j € M, equation (10) gives
i W
(t)

Thus @(t) is feasible for (CP). Also, in view of (19), the two objectives are equal.

<0, tel.

Now;, assume that @(t) is not an optimal solution of (CP). Then, there exists i(t) € X such
that

b
Jf(t,ﬁ,ﬁ)dt < ff(t,a,a)dt.

As B(t) =0, t €I, we have

. . 1. _
ff(t,ﬂ,ﬁ)dt < f(f(t,ﬂ,ﬂ) - Eﬁ(t)TF/D’(t))dt,
a contradiction to the weak duality theorem [8]. Hence @(t) is an optimal solution for (CP).

3. Multiobjective Variational Problem

We consider the following multiobjective variational problem (P):

(P) Minimize (Jfl(t,x,X)dt,ffz(t,x,fc)dt,...,ffk(t,x,X)dt)

a a
Subjectto x(a) =a,x(b) =p, (20)
g(t,x,%) 20, tel, (21)

where f1:I1xSxS —R(i€K), g=(g',g%...,8™): 1 xS xS —R™and S is an open set
in R". We denote the first partial derivatives of f', with respect to t,x and X respectively by

fLfland f] such that f! = (oL =, aié, ’axn)T and f! = (a;’ ai;, . ’ax”)T The Hessian
matrix fxlx, is an n X n symmetric matrix. Similarly fx‘ - f; . and the partial derivatives of
g’ are also defined. All the partial and total derivatives of f' and g used here onwards are
assumed to be continuous. We shall use X for the set of all feasible solutions of (P). For the

sake of convenience, we shall not write the limits a and b in the integrals, i.e., f f idt shall
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b
meanffidt. Let K = {1,2,...,k} and for r € K, the set K, = K —r. For a and b in R", we

shall use the following three inequalities :

a>besad 2b (i=1,2,...,n)
a>bs(azb, a#b)

a>besa >bi(i=1,2,...,n).

Definition 1. A point X(t) € X is said to be an efficient solution of (P) if there exists no x(t) € X
such that

ffr(t,x,X)dt < ffr(t,i,f)dtfor somer €K

and in(t,x,)'c)dt < ffi(t,a'c,fc)dtfor i €K,.
D3fl(t,x,%), tel, i€K.
Definition 2. A functional G : I X S x S X R™ — R is said to be sublinear, if for all x(t),u(t) €S,
G(t,x,u; &1 + &) = G(t,x,u; &1) + G(t, x,u; &,) for all 1, &, €R™ (22)

and
G(t,x,u;a&) =aG(t,x,u;&) forallaeR, a 20and £ €R". (23)

From (23), it follows that G(t,x,u;0) = 0.
LetpeRandd: I xS xS — R" be a pseudometric on R".

Definition 3. The functional f fi(t,x,x)dt is said to be second-order (G, p)-convex at u(t) € S,
if there exists a sublinear functional G : I X S X S X R™ — R such that for all x(t) € S, p(t) €R",

ffi(t,x,X)dt —ffi(t,u,u)dt + %fp(t)TAip(t)dt >

f G(t,x,u;f;(t,u,u) — Df;(t, u, ) +Alp(t))dt +p J d?(t,x,u)dt.

If in the above definition, inequality is satisfied as strict inequality, then we say that the functional
ffl(t, x,x)dt is second-order strictly (G, p)-convex at u(t) € S.

Definition 4. The functional f fi(t,x,x)dt is said to be second-order (G, p)-pseudoconvex at
u(t) € S, if there exists a sublinear functional G : I x S X S x R™ — R such that for all x(t) €
S, p(t)eR",

fG(t,x,u;f,f(t,u,u) — Df,é(t,u,u)+Aip(t))dt+pfdz(t,x,u)dt20
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= ffi(t,x,X)dt > ffi(t,u,u)dt — %fp(t)TAip(t)dt.

