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Abstract. Let G be a connected graph. A subset S of V (G) is a connected co-independent hop
dominating set in G if the subgraph induced by S is connected and V (G)\S is an independent
set where for each v ∈ V (G)\S, there exists a vertex u ∈ S such that dG(u, v) = 2. The smallest
cardinality of such an S is called the connected co-independent hop domination number of G.
Here, authors presented the characterizations of the connected co-independent hop dominating
sets in the edge corona and complementary prism of graphs and determines the exact values of
their corresponding connected co-independent hop domination number.
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1. Introduction

Domination in graphs was first introduced by C. Berge in 1958 [2]. There are now many
studies involving domination and its variations. One of its variation is the connected co-
independent domination number of graphs introduced by Gayathri and Kaspar in 2010
[3] and further studied in [1, 10]. Recently, Natarajan and Ayyaswamy [7] introduced and
studied the concept of hop domination in graphs. Hop domination in graphs were also
studied in [5, 6, 8, 9, 11]. In [6], the connected co-independent hop dominating sets of a
graph is defined and studied under the join, corona and lexicographic product of graphs.
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2. Preliminaries

All graphs considered in this study are finite, simple, undirected and connected. Some
necessary definitions are presented in this section. Readers are referred to [4] for elemen-
tary Graph Theoretic concepts.

Definition 1. An independent set S in a graph G is a subset of the vertex-set of G such
that no two vertices in S are adjacent in G. The cardinality of a maximum independent
set is called the independence number of G and is denoted by β(G). An independent set
S ⊆ V (G) with |S| = β(G) is called a β-set of G.

Definition 2. A perfect matching of a graph is a matching (i.e., an independent edge set)
in which every vertex of the graph is incident to exactly one edge of the matching.

Definition 3. A dominating set D ⊆ V (G) is called a connected co-independent dominat-
ing set of G if D is a connected dominating set of G and V (G) \D is an independent set.
The cardinality of such a minimum set D is called a connected co-independent domination
number of G denoted by γc,coi(G). A connected co-independent dominating set D with
|D| = γc,coi(G) is called a γc,coi-set of G.

Definition 4. A set S ⊆ V (G) is a hop dominating set of G if for every v ∈ V (G)\S, there
exists u ∈ S such that dG(u, v) = 2. The minimum cardinality of a hop dominating set of
G, denoted by γh(G), is called the hop domination number of G. Any hop dominating set
with cardinality equal to γh(G) is called a γh-set.

Definition 5. A vertex v in G is a hop neighbor of vertex u in G if dG(u, v) = 2. The
set NG(u, 2) = {v ∈ V (G) : dG(v, u) = 2} is called the open hop neighborhood of u.
The closed hop neighborhood of u in G is given by NG[u, 2] = NG(u, 2) ∪ {u}. The open
hop neighborhood of X ⊆ V (G) is the set NG(X, 2) =

⋃
u∈X

NG(u, 2). The closed hop

neighborhood of X in G is the set NG[X, 2] = NG(X, 2) ∪X.

Definition 6. A set S ⊆ V (G) is a connected co-independent set of G if ⟨S⟩ is connected
and V (G)\S is independent.

Definition 7. A subset S of V (G) is a strictly co-independent set of G if V (G)\S is an
independent set and NG(v) ∩ S ̸= S for all v ∈ V (G)\S. The minimum cardinality of a
strictly co-independent set in G, denoted by sci(G) is called the strictly co-independent
number of G. A strictly co-independent set S with |S| = sci(G) is called an sci-set of G.

