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Abstract. The study of g-calculus is becoming increasingly prominent in the field of geometric
function theory, reflecting a growing interest in its applications. In this research work, we first
develop a new type of modified Sigmoid-Salagean ¢-differential operator in the open unit disk D,
utilizing the concepts of quantum calculus and the Sigmoid activation function. Using this newly
defined g-analogous differential operator and Horadam polynomials, we introduce new subclasses
of bi-univalent functions in ©. We determine upper bounds on initial coefficients, as well as the
Fekete-Szegd problems, for functions belonging to these special families. Additionally, we discuss
several interesting consequences related to the findings presented in this study.

2020 Mathematics Subject Classifications: 30C45, 30C50

Key Words and Phrases: Holomorphic function, Bi-univalent function, Horadam polynomials,
Modified Sigmoid function, ¢-Calculus, the g-Difference operator, Fekete-Szego problem

1. Introduction

Let A be the set of normalized analytic functions that have the form
> .
9(2):z+al2,z2+al3,z:3+.,.:ZjLz:aljZJ7 (1)
j=2

in® = {z € C:|z] < 1}. Suppose that, an analytic function g, which is a function of a
single-value in some domain A C C. If g does not take the same value twice in A, we say
that it is a univalent function, that is, if g(z1) # g(z2) for z1 # 22, (see ([10], page 26).
The class of all univalent functions represented by S. The theorem of Koebe one-quarter
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([10], page 31) prove that the range of each function g € S contains the open disk of radius
%. Every function g € S has an inverse g~! satisfies

2=g"'(g(2), 2€D

and
w=g(g~" (W), lwl<rolg), rolg)>1/4.

The inverse function f = g~! for each g € S has Taylor series expansion as follows (see
(3], page 185)):

_ 1. .
g w) = ﬂm=w+§:fggu%@@%w%mﬂ
j=2
= w—dow? + (2d3 — d3)w® — (5d3 — bdads + dy)w* + - - -, (2)

where the coefficients of j parametric function Kf (do,ds,dy, ....d,) are given by

K? = pdy,
—1
Ky = p(p2 )dg + pds,
—1 -2
KY = p(p—1)daods + pds + wd%

3!

An analytic function g € A will be the bi-univalent in ®, if both ¢ and g~! are univalent

in © and the family of bi-univalent functions of the form (1) is represented by the symbol
Y. The subject has gained renewed attention in the last ten years, with several studies
published on the subject since 2011, for instance [16, 30]. There were intriguing findings
about the estimation of coefficients for certain types of univalent functions, (see [32, 40, 45—
47)).

Lemma 1. (Schwarz lemma ([10], page 3)). Let ¥ (z) is analytic in ® with ¥(0) = 0 and
[(z)] <1, z € D, then we have

[(2)| < |z| and [ (0)] < 1 inD.

Definition 1. The analytic function (1(z) is subordinate to the analytic function (a(z),
(written as (1(z) < (2(z), z € D), if there exist a Schwarz function ¥ (z) in ® such that

Gi(z) = W(2), ze€D.

To be specific, if (o is univalent in ©, then (see also [10]):

C1(2) < G2(2) & ¢1(0) = 2(0) and 1(D) C (D).
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The study of coefficients for functions in particular classes has been a cornerstone of
univalent function research from its earliest beginnings. The Gronwall Area Theorem,
established in 1914, is a significant discovery in the theory of univalent functions, used
to determine bounds on the coefficients of the class of meromorphic functions. Different
approaches in the geometric theory of functions of a complex variable have been inspired
by Bieberbach’s famous hypothesis, presented in 1916 but only verified in 1984, which he
used to solve similar problems for the class S. When examining bi-univalent functions, as
in the classes investigated by Gronwall and Bieberbach, it is common practice to provide
estimates for the first two Taylor-Maclaurin coefficients. Obtaining comparable estimates
for different types of functions is known as the Fekete-Szego problem. In 1933, it was
shown by Fekete and Szegd [14] that

3 — 46 it §<0,
ds —dd3] < 3 1+2exp (&) i 0<d<1,
453 T

is sharp and valid for every normalized univalent function. The Fekete-Szegd problem is
the one where the objective is to maximize the absolute value of the functional |d3 —&d3|.
According to many writers, Fekete-Szego inequalities have been shown for several types of
functions (see to references [9, 11]).