Definition 5. The functional f fi(t,x,%)dt is said to be second-order (G, p)-quasiconvex at
u(t) €S, if there exists a sublinear functional G : I X S x S X R"™ — R such that for all x(t) €S,
p(t) €R’,

ffi(t,x,jc)dt < ffi(t,u,it)dt — %Jp(t)TAip(t)dt

= f G(t,x,u; fi(t,u,u) = DFL(t,u, ) +A'p())dt + p J d?(t,x,u)dt £ 0.

4. Necessary optimality conditions

We now prove three results. The first gives Fritz John type necessary conditions for (P)
and the remaining two are Kuhn-Tucker type necessary conditions for (P). To establish these
necessary conditions, we shall use the corresponding result for single objective variational
problems obtained by Chandra et al. [4] in their Theorem 1. As stated in the remarks after
Theorem 1 in [4], to use their Kuhn-Tucker conditions, we shall assume Slater’s or Robinson
condition.

The following result relates an efficient solution of (P) with an optimal solution of k-scalar
objective variational problems.

Lemma 1 (Chankong and Haimes [5]). A point x(t) € X is an efficient solution of (P) if and
only if x(t) is an optimal solution of (P,) for each r € K.

(P,) Minimize ffr(t,x,)'c)dt
Subject to  x(a)=a,x(b)=p3,
glt,x,x)=0, tel,
[ fitt,x,x)de < [ fi(t,%,%)dt, i €K,.

The k-problems (P,) involve integral in the constraints, while to obtain necessary optimal-
ity conditions for (P) via (P,) we need necessary optimality conditions for scalar variational
problem [4]. Since the variational problem in [4] does not involve the integral in the con-
straints, we first derive the result relating an efficient solution of (P) with the optimal solution
of the following k-single objective problems:

(P,) Minimize ffr(t,x,ic)dt
Subjectto  x(a) =a,x(b) =p,
glt,x,x)Z0, tel,
fi(t,x,x) S fi(t,x,x), t €I, i €K,.

Lemma 2. Let X(t) € X be an efficient solution of (P). Then x(t) is an optimal solution of (P,)
for each r €K.
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Proof. Let x(t) be an efficient solution of (P) and suppose, to the contrary, that x(t) is not
an optimal solution of (P,), for some r € K. Then there exists an £(t) € X such that

g(t,%,2) =0, tel, (24)
fi(e,%,2) S fi(t,x,%), tel, i €k,, (25)
and Jfr(t,fc,fc)dt < ffr(t,fc,fc)dt. (26)
Inequality (25) implies
in(t,fc,fc)dt < in(t,)_c,fc)dt, i€K,. 27)

Inequalities (26) and (27) contradict the fact that x(t) is an efficient solution of (P). Hence
x(t) is an optimal solution of (P,) for each r € K.

Theorem 3 (Fritz John type necessary conditions). Let x(t) be an efficient solution of (P). Then
there exist A' €R, i € K and a piecewise smooth function y : I — R™ such that

k
D A, %, %) = DENE, %, %)) + 8.8, %, 0)7(6) = D(gx (6, %, $)7(0) =0, t €1,  (28)
i=1

() g(t,x,x)=0, tl, (29)
(A, 3()) =0, tel. (30)
Proof. Since x(t) is an efficient solution of (P), by Lemma 2, x(t) is an optimal solution

of (P,) for each r € K and hence in particular of (P;). Therefore, by [4], there exist A}, i €K
and a piecewise smooth function y¥(t) € R™ such that

g.(t,%,%)y(t) — D(g:(t,%,%)7(t)) =0, t €1,
y(t)g(t,x,x)=0, t 1,
AL 22%,. . A () =0, tel,

which give (28) to (30).