Definition 8. Let G be a connected graph. A hop dominating set S ⊆ V (G) is a connected
co-independent hop dominating set of G if ⟨S⟩ is connected and V (G)\S is an independent
set. The minimum cardinality of a connected co-independent hop dominating set of G,
denoted by γch,coi(G), is called the connected co-independent hop domination number of
G. A connected co-independent hop dominating set S with |S| = γch,coi(G) is called a
γch,coi-set of G.
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Example 1. Let P8 = [a, b, c, d, e, f, g, h]. Then S1 = {c, d, g, h}, S2 = {c, d, e, f} and
S3 = {b, c, d, e, f, g} are hop dominating sets of P8. ⟨S1⟩ is not connected while ⟨S2⟩ and
⟨S3⟩ are connected. However, S2 is not a connected co-independent dominating set since
V (G)\S2 is not an independent set while S3 is a connected co-independent dominating
set because V (G)\S3 is an independent set. Thus, S3 is a connected co-independent hop
dominating set. It can be verified that γch,coi(P8) = 6.

Definition 9. For every u, v ∈ V (G) such that uv ∈ E(G), denote by Huv the copy of H
whose vertices are attached one by one to the end vertices u and v of each edge uv of G
and a set Suv ⊆ Huv.

3. Results

3.1. Preliminary Results

It is worth mentioning that every connected graphG admits a connected co-independent
hop dominating set. Indeed, the vertex-set V (G) of G is a connected co-independent hop
dominating set. As a simple observation, we state the following.

Remark 1. Every connected co-independent hop dominating set in a connected graph G
is a hop dominating set. Hence, γh(G) ≤ γch,coi(G).

Remark 2. Let G be a connected graph of order n. Then 1 ≤ γch,coi(G) ≤ n. Moreover,
γch,coi(G) = 1 if and only if G = K1.

Example 2. The formulas below give the connected co-independent hop domination num-
ber of the path Pn and cycle Cn.

γch,coi(Pn) =


1 if n = 1

2 if n = 2, 3

n− 2 if n ≥ 4

γch,coi(Cn) =

{
3 if n = 3

n− 1 if n ≥ 4

Remark 3. If G is a complete graph, then γch,coi(G) = n.

Theorem 1. Let G be a connected graph of order n ≥ 3. Then γch,coi(G) = 2 if and
only if there exist adjacent vertices x and y of G such that for each z ∈ V (G)\{x, y},
NG(z) = {x} or NG(z) = {y} and z /∈ NG(x) ∩NG(y).

Proof: Suppose γch,coi(G) = 2. Let S = {x, y} be γch,coi-set of G. Since S is connected,
xy ∈ E(G). Let z ∈ V (G)\{x, y}. Then z /∈ S. Since S is a hop dominating set of G,
z ∈ NG(x, 2) ∪ NG(y, 2). Suppose z ∈ NG(x, 2). Then there exist w ∈ NG(z) ∩ NG(x).
Since V (G)\S is an independent set, w ∈ S. Thus, w = y, that is, NG(z) = {y}. Similarly,
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if z ∈ NG(y, 2), then NG(z) = {x}. Since z ∈ NG(x, 2) ∪NG(y, 2), z /∈ NG(x) ∩NG(y).
Conversely, suppose that there exist adjacent vertices x and y of G satisfying the given

condition. Let S = {x, y}. Since xy ∈ E(G), S is connected. Let z ∈ V (G)\S. If NG(z) =
{x}, then since xy ∈ E(G), dG(y, z) = 2. While on the other hand, if NG(z) = {y}, then
dG(x, z) = 2. Thus, S is a hop dominating set of G. Since NG(z) = {x} or NG(z) = {y},
V (G)\S is an independent set. Therefore, S is a connected co-independent hop dominating
set of G. So, γch,coi(G) ≤ |S| = 2. But G is nontrivial. Hence, γch,coi(G) ̸= 1 and so
γch,coi(G) = 2.

Example 3. The graph P2 ◦Kn in Figure 1 has γch,coi(P2 ◦Kn) = 2.

Figure 1: P2 ◦Kn

Theorem 2. Let G be a connected graph of order n ≥ 2. Then γch,coi(G) = n if and only
if G is complete.