Geometric function theory have built and studied new classes of analytic functions
using the g-calculus and the fractional g-calculus. To construct a class of g-starlike func-
tions in ®, Ismail et al. [23] first used the g-calculus (9,) operator, which was created by
Jackson [24] in 1909. References such as [6, 26, 31, 35, 36] provide more information on
g-calculus.

Definition 2. Jackson [24, 25] developed the following q-derivative operator O for an
analytic function g as follows:

aqg(z):W, 0<g<l; z#0.

It is evident that there is a limit relationship:

lim 0yg(z) = g/(z)

g—1—
and
949(0) = g'(0).
For the function g € A, defined by (1), we deduce the following series

049(2) =1+ [l dnz’ ",
j=2

where [j] , called the g-analogue of j € N is given by

q)
1—¢
1, = , JeN.
7 g




N. K. Mishra, M. F. Khan, S. A. Lone / Eur. J. Pure Appl. Math, 17 (4) (2024), 2516-2537 2519
As g — 1—, we have [j], — j and [0], — 0.

Fadipe-Joseph et al. [12] recently (2013) defined a modified Sigmoid function, ¥(s) =
Ti*s’ s > 0, and showed that it has a positive real part and belongs to the class P of
Caratheodory functions.

Definition 3. Let Ag denote the family of functions of the form

gu(z) =2+
j=2

2
1+e 8

dizl =2+ W(s)d;, (3)
j=2

where ¥(s) = 1_3?, s > 0, is a modified Sigmoid function. Clearly U(0) =1 and hence

A = A (see also [13]).

Now we use the definitions of Modified Sigmoid function gg(z) and g¢-difference oper-
ator Jy, we define a Modified Sigmoid Salagean g¢-differential operator ij Ay — Ay as
follows:

Definition 4. For gy € Ag, k € NU{0}, the Salagean q-differential operator Dé’ Ay —
Ay, is defined by

Digu(z) = gu(2), Dygu(z) = 20499(2), ..., Digu(z) = 9,(Di ' gu(2)), z €D.

For gy € Ay, defined by (3), we deduce the following series:
Djgu(z) = z+ Y [jls U(s)d;2’. (4)
j=2

Remark 1. When s =0 then V(s) = 1, then we have the Sdlagean q-differential operator
[19].

Remark 2. When ¢ — 1—, and ¥(s) = 1, then we have the Salagean differential operator

[33].

The Horadam polynomials Y ;(y) were used in a comparable setting by Srivastava et al.
[41]. The well-known Horadam polynomials Y;(y), as defined in Definition 5 in the field
of Geometric Function Theory of Complex Analysis, were recently examined by Hér¢gum
and Koger [22], see also [21].

Definition 5. (/21, 22]). The following recurrence relation gives the Horadam polynomials
T;(y,a,b;p,t) (or briefly T;(y)):

Ti(y) =pyYj-1(y) +tL;-2(y) (5)

with
Tl(y) = a, TQ(y) = by7
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where j € N=1{1,2,...}, y € R, a,b,p and t are real constants. From (5) we have

Ys(y) = pby® + ta.
In addition, the characteristic equation for the recurrence relation (5) is provided by

2 —pys—t=0,

where

g = DU VP RAL oy VPR A
2

2

are two real roots. The [ (y,z) is the generating function of Y;(y) is given below (see

o

Fly2) =3 Xy(y) 1 = b apvz
j=1

5 (6)

1 —pyz —tz
where y € R is independent of the argument z € C, that is y # R(z).

Remark 3. By selecting the parameters a,b,p, and t properly, we present here a few
unique instances of Y;(y,a,b;p,t).

(1): Y;(y,2,2;2,1) = Q;(y), the Pell-Lucas polynomials.

(it): Yi(y,1,1;2,—1) = T;(y), the first kind Chebyshev polynomials.

(111): Tj(y,1,2;2,—1) =U;(y), the second kind Chebyshev polynomials.

(w): T;(y,1,1;1,1) = F;(y), the Fibonacci polynomials.