Theorem 4 (Kuhn-Tucker type necessary conditions). Let X(t) be an efficient solution of (P)
and let for some r € K, the constraints of (P,) satisfy Slater’s or Robinson condition at x(t).
Then there exist A € R* and a piecewise smooth function y : I — R™ such that

k

A(FL(t,%,%) = DFL(,%,%)) + g, (t,%,X)y(t) — D(gx(t, %,%)y(t)) =0, t €1,
i=1

y(t) g(t,x,x)=0, t eI,
0
,tel.

v

>
y)zo0
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Proof. Since x(t) is an efficient solution of (P), by Lemma 2, x(t) is an optimal solution
of (15r) for each r. As for some r, the constraints of (15r) satisfy Slater’s or Robinson condition
at x(t), by the Kuhn-Tucker necessary conditions in [4], there exist 0 < A" €R, 0 < 1! € R,
i € K, and a piecewise smooth function ¥(t) € R™ such that

AT(fI(6,%,%) = DFL(6,%, %) + D AUFi(e, %, %) - DFI(e, %, %)+
i€k,

g (t,%,3)y(t) — D(g;(t,%,%)y(t)) =0, t €1,

y()g(t,%,x)=0, t€l,
A'>0,05A'€R, i€k,,
y)zo0, tel.

Or equivalently

k
Zil(f;(t’ir)?) _Df;(t’i’i)) + gx(t’)z‘,;().)_/(t) _D(gx(t,ff’f)}_’(t)) = O, te I,
i=1

y(BO)g(t,x,x)=0, tel,
2.>0, L €Rk,
y()zo0, tel.
In Theorem 4, we assumed Slater’s or Robinson condition for some (P,), which gave us

A > 0. In the following Theorem, we assume Slater’s or Robinson condition for every (P,)
and obtain A > 0.

Theorem 5 (Kuhn-Tucker type necessary conditions). Let x(t) be an efficient solution of (P)
and let for each r € K, the constraints of (P,) satisfy Slater’s or Robinson condition at x(t). Then
there exist A € R* and a piecewise smooth function y : I — R™ such that

k
D AfI(e, %, %) = DFIE, %, 5)) + g6, %, )7(6) = D(gx (£, %, $)7(£) =0, t €1,
i=1

y(t) g(t,%,%)=0, t €1,

k
2>0,> A =1,
i=1
y()=0, tel.

Proof. Since x(t) is an efficient solution of (P), by Lemma 2, x(t) is an optimal solution of
(P}) for each r € K. As for each r, the constraints of (PAr) satisfy Slater’s or Robinson condition
at x(t), by the Kuhn-Tucker necessary conditions in [4], for each r € K, there exist V. € R

(i € K,) and piecewise smooth functions i’.(t) € R (j € M) such that
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FI(6,%,%) = DFL(6,%,%) + Y VL(Fit, %, %) — DFL(E, %, %))+

i€k,

D (gl (6, %,30)p(6) — D(gl(t, %, A (E)) =0, t €1,
j=1

m
D (gl (6, %,%) =0, tel,
j=1

vL>0,i€k,,
y)zo, tel.

Summing over r € K, we get

k m
D T+ v+ A T %, %) = DFL(E %, %)) + D (8108, 2, )0+ fH (0 + ...+
i=1 j=1
,(6)) = D(gh(t, %, )W) + @y(6) + ... + A (D)) =0, t €1,

Z(ﬁ{(t) + L)+ a{((t))gf(t,ic,f) =0, tel,
j=1

where ﬁii =1 foreachi K.