Proof: Suppose γch,coi(G) = n. Suppose that G is not complete. Then there exist
distinct vertices u, v ∈ V (G) such that dG(u, v) = 2. Let S = V (G)\{u}. Then S is a
connected co-independent hop dominating set of G. Therefore, γch,coi(G) ≤ |S| = n− 1, a
contradiction. Thus, G is a complete graph.

Conversely, by Remark 3, γch,coi(Kn) = n.

3.2. Connected Co-Independent Hop Domination in the Edge Corona of
Graphs

The edge corona G ⋄H of G and H is the graph obtained by taking one copy of G and
|E(G)| copies of H and joining each of the end vertices u and v of each edge uv of G to
every vertex of the copy Huv of H.

Example 4. Let G = C3 and H = K2. The edge corona of G ⋄H and H ⋄G are shown
in Figure 2.

Figure 2: Edge corona C4 ⋄K2 and K2 ⋄ C4
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Remark 4. If G is a connected graph of order 2 and H is any graph, then G⋄H = G+H.

Theorem 3. Let G be a connected graph of order n ≥ 3 and H be any graph. Then
C ⊆ V (G ⋄H) is a connected co-independent hop dominating set of G ⋄H if and only if
C = A ∪ (

⋃
uv∈E(G)

Suv) where

(i) A ⊆ V (G) is a connected co-independent set of G containing all vertices incident to
all the edges of G.

(ii) Suv = V (Huv) if uv ∈ E(G) such that u ∈ V (G)\A or v ∈ V (G)\A.

(iii) For every a, b ∈ A such that ab ∈ E(G) and Sab ̸= V (Hab), V (Hab)\Sab is an
independent set in Hab.

Proof: Suppose that C is a connected co-independent hop dominating set of G⋄H. Let
A = C∩V (G) and let Suv = C∩V (Huv) for each uv ∈ E(G). Then C = A∪ (

⋃
uv∈V (G)

Suv)

where A ⊆ V (G). First, we show that ⟨A⟩ is connected. Let x, y ∈ A with x ̸= y.
If xy ∈ E(G), then we are done. Suppose that xy /∈ E(G). Since ⟨C⟩ is connected
and x, y ∈ C, there exists an x-y path [x1, x2, ..., xn] in ⟨C⟩ where x = x1, y = xn
and n > 2. If xi ∈ A for all i ∈ {1, 2, ..., n}, then the path [x1, x2, ..., xn] is in A.
Suppose there exists xi /∈ A. Then xi ∈ Suv for some edge uv ∈ E(G). By definition of
G ⋄H, u, v ∈ A. Hence, [x1, ..., u, v, ..., xn] is a path in A, showing that ⟨A⟩ is connected.
Next, let u, v ∈ V (G)\A with u ̸= v. Then u, v ∈ V (G ⋄ H)\C. Since V (G ⋄ H)\C is
independent, uv /∈ E(G ⋄ H). Since u, v ∈ V (G), uv /∈ E(G) implying that V (G)\A is
independent. Now, suppose v is a vertex incident to all the edges of G and v /∈ A. Then
v ∈ NG(w)∩NG⋄H(p) for all w ∈ V (G) and for all p ∈ V (Hvw). Thus, NG⋄H(v, 2)∩C = ∅,
a contradiction since C is a hop dominating set. Hence, A is a connected co-independent
set of G containing all vertices incident to all edges of G, showing that (i) holds. Let
uv ∈ E(G) with u /∈ A. Suppose Suv ̸= V (Huv). Then there exists x ∈ V (Huv)\Suv.
Hence, x, u ∈ V (G ⋄ H)\C and xu ∈ E(G ⋄ H), a contradiction to the independence of
V (G⋄H)\C. Thus, Suv = V (Huv) and (ii) holds. Lastly, let a, b ∈ A such that ab ∈ E(G)
and Sab ̸= V (Hab). Since V (G ⋄H)\C is independent and (V (Hab)\Sab) ⊆ V (G ⋄H)\C,
V (Hab)\Sab is an independent set in Hab. Hence, (iii) holds.