(v): Ti(y,2,1;1,1) = L;(y), the Lucas polynomials.

(vi): T;(y,1,2;2,1) = Pj(y), the Pell polynomials.

Applications: The Horadam polynomial is a mathematical series used in texture
analysis and picture processing. The Horadam polynomial, a distinct kind of polynomial
sequence, is used for tasks such as filtering and resampling. Scale-space representations
of pictures can be generated and adjusted in image processing and computer vision by
using the Horadam polynomial. This polynomial is applicable for edge detection, texture
examination, and multi-scale picture analysis. The Horadam polynomial has been used for
texture analysis to extract features, segment images, and denoise pictures. This method
may be used to examine the statistical characteristics of textures, such as the distribution
of gray levels and the geographical arrangement of textures.

Abirami et al. [1] examined the initial coefficient estimates of Taylor-Maclaurin series
for bi-Mocanu-convex and bi-u-starlike functions related to Horadam polynomials. Ad-
ditionally, Abirami et al. [2] discussed coefficient estimates for A-bi-pseudo-starlike and
bi-Bazilevic functions. Alamoush [4, 5] introduced subclasses of bi-starlike and bi-convex
functions, utilizing the Poisson distribution series and Horadam polynomials, and also
explored a class of bi-univalent functions associated with Horadam polynomials. These
studies yielded initial coefficient estimates for the respective subclasses. Recent studies
[7, 8, 29, 37-39] have explored various classes of bi-univalent functions associated with
Horadam polynomials, Chebyshev polynomials, and other special functions. These works
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have established initial coefficient estimates, Fekete-Szeg6 bounds, and coefficient esti-
mates for different classes of bi-univalent functions. We also taken notice of the fact that
unique polynomials like the ones mentioned above might play a significant role in the
fields of engineering, mathematics, statistics, and physical science. References [15, 21, 26]
provide more information on these polynomials. In the works of [44] and [43], you can find
further information on the Fekete-Szego problem as it relates to Haradam polynomials.
See references [17, 18, 20, 27, 28, 34] for a discussion of the many uses and applica-
tions of orthogonal polynomial families as well as other special functions and specialized
polynomials. Ilustrating from present trends in bi-univalent functions associated with
various polynomials, we establish the following unique families of the class ¥ using the
Horadam polynomials Y';(y) linked to the Modified Sigmoid function (3) and its Salagean
g-differential operator.
Here we give the value of all parameters, which will be used in this article

p>0,g€(0,1), p=>v, 0<y<1, ke NU{0}, {>1,7>1

and
2

Tites o7

U(s)
also
fo(w) = g3' ()
which is an extension of g~! to D given by (2), a, b, p and t are as in (5) and f is as in
(6).
Definition 6. A function g(z) in ¥ is expressed as (1), then it is belong to the family
7k s
6% (0,9 (s)), if
204(Dygu(2)) + p220; (Dygu(2))
(1— fy)D{;gq,(z) + ’yzaq(D{;gq,(z))

<F(y,2)+1—-a, 2€D

and
wy (D fy(w)) + pw?d2(DF fu(w))

(1 =7)D*fu(w) + w0y (Df fu(w))

<Fyw +1l—a, weD.

Remark 4. For the special values of v and u, the family 6%27(% U(s)) reduces to the
following new subfamilies.

(i): For v = p = 1, we have 6%’577(%\11(3)) = Jx(y,k,q,%(s)), a new family of bi-

univalent functions connected with Sigmoid activation functions and Horadam polynomi-
als.

(ii): For v =0, and = %, we obtain a new family (‘5%’277(% U(s)) = Kx(y,k,q,%(s)) of
bi-univalent functions connected with Sigmoid activation functions and Horadam polyno-
maials.

(iii): For v = %, and p =1, we obtain a new family 6%”’;7((],\1’(8)) = Lx(y,k,q,Y(s)) of
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bi-univalent functions connected with Sigmoid activation functions and Horadam polyno-
mials.

(iv): For v = 0, we obtain a new family 6;’7’;77((],\11(5)) = Msx(y, p k,q,Y(s)) of bi-
univalent functions connected with Sigmoid activation functions and Horadam polynomials.