Equivalently,

m

PFLCE %, %) = DFL(E, %, )+ Y (81(t, %, 2)i/ () — D(gl(t, %, )/ (1)) =0, t €1, (31)
i=1 j=1

M~

m

> E(0e(t,%,%) =0, tel, (32)
j=1

koo
where ' =1+ Y v >0,i€K,and @/(t)= Y a3 (t) 20, t€l,j € M.

rek; r=1

k
Dividing (31) and (32) by Y. #' and setting

i=1
A= kvl ,i€K, yf(t)zukj(t), jeM,
2V 2V
i=1 i=1
we get
k

il(f;(t,.)?,.)?) - Df;(t’i,-i)) + Z(gi(t,f,f)}_’](t) - D(gi(t’f,i))_’](t))) = O, te I,
i=1 j=1
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> F0glt,z,2)=0, tel,
j=1
or
k p—_— . .
Zkl(f;(t,i,ff)—Df,i(t,ff,ff))+gx(t,5f,ff))7(t)—D(gx(t,ff,i))'/(t))ZO, tel,
i=1
y(0)'g(t,%,%x)=0, t€l,
k
iz(il,iz,...,ik)>0,22i= ,
i=1

y(6) =G, 7*(1),...,y™(t) =0, t 1.

5. Second-order Mond-Weir Type Duality

We present the following multiobjective variational dual problem for (P):
1
(MWD) Maximize (J (Fi(t,u,u) - Ep(t)TAlp(t))d t,...,

1
f (FH(tw i) = Sp(O) Ap(6))dt)
Subject to u(a) = a,u(b) =, (33)
k
D Afie,u i) = DF(E,u,w) +A'p(6)) +
i=1

8x(t,u, 1)y (t) — D(gx(t,u,0)y(t)) +Bp(t) =0, t €1,  (34)

YO gt u0) = 5p(t)Bp(0) 20, e, 35
A =0, (36)
Y020, tel, 67

where y : 1 = R™ p: 1 - R", A= (AL A%, ..., A") e Rk, Al(¢t,u,u,ii,1,i), t €I, i €K (as
defined earlier) and

t €1, are n X n symmetric matrices. Let Y be the set of all feasible solutions of the above
problem.

Theorem 6. (Weak duality) Let x(t) € X and (u(t), A, y(t),p(t)) €Y such that
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k
() f > Afi(t,.,.)dt is second-order (G, py)-pseudoconvex at u(t),
i=1

(ii) f y(t) ' g(t,.,.)dt is second-order (G, p,)-quasiconvex at u(t),
(iii) A>0and p;+p,20.
Then

ffr(t,x,)'c)dt < J(fr(t,u,ll) — %p(t)TArp(t))dtfor somer €K (38)

and ffi(t,x,X)dt < f(fi(t,u,u) - %p(t)TAip(t))dt, i €K, (39)

cannot hold.

Proof. Suppose, to the contrary, that (38) and (39) hold. Since A > 0, the above inequali-
ties give

f ilifi(t,x,X)dt < f zk:ki(fi(t, 1) — %p(t)TAip(t))dt. (40)
Now, by the const;ilnts (21), (35) and (317_)t we have
f y(©) gt x,x)dt = J(y(t)Tg(t,u,u) - %p(t)TBp(t))dt
As fy(t)Tg(t, .,.)dt is second-order (G, p,)-quasiconvex at u(t), we get
J(G(t,x,u; gx(t, 1, 1)y(t) — D(g:(t,u, W)y () +Bp()) + pod*(t, x,u))dt 0. (41)
From the constraint (34) and the fact that G(t, x,u;0) = 0, we have

k
J(G(t,X,u;Zli(fi(t,u,ll) — Df{(t,u,0) +A'p(6)) + g, (t,u,1)y ()
i=1

— D(gi(t,u,u)y(t)) +Bp(t)))dt =0,

which on using inequality (41), Hypothesis (iii) and the sublinearity of G, yield

k
J G(t,x,u; Zki(fxi(t, u,u) — kai(t,u,ll) +Alp(t)))dt + f p1d%(t,x,u)dt = 0.

i=1

By Hypothesis (i), it implies

k k
f D AFEx,x)dE 2 f DA un) - gp(t)TAfp(r))dt,
i=1 i=1

a contradiction to (40). Hence the result.
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Remark 2. If we drop the assumption A > 0 from Theorem 6, then we need to replace Hypothesis

k
(i) by : f > ALfi(t,.,.)dt is second-order strictly (G, pp)-pseudoconvex at u(t).
i=1

Theorem 7 (Strong duality). Let X(t) be normal and is an efficient solution of (P). Then, there
exist A € R, a piecewise smooth function ¥ : I — R™ such that (x(t), A, y(t),p(t) = 0) is
feasible for (MWD) and the two objective functionals are equal. Furthermore, if the weak duality
holds for all feasible solutions of (P) and (MWD), then (x(t), A, ¥(t),p(t) = 0) is an efficient
solution of the problem (MWD).