For the converse, suppose C = A ∪ (
⋃

uv∈E(G)

Suv) where (i), (ii) and (iii) hold. First,

we show that C is connected. Let u, v ∈ C with u ̸= v. If uv ∈ E(G ⋄ H), then we are
done. So, suppose that uv /∈ E(G ⋄H). Consider the following cases.

Case 1. u, v ∈ A
By (i), ⟨A⟩ is connected. Hence, there exists a u-v path P [u, v] in A. Since A ⊆ C, the
path P [u, v] is in C.

Case 2. u ∈ A and v ∈ Sxy for some xy ∈ E(G)
Since uv /∈ E(G ⋄ H), u ̸= x and u ̸= y. Since V (G)\A is independent by (i), x ∈ A
or y ∈ A, say x ∈ A. If ux ∈ E(G), then the path [u, x, v] is a u-v path in C. Suppose
ux /∈ E(G). Since ⟨A⟩ is connected by (i) and u, x ∈ A, there exists u-x path [y1, y2, ..., yk]
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in A where u = y1, x = yk and k > 2. Hence, the path [y1, y2, ..., yk, v] is a u-v path in C.
Case 3. u, v ∈ Spq for some edge pq ∈ E(G).

Since V (G)\A is independent by (i), p ∈ A or q ∈ A. Hence, the path [u, p, v] or [u, q, v]
is in C.

In any case, ⟨C⟩ is connected. Next, we show that V (G ⋄H)\C is independent. Let
p, q ∈ V (G ⋄H)\C with p ̸= q. Consider the following cases.

Case 1. p ∈ V (G)\A and q ∈ V (G)\A
Since V (G)\A is independent by (i), pq /∈ E(G). Thus, pq /∈ E(G ⋄H).

Case 2. p ∈ V (G)\A, q ∈ V (Hxy)\Sxy for some xy ∈ E(G)
Since Sxy ̸= V (Hxy), x, y ∈ A by (ii). Hence, p ̸= x and p ̸= y. By definition of G ⋄H,
pq /∈ E(G ⋄H).

Case 3. p ∈ V (Hxy)\Sxy and q ∈ V (Hrs)\Srs for some distinct edges xy, rs ∈ E(G)
Then, by definition of G ⋄H, pq /∈ E(G ⋄H).

Case 4. p, q ∈ V (Hzt)\Szt for some edge zt ∈ E(G)
Since V (Hzt)\Szt is independent by (iii), pq /∈ E(G ⋄H).

Therefore, in any case, V (G ⋄H)\C is an independent set in G ⋄H. Lastly, we show
that C is a hop dominating set of G ⋄ H. Let u ∈ V (G ⋄ H)\C. Consider the following
cases.

Case 1. u ∈ V (G)\A
Let degG(u) = 1. Since |V (G)| ≥ 3, there exists vw ∈ E(G) with u ∈ NG(v)\NG(w) or
u ∈ NG(w)\NG(v). If w ∈ A, then w ∈ NG(u, 2) ∩ A. If w /∈ A, then Svw = V (Hvw) by
(ii). Thus, a vertex p ∈ NG⋄H(u, 2) ∩ Svw exists. Hence, p ∈ NG⋄H(u, 2) ∩ C.

Case 2. u ∈ V (Hxy)\Sxy for some xy ∈ E(G)
By (ii), x, y ∈ A. Since |V (G)| ≥ 3, there exist z ∈ V (G) ∩NG(x) or z ∈ V (G) ∩NG(y).
If z ∈ A, then z ∈ NG⋄H(u, 2) ∩ C. If z /∈ A, then Syz = V (Hyz). Hence, a vertex
w ∈ NG⋄H(u, 2) ∩ Syz or w ∈ NG⋄H(u, 2) ∩ Sxz.

Therefore, in any case C is a hop dominating set ofG⋄H. Accordingly, C is a connected
co-independent hop dominating set of G ⋄H.