The Class Lx(y,v, i, k, q, ¥(s))

Definition 7. A function g(z) in ¥ is given in (1), then it is belong to the family

L5 (y, 7, 1k 4, ¥(s)), and W(s) = 172=, s > 0, if

204(D¥gu(2)) + p2*05(Digu(2))
(I—5)z+ Vzaq(D’q“g\p(z))

<Fy,2)+1—a, z€D

and
wdy(Df fu(w)) + pw?d2(DE fu(w))

(1—9y)w+ vwaq(D’q“f\p(w))

Remark 5. It is easy to observe that the special values of 7y lead the family Nx.(y,~, 1, k, q, ¥(s))
to the following various subfamilies:

(i): For v = 0, we obtain a new family Lx(y,7, 1, k,q, ¥(s)) = Nx(y,u, k,q,Y(s)) of
bi-univalent functions connected with Sigmoid activation functions and Horadam polyno-
maials.

(ii): For v = 1, we obtain a new family Lx(y,~, u,k,q,¥(s)) = Ox(y, 1, k,q,¥(s)) of
bi-univalent functions connected with Sigmoid activation functions and Horadam polyno-
maials.

<Fy,w)+1—a, weD.

The Class BE(Z/» 5’ T, k’ q, \II(S))

Definition 8. A function g(z) in X is expressed as (1), then it is belong to the family

By(y,€,7, b, 0, (), and W(s) = 12—, 5 > 0, if
(1-&+¢ [8q(zaq (Dkgq,(z)))r
aq(D’;gq/(z);l <F(y,2)+1—a, z€,

and
(1= &) + & [0g(wdy (DE fu(w)))]”
0y (DE fy (w))

Remark 6. It is easy to observe that the special values of y lead the family Bx(y,&, 7, k, q, ¥(s))
to the following various subfamilies:

(i): For T = 1, we obtain a new family Bx(y,&, 7, k,q,V(s)) = Mx(y,& k,q,Y(s)) of
bi-univalent functions connected with Sigmoid activation functions and Horadam polyno-
maals.

(ii): For & =1, we obtain a new family Bx(y,&, 7, k,q,Y(s)) = Ns(y, 7, k,q, Y(s)) of bi-
univalent functions connected with Sigmoid activation functions and Horadam polynomials.

<Fyw)+1l—a, wedD.
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2. Main Results
2.1. Coeflicient estimates and Fekete-Szego problem for the class 6%’; L(q,%(s))
Theorem 1. Let g(z) is of the form (1) belong to GEyv(q, U(s)). Then
byl /1by| 7)
{02 2, B v =+ B0 -t 0) e

|da| <

(by)? N |by|

d| < :
= 207 W2 (s)(q — v + 21, w2 (2], By ¥(s)(g — 7 + 3], 1)

(8)
where

QX (5) 7, a0 ) = (2128 W2(5)(q — v + 21, ) { (T2 (9))* (1 +2) + Ta(w)lg — 7+ 2], )}

Ford eR

by -6 < J
2 (2], 1315 (s)(¢—+[3], u) -
|ds — dds| <{ T by 1] 1_sss O
[{(T2(v))?[2],[3]5 ¥ (s) (q—v+[3],1)— QY (¥),7,q:1) }| -7

where

{121, B ()@ =+ Bl — (20 QT (1), v.a. ) |
2, (315 w()(a =7 + 8], 1) |

Proof. Let g(z) € 6’5’;7( ,¥(s)). Then, for the analytic functions m(z) and n(z) such
that

and
m(z)] <1and [n(w)] <1, z,weD.

By Definition 6, we can write

20¢(Dgu(2)) + p2202(Digu(2))
(1 —)Dkgy(2) +v20,(Dkgu(2))

=F(ym(z)+1—«

and
wy(Df fu(w)) + pw?d3 (Df fu(w))

(=)D o (@) + 1wy (D faw)) | W@l Hl-a

20,(Dgu(2)) + pz202 (D gw(2))
(1- fy)D’;gq;(z) + ’yz@q(D{;g\p(z))
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= 1+ T1(y) —a+ Y2 (y)m(z) + T3 (y) (m(2))* + ...

and
w(‘)q(Df;fq,(w)) + uw28§(D§f\p(w))
(1 =) D* fy(w) + vw0y(Df fu(w))
= 1471 (y) —a+ T @) n(w) + scTs (y) (n(w)*+....