Proof. Since x(t) is normal and an efficient solution of (P), therefore by Theorem 4, there
exist A € RF and a piecewise smooth function 7(t) € R™ satisfying

k
D A%, %) = DFI(L, %, %)) + 8:(t,%, )7 (t) = D(gx(t, %, 1)7(1) =0, t €1,
i=1

7O g(t,x,x)=0, tel,
A>0,tel,
y)zo, tel.

Hence (x(t), A, 7(t), p(t) = 0) satisfies the constraints of (MWD) and thus the two objective
functionals have the same value.

Now, we claim that (x(t), A, ¥(t), p(t) = 0) is an efficient solution of (MWD). If not, then
there exists (@i(t), A, y(t), p(t)) € Y, such that

p(OTAN ¢, a, 4,4, @, @ )p(t))dt,...,

Jwai-;

p(OTAR(t,a,d,d, 0, @ )p(t))dt)

f R i) - -
2

> (f(fl(t,fc,fc) - 5P(OTAN(E %, %, %, %, $)p(O)E, ..,
Jk - 1_ T 1k [ - N
(f (t,x,x) - Ep(t) A%(t,x,%x,x, x, X )p(t))dt).
As p(t) =0, we have

p(OTAN L, a,4,4, i, 0 )p())dt, ...,

N —

(f(fl(t,a’ﬁ) -

f (PR 88— Sp(OT AL 0,6, 6, TB(O)AE) = ( f fe,%,%)dt f Fr(e, %, %)dt)
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which contradicts the weak duality theorem. Hence (x(t), A, ¥(t),p(t) = 0) is an efficient
solution of (MWD).

Theorem 8 (Converse duality). Let (i(t), A, 7(t), p(t)) be an efficient solution of (MWD) for
which

(C1) the vectors {A‘;n,Bm, tel,ieK,m=1,2,...,n} are linearly independent, where Aim is the
mth row of A\(t,, i, 1, i, u ) and B,, is the mth row of
B(t,u,u,u, u, u,y(t),y(t),y(t), y(t)),

(c2) f;(t,ﬂ,ﬁ) — Dfxi(t, i,i), t €1, i €K, are linearly independent, and
(C3) for t €1, either

(@) the nxnmatrix B(t,i, i, 4, i, i, (), y(£), ¥(t), ¥ () +(8(t, @, i) 7(t)), is pos-
itive definite and p(t)T (g, (t,i,i)y(t)) =0, or

(b) the nxnmatrix B(t,d,i,1, 4, i, (1), y(t), y(£), ¥ () +(gx(t, 1, @)7 () is neg-
ative definite and p(t)" (g, (t,d,1)y(t)) S 0.

Then u(t) is feasible for (P) and the two objective functionals have same value. Also, if the
weak duality theorem holds for all feasible solutions of (P) and (MWD), then u(t) is an efficient
solution of (P).

