
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 17, No. 4, 2024, 2985-2989
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

Every Uniquely Remotal Set in a Hilbert Space is a
Singleton

Roshdi Khalil1,∗, Abdelrahman Yousef2, Waseem Ghazi Alshanti3,
Ma

′
mon Abu Hammad3

1 Department of Mathematics, The University of Jordan, Queen Rania St, Amman, 11942,
Jordan
2 Department of Mathematics and Statistics, American University of Sharjah,
P.O.Box 26666, Sharjah, United Arab Emirates
3 Department of Mathematics, Al Zaytoonah University of Jordan, Queen Alia Airport St
594, Amman, 11733, Jordan

Abstract. In this paper we prove that every uniquely remotal set in a Hilbert space is a singleton.

2020 Mathematics Subject Classifications: 46B20, 41A50, 41A65

Key Words and Phrases: Uniquely remotal sets, Farthest points, Uniquely distant sets, Hilbert
Space

1. Introduction

Let H be a Hilbert space, and let E ⊆ H be a closed and bounded subset of H. The
real-valued function D(·, E) : H → R defined by

D(x,E) := sup
e∈E

∥x− e∥ , for x ∈ H, (1)

is referred to as the farthest distance function. The set E is termed remotal if, for every
x ∈ H, there exists an e ∈ E such that D(x,E) = ∥x− e∥. In this case, the set

P (x,E) := {e ∈ E : D(x,E) = ∥x− e∥}

is denoted as P (x,E). Clearly, P (·, E) : H → 2E is a multi-valued function. However, if
P (·, E) : H → 2E is single-valued, meaning P (x,E) is a singleton for all x ∈ H, then E is
called uniquely remotal.
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The study of remotal and uniquely remotal sets has garnered significant interest over
the past few decades due to their connections with the geometry of Hilbert and Banach
spaces [2–15]. Among these, uniquely remotal sets hold particular significance. Indeed,
one of the most intriguing open problems in functional analysis is the well-known farthest
point problem, which conjectures: ”Every uniquely remotal set in H is a singleton”. This
is the central focus of this paper.

This problem has persisted for over 70 years. Its significance was further highlighted
when Klee [9] established the equivalence of the following two statements:

(i) Every uniquely remotal set is a singleton.

(ii) Every uniquely proximinal set in a Hilbert space H is convex.

Since Klee’s result, considerable progress has been made toward resolving this question,
with many partial results supporting the conjecture.

In [1], the following theorem was established:

Theorem 1 ([1]). Every uniquely remotal set that is also uniquely distant is a singleton.

This result represents the closest attempt to date to resolve the farthest point problem.

2. Preliminaries

In [1], the following definition and result were presented:

Definition 1 ([1]). Let H be a Hilbert space, and let E ⊆ H be a closed and bounded
subset. Then E is said to be a uniquely distant set in H if the following two conditions
are satisfied:

(i) E is uniquely remotal,

(ii) If x ∈ H and y is the farthest point from x ∈ E, then for every ϵ > 0, there exists a
δ > 0 such that D(x,E \B(y, δ)) ≤ D(x,E)− ϵ.

The main result in [1] was as follows:

Theorem 2 ([1]). Every uniquely distant set in H is a singleton.

In this paper, we prove that Theorem 2 holds true for uniquely remotal sets in H,
without requiring condition (ii) in Definition 1. This effectively proves the farthest point
conjecture.
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3. Main Result

In this section, using the result from [1], we prove the following: Every uniquely
remotal set in H is a singleton. Consequently, by Klee’s result [14], we also obtain
the result: Every uniquely proximinal set in a Hilbert space is convex.

Theorem 3. Every convex uniquely remotal set in a Hilbert space H is uniquely distant.

Proof. Consider the statement Q:
”For every ϵ > 0, there exists a δ > 0 such that D(x,E \B(y, δ)) ≤ D(x,E)− ϵ.”
Here, x ∈ H and y = P (x,E).
To prove the theorem, we show that Q holds for any uniquely remotal set E ⊂ H.

This is achieved by demonstrating that the negation of Q, denoted ∼ Q, is false for any
uniquely remotal set in H.

Let E ⊆ H be a closed, convex, and bounded subset that is uniquely remotal. By
Definition 1, uniquely distant implies that if x ∈ H, and y is the farthest point from x in
E, then

D(x,E) = r = ∥x− y∥ . (2)

Moreover, for every ϵ > 0, there exists a δ > 0 such that D(x,E \B(y, δ)) ≤ D(x,E)−
ϵ = r − ϵ.

Now, ∼ Q states that there exists an ϵ, with 0 < ϵ < r, such that for every δ > 0, one
has D(x,E \B(y, δ)) > r − ϵ.

Assume without loss of generality that x belongs to the boundary of E, and let
D(y,E) = s. Then, clearly s ≥ r. Define δn = s − 1

n , and set Bn = B(y, δn). Let
En = E \Bn. Then, it is evident that:

B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊆ . . .

and

E1 ⊇ E2 ⊇ . . . ⊇ En ⊇ . . .

Further, we have:
∪Bn = B(y, s) and ∩ En = ∅ (3)

Now, D(x,En) ≥ D(x,En+1) for all n. Thus, by (3), we have D(x,En) → 0 as n → ∞.
It follows that

D(x,E \Bn(y, δ)) = D(x,En) > r − ϵ > 0, for all n. (4)

Hence,

lim
n→∞

D(x,En) > r − ϵ > 0

So, we obtain:
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limD(x,En) = 0 > r − ϵ > 0

Thus, 0 > 0, which is a contradiction. Therefore, ∼ Q is false, and Q is true. This
implies that every uniquely remotal set in H is a uniquely distant set.

A key corollary of this result is:

Corollary 1. Every uniquely remotal set in H is a singleton.

Proof. The corollary follows directly from Theorem 2 and Theorem 3.

Remark 1. It is evident that constructing a concrete example where a uniquely remotal
set in a Hilbert space is a singleton is challenging. However, we provide a straightforward
example to help the reader grasp the concept more easily and to illustrate the underlying
principles.

The following example illustrates that a subset of R2 containing two elements cannot
be uniquely remotal.

Example 1. Let M = {x, y}, where x ̸= y, be any arbitrary subset of the Hilbert space

R2. If M is uniquely remotal, then for z =
x+ y

2
we obtain the following

||x− z|| = ||x− y

2
||

and

||y − z|| = ||x− y

2
||

This implies that D(z,M) = ||z − x|| = ||z − y||, which contradicts the fact that M is
uniquely remotal.

4. Conclusion

This paper presents a proof for one of the well-known longstanding open problems,
known as the Farthest Point Problem. We have shown that every uniquely remotal set in
a Hilbert space is a singleton.
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