Corollary 1. Let G be a connected graph of order n ≥ 3 and H be any graph of size p
and of order m. Then γch,coi(G ⋄H) = n+ p(m− β(H)).

Proof: Let Co = A ∪ (
⋃

uv∈V (G)

Suv) be a γch,coi-set of G ⋄H. Then conditions (i), (ii)

and (iii) of Theorem 3 hold where A = V (G) and Suv = V (Huv)\S∗ where S∗ is any
independent set of Huv. Thus,

γch,coi(G ⋄H) = |A|+ p|Suv|
= n+ p(|V (Huv)| − |S∗|)
≥ n+ p(m− β(H)).

Let T be a β-set of H and Suv = V (Huv)\T for each uv ∈ E(G). Then C = V (G) ∪
(

⋃
uv∈E(G)

Suv) is a connected co-independent hop dominating set of G ⋄H by Theorem 3.
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Hence,

γch,coi(G ⋄H) ≤ |C|
= |V (G)|+ p|Suv|
= n+ p|V (Huv)\T |
= n+ p(m− β(H)).

Therefore, γch,coi(G ⋄H) = n+ p(m− β(H)).

Example 5. The set of shaded vertices in the graph of P4 ⋄ P5 represents a connected
co-independent hop dominating set of P4 ⋄ P5. By Corollary 1, γch,coi(P4 ⋄ P5) = 10.

3.3. Connected Co-Independent Hop Domination in the Complementary
Prism

For a graph G, the complementary prism, denoted GG, is formed from the disjoint
union of G and its complement G by adding a perfect matching between corresponding
vertices of G and G. For each v ∈ V (G), let v denote the vertex corresponding to v in G.
Formally, the graph GG is formed from G∪G by adding the edge vv for every v ∈ V (G).

Example 6. Consider the graphs C4, C4 in Figure 3. In the same figure is an illustration
of complementary prism C4C4.

Figure 3: (1)cycle C4 (2)complement C4 of C4 (3)complementary prism C4C4

Theorem 4. Let G be either a complete graph or an empty graph of order n ≥ 2.
Then S ⊆ V (GG) is a connected co-independent hop dominating set of GG if and only if
S = SG ∪ SG and the following hold:

(i) SG = V (G) and SG ⊆ V (G) if G is complete and

(ii) SG = V (G) and SG ⊆ V (G) if G is an empty graph.
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Proof: Suppose that S ⊆ V (GG) is a connected co-independent hop dominating set of
GG. Let SG = S ∩ V (G) and SG = S ∩ V (G). Then S = SG ∪ SG. Let G be a complete
graph and suppose that SG ̸= V (G). Then there exists x ∈ V (G)\SG. Since V (GG)\S
is independent and xx ∈ E(GG), x ∈ V (G) ∩ SG. Since G is complete, G is an empty
graph. Thus, x is an isolated vertex of G. This contradicts the connectedness of S. Hence,
SG = V (G) and (i) holds. For (ii), if G is an empty graph, then G is a complete graph.
By (i), SG = V (G) and SG ⊆ V (G).

For the converse, suppose that S = SG ∪ SG and (i) and (ii) hold. Then clearly, S
is connected. Suppose (i) holds. Then V (GG)\S = V (G)\SG is independent since G
is an empty graph. Let x ∈ V (GG)\S. Then x ∈ V (G)\SG. Hence, x = p for some
p ∈ V (G). Since G is complete, py ∈ E(G) for each y ∈ V (G)\{p}. Since xp ∈ E(GG),
dGG(x, y) = 2. Suppose (ii) holds. Then V (GG)\S = V (G)\SG is independent since
G is an empty graph. Let z ∈ V (GG)\S. Then z ∈ V (G)\SG. Thus, z ∈ V (G) ∩ SG

since zz ∈ E(GG) and V (GG)\S is independent. Since G is complete, qz ∈ E(G) for all
q ∈ V (G)\{z}. It follows that dGG(z, q) = 2 and q ∈ V (G)\{z}. Therefore, in any case, S
is a connected co-independent hop dominating set of GG.