Proof. Since ((t), A, y(t), p(t)) is an efficient solution of (MWD), there exist a, 1 € R* and
piecewise smooth functions § : I - R", y : I = R, u : I — R™, such that the following Fritz
John conditions (Theorem 3) are satisfied at (@i(t), A, ¥ (t), p(t)) (for brevity, f! = fi(t,d, i),
¢ =gt a,0), gt = gh(t,a,0), At = Al(t, i, i1, 4, 4, i ),

B=B(t,u,i,i, u, u,y(t),y(t), y(t), y(t)) etc.):

: icri i 1 T pi 5 1 =T Al 5 1 20=0\T Al 5
2@ (= DfE = SBOTABD) + SD(B(0AP(0)s = DX (B0 AP()s +
i=1

1 . 1 . koo .
F DGO AB() — 5D (B AP()) ) = O A(A + (AB(1)), — D(A'(0)); +
i=1

D2(A'B(t))z — D3(A'P(£)) + D*AP())-5*) + B + (Bp(t)), — D(BP(6)); +
D*(Bp(t))z — D*(Bp(t))+ + D*(Bp(6))-x-)B(t) + y(t)(g,y(t) — D(g: 7(t)) —

Lo o L \Tp- L o \T - L s \Tp-
S (B BB, + 5D(B(0) BB — DB BR(e))s + 5D (B0 BR(0) -

1
SDU (B Bp(0) ) =0, t <1, (42)

BT (fi-Dfi+Ap(t)—n'=0, tel, i €K, (43)

. . . 1 . .
B (gl + gl p() —y(t)(g — Ep(t)Tg;xp(t)) —uw()=0,tel, jeM, (44)
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k k
> alap(e)+ (O AA +B)B() +1(Bp(1) =0, t €], (45)
i=1 i=1
KOG g - 2P0 BI() =0, te 1, 46
un'y( =0, tel 47)
nTA=0, (48)
(a, B(2), y(6), u(t),n) #0, t €1, (49)
(o, y(t),u(t),n) =0, tel. (50)

On rearranging (45), we get

k
ZAi(aiﬁ(t) +AB(O) +BB(O) +1(0)p(1) =0, t 1,

i=1
which by Hypothesis (C1), yield
ap(t) + A B(t)=0, tel, i €K, (51)

and
B()+y(t)p(t)=0, tel. (52)

Now, suppose y(t) = 0 for some t, i.e., y(ty) = O for some ty € I. Then equation (52) gives
B(to,) = 0 and so equation (51) implies a'p(t,) = 0. Therefore for t = t,, equation (42)
reduces to
k . . .

D ad(fi-pfh=o.

i=1
On using Hypothesis (C2) in the above equation, we obtain

a'=0,i€K.

Also, equations (43) and (44) give n' =0, i € K and u/(t,) = 0, j € M, respectively. Hence
(a, B(tg), y(to), u(ty),m) = 0, which contradicts (49). Therefore

y(t) >0, tel. (53)

Multiplying (44) by )71 (t), summing over j and then using (46), (47), (52) and y(t) > 0, we
have
2p(0)" (g7 () +B() (B + (g, (1) )p(t) =0, t €1,

which contradicts Hypothesis (C3) unless

p(t)=0, tel. (54)
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And thus relation (52) gives 8(t) =0, t € I. For j € M, equation (44) yield

i —u;(t)

] =0,tel, jeM.
r(t) —

Thus @(t) is feasible for (P).
As p(t) =0, t €I, the two objectives functionals are equal.

Now, suppose that i@i(t) is not an efficient solution of (P). Then, there exists i(t) € X such
that

ffr(t,ﬁ,ﬁ)dt < ffr(t,ﬁ,ﬁ)dt for some r € K
and
ffi(t,a,ﬁ)dt < in(t,ﬂ,ﬁ)dt, i€K,.
Using (54), we get

Jfr(t,ﬂ,ﬁ)dt < J(fr(t,ﬂ,ﬁ) - %p(t)TAr(t,ﬂ,ﬁ,i'i, i, i )p(t))dt for some r € K

and

ffl(t,a,ﬁ)dt = f(fl(t,ﬂ,a) - Ep(t)TAl(t,ﬂ,ﬂ,ﬂ, u, u)p(t)dt, i €K,,
which contradicts the weak duality theorem. Hence ii(t) is an efficient solution for (P).