Based on (10) and (11), in view of (5), we may deduce
204(Dygu(2)) + nz°9; (Dygu(2))
(1-— 'y)Dé“g\p (z) + ’yzaq(D’q“g\p(z))
= 14+ 7To(y)mz+ [Tg (y) ma + T3 (v) mf] z

2_|_...

and

w0y (Dg fu(w)) + w?03 (Dg fu (w))
(1 =7)DF fu(w) + w0y (Dg fu(w))

= 14+ Yo (y)niw + [Ta(y)na + T3 (y)ni]w? + -

It is well known that if
Im(2)| = |miz + moz2 +ms2® + .| <1, z€D

and
In(w)| = [niw + naw? + nzw® 4+ .| <1, weD,

then
|m;| <1 and |n;| <1, for (i € N).

Comparing the coefficients of (12) and (13), we have

28 W(s)(q — 7 + [2], 1)d2 = Ta(y)ma,

{120, 1315 w(s))(g =7 + [3], )y
2 W) (1 ) g — 7y + (2], 1)da }
= Ta(y)m® + Ta(y)mi,
— 2 W(s)(g — 7+ 2], m)da = Ty
and

— 121, 35 W(s))(a — 7 + [3], m)ds + {2121, Bk W(s)(a — 7 + 3], )

—2RF O+ ) (g -y + 2,0 }

2524

(10)

(11)

(14)

(15)
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= Ta(y)na + Ya(y)ni.
From (15) and (17), we can see that
mi = —nq

and also
2121280 (s)(q — v + 2], 1)%d2 = (m] +n7) (T2 (1))

Adding (16) and (18), then we obtain
{202), 1815 W(s)(a = 7+ [3], 1) -

(2025 W2(s)(1+ ) (g =y + 2], 1) } 03
= Ta(y)(ma + na) + T3(y)(mi + ni).

Putting the value of m? + n? from (20) in (21), we get

(T2(y))*(m2 +n2)
2{ (02 (1))* [2], B W(s)g =7 + Bly1) — Q(T (), 7v.000) }

d3 =

where

QT (y),7.q 1)
= [ 9(s)a— v+ 2], { (T2 (1) (14 9)

+ Ta(y)(g—7 + [2]q} 1),

(21)

(22)

which yields (7) on using (14). Using (19) in the subtraction of (18) from (16), we obtain

Ta(y)(m2 —n1) ‘
21[2], [315 U (s)(q — v + [3], 1)

Then in view of (20), and (23), we get

(Ya(y)*(mi+ni) To(y)(ma2 — na)
2207 W2(s)(q — 7 + [2), w2 2[2], B ¥(s)(a— 7 +Bl,n)

which yields (8) on using (14). From (22) and (23), for § € R, we get

ds = d? +

ds =

[ds —dd3| = Ts(y)l

2(2], 85 W(s)(q — v+ 3], 1)

i

1
(T(é’q’y) T2, B u(s) (g - + [3]qu)> i

(T(& “9) + ! ) ma +

(23)
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where
(1-9)
2{ 121, 31 w(s) (g =7+ B3, ) — (T2 (1)) Q(Y (1), 72010) }

In view of (5), we conclude that

T(0,q,y) =

1
Q[Z]q[3]§‘1’(i)(q—7+[3}qu) ’

2(2],[3]5W(s)(g—v+[3] 1)’

<
2 Yo (y)1T(6,q,v)]; 1T(8,q,y)] >

T2 (y)| 0 <IT(s
‘d3 — 5d%’ < { (2], 1315 ® (5) (g—7+(3] 1) <[T(3,4q,v)
! |
which yields (9). Evidently, this concludes Theorem 1.

Remark 7. For p=0,v=0,k =0 and V(s) = 1, in Theorem 1 we obtain Corollary 1
and Corollary 3 proved in [26].