Corollary 2. Let G be either a complete graph or an empty graph of order n ≥ 2. Then
γch,coi(GG) = n.

Proof: Let S be a γch,coi-set of GG. Then S = SG ∪ SG and (i) and (ii) of Theorem
4 hold. If (i) holds, then SG = V (G) and SG ⊆ V (Ḡ). Hence, γch,coi(GG) = |S| =
|V (G)| + |SG| ≥ n. On the other hand, if (ii) holds, then SG = V (G) and SG = V (G).
Hence, γch,coi(GG) = |S| = |V (G)| + |SG| ≥ n. Now, let SG = ∅ if (i) holds. Thus,
S = V (G) ∪ SG is a connected co-independent hop dominating set of GG by Theorem
4. Hence, γch,coi(GG) ≤ |S| = |V (G)| = n. If (ii) holds, then let SG = ∅. By Theorem
4, S = V (G) ∪ SG. Thus, γch,coi(GG) ≤ |S| = |V (G) = n. Therefore,in any case,
γch,coi(GG) = n.

Theorem 5. Let G be a nontrivial connected noncomplete graph and G be the comple-
ment of G. Then S ⊆ V (GG) is a connected co-independent hop dominating set of GG if
and only if S = SG ∪ SG where SG ⊆ V (G) and SG ⊆ V (G) and the following hold:

(i) SG ̸= ∅ and SG ̸= ∅

(ii) V (G)\SG and V (G)\SG are independent sets in G and G, respectively.

(iii) For every x ∈ V (G)\SG, x ∈ SG.

(iv) Either ⟨SG⟩ is connected or for every pair of distinct vertices x, y ∈ SG with xy /∈
E(G), x, y ∈ SG.

(v) Either
〈
SG

〉
is connected or for every pair of distinct vertices p, q ∈ SG with pq /∈

E(G), p, q ∈ SG.

(vi) For every pair of vertices x ∈ SG and q ∈ SG, q ∈ SG if xq ∈ E(G) or x ∈ SG if
xq /∈ E(G).
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(vii) For every x ∈ V (G)\SG such that NG(x, 2) ∩ SG = ∅, either there exists y ∈
V (G) ∩NG(x) such that y ∈ SG or there exists p ∈ SG ∩NG(x).

(viii) For every q ∈ V (G)\SG such that NG(q, 2) ∩ SG = ∅, there exists z ∈ V (G) ∩NG ∩
NG(q) such that z ∈ SG.

Proof: Suppose that S is a connected co-independent hop dominating set of GG. Let
SG = S ∩ V (G) and SG = S ∩ V (G). Then S = SG ∪SG. Suppose SG = ∅. Then S = SG

and V (GG)\S = V (G) ∪ [V (G)\SG] is not independent since G is connected. This is a
contradiction to the independence of V (GG)\S. Thus, SG ̸= ∅. Since G is a connected
noncomplete graph, there exist x, y ∈ V (G) such that xy /∈ E(G). Hence, xy ∈ E(G).
This implies that x ∈ SG or y ∈ SG, showing that SG ̸= ∅. Hence, (i) holds. For (ii), since
V (GG)\S = (V (G)\SG)∪̇(V (G)\SG), V (GG)\S is independent, V (G)\SG and V (G)\SG

are independent sets of G and G, respectively. Now, let x ∈ V (G)\SG. Since xx ∈ E(GG)
and V (GG)\S is independent, x ∈ SG. Hence, (iii) holds. Suppose ⟨SG⟩ is not connected.
Let x, y ∈ SG with x ̸= y and xy /∈ E(G). Since ⟨S⟩ is connected, an x-y path P [x, y] in
S exists. Since ⟨SG⟩ is not connected and xy ∈ E(G), x, y ∈ P [x, y]. Hence, x, y ∈ SG