Remark 3. For the single objective problems in Section 2, the Hypothesis (C2) reduces to

(C2) f,—Dfy #0,t 1.

Therefore following the above proof, Theorem 2 can also be proved if Hypothesis (B2) is replaced
by (C2'). This also makes the proof simpler as it does not require equation (18). However, we
proved Theorem 2 assuming (B2), which is same as Hypothesis (A2) in [8].

Theorem 9 (Strict converse duality). Let x(t) and (i(t), A, 7(t), p(t)) be efficient solutions of
(P) and (MWD) respectively, such that

k k
. . . . 1 ) c e e e
f Z?Ufl(t,)'c,fc)dt = f le(fl(t, i, i) — Ep(t)TAl(t, a,i,4, 4, 1)p(t)dt  (55)
i=1 i=1
If
k - .
) f ST ALfi(t,.,.)dt is second-order strictly (G, p;)-convex at ui(t),

i=1

(ii) f}'/(t)Tg(t, .,.)dt is second-order (G, py)-convex at u(t), and
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(iii) py+py=0.
Then x(t) = u(t).

Proof. Suppose x(ty) # ti(ty) for some t, € I. By Hypothesis (i), we have

koo koo koo _
fZ)Llfl(to,)_C,);C)dt - f Z)Llfl(to,ﬂ,l;l)dt > J(G(to,)?,a,Z)Ll(f;(to,ﬂ,a) —Dfxl(to,ﬂ,ﬂ)

i=1 i=1 i=1

+Al(t05ﬂ) L_l, L_l, L_l, u )p(to))) - EZALP(to)TAl(to,ﬂ, L_l, L_l, L_l) u )p(to) +p1d2(t05‘i) L_l))dt.
i=1
(56)

By Hypothesis (ii), we get

J y(tO)Tg(tOJ X‘) )?)dt - J _)_/(tO)Tg(tO,ﬂ, ﬂ)dt i f(G(tOJ)?: L_l, gx(tOJﬂ: a)y(tO)_
D(gx(to, @, )y (t)) + B(to, i, U, u, .ﬁ.:.ﬁ.:}_’(to),};’(to),};}(to),yr(to))p(to))—
Ef’(to)TB(toﬁﬂ, i, u, u,y(te), ¥(to), ¥(to), ¥ (to))p(to) + pad>(to, X, @))dt. (57)

Adding (56), (57) and using Hypothesis (iii), (21), (35), (37), (55), we obtain

k
f Glto, %,1; Y, AN(f (0,0, 1) — Df{(to, @) +A'(to, i, 1L, &, it Yp(to)) + 8x(to, 1, 1)7 (t)—
i=1

D(gx(to, @, W)F(te)) + Blto, i, i, U, &, ¥(to), ¥(to)s ¥(to), ¥ (t))D(te))dt <O,

which by (34) implies f G(tg, x,1;0)dt < 0, a contradiction to the fact that G(t,x,i;0) =0,
t €1. Hence x(t) =u(t), t 1.

Remark 4. The above Theorem also holds true if we replace “efficient solutions” by “feasible
solutions”.

6. Related Problem

If the time dependency of problems (P) and (MWD) is removed, then these problems
reduce to the following second-order multiobjective nonlinear problems studied in Mond and
Zhang [13] and Gulati and Agarwal [7]. The assumptions in our converse duality theorem
are similar to the assumptions in [7].

(NP) Minimize (f'(x),f2(x),...,f (x))
Subject to  g(x) =0,
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(D) Minimize  (f(u) = 5p" V2 (Wp, £2(u) = 5p" V2 F2Wp, .., £4w) ~ 3p"TF ()
k m
Subject to Z AV Fi(u) + V3Fi(uw)p) + Zyj(ng(u) +V2g/(wp) =0,
i=1 j=1

1
ylgw) - EpTVZ(yTg(u))p >0,A>0, y=0.
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