2.1.1. Coefficient estimates and Fekete-Szeg6 problem for the class Lx(y, v, i, k, q, U(s))
Theorem 2. Let g(z) of the form (1) belong to Ls(y, v, p, k,q,Y(s)). Then

b(y)| v16(y)]

|da| < (24)
|0 0P B w6 =+ ) - By (Vo
i 77| b(y)|
T T Ty M
where
Ry (Y, 1) = (22 02 (s)(1 =y + ) {(T2 W)+ Ts(y)(1 -7 + u)} :
Ford e R
by
e { R AN
= by|3|1—6
|2(by)2[3]'5“‘P(S)(1y*7+[2]qu)fRz(T,ymu)|’ L=l = M,
where
Ra (0,7, 1) = 2122 W2(5) (1 = 7+ 12) { (b)” 7 + (pby? + 7a) (1 =7 + o)}
and
_ 1 B+ () (1 — B
T T B () (1= 7+ 2,0
2k+2 2 _ pby® +ral |
20— (o (B 0y e
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Proof. Let g(z) € £x(y,7, 4, k,q,¥(s)). Then, for two analytic functions m(z) and
n(z) such that

and
m(z)] <1and [n(w)] <1, z,weD.

Using Definition 7, we can write

20,(D* gy (2)) + uz28q2(D§g\p(z))

=)z 720, (Dhgu(z) | WmE)Fl=a (28)

and
w0y (D} fu(w)) + pw?d2(Df fu(w))

(1 =) w + ywdy (D fy(w))
Following (10), (11), (12), and (13) in the proof of Theorem 1, one gets the following in
view of (28) and (29):

=F(y,n(w))+1-—a. (29)

[Q]SH W(s) (1 =7+ p)da = Yo(y)m, (30)

{BIE w61 =y + p[2],)ds
— 22 WR(s) (1 =y + 1) 73}
= Ta(y)ma + Ta(y)m, (31)
— 2P0 (s) (1= 7+ ) da = Ta(y)m (2)
and

~ BT () (1 7+ pl2)ds + {285 W) (1 -y + 2,
— (2 02(s) (1= 7+ ) 7 }
= Ta(y)nz + Ya(y)ni. (33)

The results (24)-(26) of this theorem now follow from (30)-(33) by applying the procedure
as in Theorem 1 with respect to (15)-(18).

Remark 8. The results obtained in Theorem 2 coincide with Theorem 2.1 of [42] for
k=0,q—1— and ¥(s) =1.
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2.2. Coefficient estimates and Fekete-Szeg6 problem for the class Bx(y,&, 7, k, q, U(s))

We derive the estimates for the coefficients |da and |d3| and Fekete-Szegd problem in
the following result.

Theorem 3. Let g(z) of the form 1 is in Bx(y,&,7,k, Y(s)). Then

1b(y)| /16(y)]

|da| < : (34)
\/ 815 wis) (e (12),+1) 1) (by)* = H (s.6,7.b.1)
(by)* b(y)|
d , 35
= (267 — 1) (22572 w2(s) " 3]+ W (s) (57 ([2]q + 1) - 1) ()
where
H (s,&,7.b,) = {[257 0(s)(267 (v — 1) = 267 + 1) (by)” —
(26 — 1) (222 W2(s) (pby? + m)} .
Ford eR
[by| _
|ds — 83| < { [3}?1“1(8)(55([2]‘1@1)*1)7 e (36)
2l = . |by[”|1—0] I1-6]>0Q
|81 1w (s)(er([2),+1) 1) (by)*~H (s,€mby) |’ '
where
3 w(s) (e (2] +1) — 1) (b2y?) — H (s,€,7,b,
o 18w (er (12,4 1) 1) 0%07) — H (5.7 0)
BT wis) (6 (2, +1) 1) 029?)
Proof. Let g(z) € Bx(y,&, 7, k,q,¥(s)), we have
(1-€) +€ 0,00, (Dgu ()] )
9,(Dkgu (=) =F(ly,m(z)+1l—a,z€®D (37)
and
(1—8) +& [04(wdy (Dy fu ()] _
0y (DF Fu () =Fynw)+l—-—o,wed. (38)
Solving the both side of (37) and (38), we get following equations:
(267 = 1) 2y W(s)d2 = Ya(y)mu, (39)

{[3]’;“ U(s) (57 ([2],1 + 1) - 1) dy —
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2T A s) (267 (r — 1) - 267 + 1)d3 }
= Ta(y)ma + Y3(y)m3, (40)
— (267 = 1) 25 U (s)dy = Ta(y)m (41)
and
~ B w(s) (er (121, +1) = 1) ds + (2085 w(s) (er (12, +1) —1)
— 2F T W (s) (267 (7 — 1) — 267 + 1)) &2
= Ta(y)na + T3(y)ni. (42)

By using the same procedure of Theorem 3, we have the required result.