and (iv) holds. The proof of (v) is similar to the proof of (iv). Next, let x ∈ SG and
q ∈ SG. Since x, q ∈ S and x ̸= q, by connectedness of ⟨S⟩, there exists an x-q path
P [x, q] in S. If xq ∈ E(G), then q ∈ P [x, q] impyling that q ∈ SG. On the other hand, if
xq /∈ E(G), then x ∈ P [x, q], showing that x ∈ SG. Hence, (vi) holds. Let x ∈ V (G)\SG

such that NG(x, 2) ∩ SG = ∅. Since S is a hop dominating set of GG and x /∈ S, there
exist z ∈ S such that dGG(x, z) = 2. SinceNG(x, 2) ∩ SG = ∅, either z = p ∈ SG for some
p ∈ V (G) ∩ NG(x) or p ∈ V (G) ∩ NG(x). Hence, (vii) holds. Statement (viii) can be
shown similarly with (vii).

For the converse, let S = SG ∪ SG where SG ⊆ V (G) and SG ⊆ V (G) and conditions
(i)-(viii) are satisfied. First, we show that ⟨S⟩ is connected. Let x, y ∈ S with x ̸= y. If
xy ∈ E(GG), then we are done. Suppose xy /∈ E(GG). Consider the following cases.

Case 1. x, y ∈ SG

If ⟨SG⟩ is connected, then an x-y path P [x, y] in SG exists. Since SG ⊆ S, P [x, y] is an
x-y path in S. Suppose SG is not connected. Then by (iv), x, y ∈ SG. Thus, [x, x, y, y] is
a path in S.

Case2. x, y ∈ SG

Same with Case 1 using (v).
Case 3.x ∈ SG, y ∈ SG

Let y = p for some p ∈ V (G). Then by (vi), either the path [x, p, y] or [x, x, y] is in S.
Therefore, in any case, ⟨S⟩ is connected. Since V (G)\SG and V (G)\SG are independent

in G and G, respectively by (ii) and V (GG)\S = (V (G)\SG) ∪ (V (G)\SG), we have
V (GG)\S is independent. Finally, let x ∈ V (GG)\S. Consider the following cases.

Case 1. x ∈ V (G)\SG

If NG(x, 2)∩SG ̸= ∅, then dGG(x, y) = 2 for some y ∈ NG(x, 2)∩SG. Suppose NG(x, 2)∩
SG = ∅. Then by (vii), there exists w ∈ V (G) ∩ NG(x) such that w ∈ SG. Thus,
dGG(x,w) = 2.
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Case2. x ∈ V (G)\SG

Same with Case 1 using (viii).
Hence, in any case, S is a hop dominating set of GG. Accordingly, S is a connected

co-independent hop dominating set of GG.

The following result follows from Theorem 5.

Corollary 3. Let G be a nontrivial connected noncomplete graph. Then

2 ≤ γch,coi(GG) ≤ 2|V (G)| − β(G).

Remark 5. The strictly inequality in γch,coi(GG) ≤ 2|V (G)|−β(G) presented in Corollary
3 can be attained. However the given upper bound is sharp.

Example 7. To illustrate Remark 5, consider the path P6 = [v1, v2, v3, v4, v5, v6]. It
can be verified that the set {v2, v3, v4, v5, v1, v2, v5, v6} is a γch,coi-set of P6P 6, that is,
γch,coi(P6P 6) = 8. However, 2|V (P6)| − β(P6) = 2(6) − 3 = 9. Hence, strict inequal-
ity is attained. On the other hand, equality is attained for C4 = [u1, u2, u3, u4], since
{u1, u2, u3, u2, u3, u4} is a γch,coi-set of C4C4, that is, γch,coi(C4C4) = 6 = 2|V (C4)|−β(C4).

Figure 4: Connected co-independent hop dominating set of P6P 6 and C4C4
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