Remark 9. The results obtained in Theorem 8 coincide with Theorem 2.2 of [42], when
k=0 and ¥(s) = 1.

In the next section, we present some interesting consequences of our main results.
3. Corollaries and Consequences
Corollary 1. Let g(z) be in the family Jx(y,k,q,V(s)).Then

) < byl /1oy
J{wre,Ehee (- 5+ 18,) - B}

and )
(by) by

225 w2(s) (g 3+

|d3| <

N[ —=
S
Q
=
N—
S
Q
=S
LS
S
—~
VA
~
Ve
|
NI
+
N[ —
=S
[}
N———

where
Blsan) = R0 (0 5+ 5120, ) {5 (1200 + ot (4 5+ 512, )}

Ford eR

|by| s

|ds — 53| < 21,815 (s) (a—5+503],) [1—4] <7,
’ 2= [by|*|1—¢] 1>
{22, Bl ¥ () (a=3+31,)-Blsaw)}|’ = b

where

{2 B (0= 5+ 3 B),) (T2 - B}
2], B w(s) (a— 3+ 313],) (Ta))? |
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Corollary 2. Let g(z) € Kx(y,k,q,%(s)). Then
b b
] < byl v/1by| ,
{027 21, B w6 4+ 41, ) - B (5,000}

by)? b
|ds| < " (by) S+ - by 1 ’
22 w(s) (g 412),) 21,1 e (0 + 5081,
where
1 1
Bi(s,q,9) = [2I7° ¥%(s) (q +3 [2]q> {(Tz (¥))* + T3(y) (q +5 [2]q> } _
Ford e R
|by| <
2 21,315 (s) (a4 3 3],) [1—6]<Js
[{(T2(v))?[2,[815w(s) (a+353],)—Bi(s.a.0) }|’ = Ja,
where

W {815 w0) (a4 3 18),) (020)” ~ By (0.0}
2], 1815 W(s) (a+ 5 3], 1) (Ta(v)?

Corollary 3. Let g(z) € Lx(y,k,q,V(s)). Then

] < byl v/Tby] |
Y@y e, B e (- 5+ 1,) - Belsan)l
ds] < (by)” 4 byl

2], 85 w(s) (a— 3 +13],)

where

Ba sva) = 2 W0) 0~ 5+ 1) { (0o )+ Yaa— 5 + 2 |

2
Ford eR
b
|d3 — 6d3| < { ph[gﬁqj(!)iqujiﬁ?f I1—6] < Js,
(o PE,m e (o B, Baean)] 102
where

@B e (o= 5+ Bl (T20)* - B g
3 21, 35 () (4~ &+ [8),) (To(0)? |

2530
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Corollary 4. Let g(z) be in the family Mx(y, u, k,V(s)). Then
b b
] < byl v/1by|
@ BB w0 (04 B,0) - Basan

)

(by)” by
212 w(s) (g + 2,1) (21, 805 0Cs) (a4 8], )

where

Ford eR

B 1-6|<J
‘d?’ _ 5d%‘ < { [Q]q[3]§W(s)(q+[3iqu)’ | | < Jy,
o by|”|1—4] sl
{(r2))%12], B () (a+(3],1)— B3 (s.:0:9) } | [1—6] > Ja,

where

{121, B w(s) (a+ 3], ) (T2() = Bs (s,0.9) }|
2], 1315 w(s) (a+ 131, 1) |
Corollary 5. Let g(z) € Nx(y, p, k,q,V(s)). Then
i < LORVED]
V@ B w0 (14+20) - B (s

)

g < — vl b(»)
22 2(s) (1 4+ )2 23+ w(s) (1 +12], M)
where
By (5.0, 0) = 277 92(s) (1 + 1) {Ta(w) (1 + )}
Ford e R
[by| L _sl<
ds — 8d3| < 3151w (s) (1+2],1) [1—0| < My,
‘ 3 2} — |by‘3‘1—5‘ |1_5| >M1
|2(0y)?[3]5 W (s) (14121 1) — Bs(s.0.y.) | = )
where
! k+1 9
M, = B w(s) (14 (20, 1) (bu)® — Bs (s, 0.9

815 w(s) (1++ 2], 1) (by)”

2531
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Corollary 6. Let g(z) € Oy (y, p, k,¥(s)). Then

|dy| < b(y)] V/16(y)]

\/ (02 ()" B W(s) 21— (282 w2 () { (X2 (1) + Vsl |

)

s < — V] bl
y [2]§k+2 \IJQ(S)MQ 2 [3]];+1 Q(S) [2]q m
FordeR
7 L5l < M
|ds — 6d3| < { 8l e () 2l,n’ |1 - 0] < My,
- [by[*[1=4] s
B AR PN e o (e L e
where
1 k41 2%+2 g2 pby? +ra
M, = I w00 2 w2 {1 (P
AN (o7

Corollary 7. Let g(z) € Ps(y,§,k,¥(s)). Then

b(y)| V16()]
B (& (12, +1) — 1) () - B (0.8

|da| <

and )
ds] < (by) N [b(y)]
T @E-DTRET) it ws) (¢ (121, +1) 1)
where
By (r,5,q,€) = {205 w2(s)(1 - 26) (by)’
—(2¢-1) [2]§k+2 2(s) (pby* + Ta)} .
Foré eR
|by| _5l<
|d3 B 5d2‘ < [3]’;_‘—1\1/(5)({([2]%4»1)71) ) ’1 5’ = Qla
2= kE+1 byl 1=9] 2 ’ |1 - 5| > Ql»
Bl (s) (¢([21,41)—1) (by)> —Ba(r,s,0,€) |
where

3541 w(s) (¢ (121, +1) = 1) 69 = Ba (r,5,4,6)|

= 435+ W (s) (5 ([2]q + 1) - 1) b2y
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Corollary 8. Let g(z) be in the family Qx(y, 7, k,Q,¥(s)). Then
b(y)] /]b(y)|
|da| <
B0 (€ (121, + 1) = 1) 00 = B rsmy

and
(by)? N ()]
(2r = ) 2777 02(s) gkt w(s) (T ([2]q + 1) - 1) ’

where
Bs (r,s,1,y) = {[2]?rl W2 (s)(272 — 47 + 1) (by)?
_ {(27 -1) [2]3k+2 T2 (s) (pby2 + ra) .

Ford eR

|by sl <
35w (7([2l,+1)-1) 1= 6] <,

lby|*[1=4] 5> 0
|[3]I¢;+1\Ij(s)(T([Q}q—"_l)_l)(by)2—B5(T,S,T7y)’ ) ’ (5‘ = 2,

|d3 — 6d3| <

where

35 w(s) (¢ (121, +1) = 1) = Bo (r.,7.9)|

e 4B wis) (7 (12, +1) - 1)

and

Bg (r,s,1,y) = {[2]1;;+1 U2(s) (272 — 47 4+ 1) —

- e (P50

4. Conclusions

This research aims to introduce new subfamilies of bi-univalent functions within the
open unit disk, leveraging the connections between Horadam polynomials, modified Sig-
moid functions, and the principles of subordination. By utilizing the power of g-calculus,
quantum difference operators, and the modified Sigmoid function, we define and investi-
gate three novel subclasses of bi-univalent functions linked to Horadam polynomials. Our
study yields estimates for the Fekete-Szego functional problems and the Taylor-Maclaurin
coefficients |da| and |d3| for each of these subclasses. Furthermore, by examining the vari-
ables in our main results, we uncover additional original findings. This methodology paves
the way for the introduction of new subclasses of bi-univalent functions related to other
generating functions, such as Fibonacci numbers and square-root functions. By applying
the Faber polynomial technique, we can derive bounds for the n'" coefficients of these sub-
classes, specifically the first two initial coefficients and Fekete-Szego functional problems.
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