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Abstract. The paper introduces the concept of graph decomposition. That is orthogonal de-
compositions. Orthogonal decompositions of a graph H are a partitioning H into subgraphs of
H such that any two subgraphs intersect in at most one edge. These decompositions are called
G−orthogonal decompositions of H if and only if every subgraph in such decompositions is isomor-
phic to the graph G. Such decomposition appears in a lot of applications; statistics, information
theory, in the theory of experimental design, and many others. An approach of constructing or-
thogonal decompositions of regular graphs is introduced here. Application to this approach for
constructing tree – orthogonal decompositions of complete bipartite graphs is considered. Further,
the use of orthogonal decompositions for designing tree hamming codes is also discussed along with
examples. The study shows that such codes have efficient properties when used to detect and cor-
rect the errors that may occur during the transmission of data through a network. Furthermore,
we present a method for the recursive construction of orthogonal decompositions.
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1. Introduction

All graphs being discussed here are undirected, finite, and do not have loops or mul-
tiple edges. For standard graph-theoretic terminology, we refer to [1]. A decomposition of
a graph H is a set of edge-disjoint subgraphs of H whose union gives the graph H. Thus,
we say that the set G = {G1, G2, · · · , Gk} of k subgraphs of H decompose H if and only if
k⋃

i=1
Gi = H (ignoring isolated vertices) &

k⋂
i=1

Gi = ϕ(empty graph). If Gi ≊ G for each

i ∈ {1, 2, · · · k} , then G is called a decomposition of H by G. Throughout the paper we use
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V (X), E(X) for the vertex set and edge set of the graph X respectively, Pk for a path of k
vertices, mG for m disjoint copies of G, and G∪H for disjoint union of graphs G and H.
Let G1 = {G1, G2, · · · , Gk} and G2 = {F1, F2, · · · , Fk} be two distinct edge decompositions
of H by G such that for each i ∈ {1, 2, · · · k} , Gi ≊ G ≊ Fi. Such two decompositions
are called orthogonal decompositions if |E(Gi) ∩ E(Fj)| = 1 for all i, j ∈ {1, 2, · · · k} .
Whence, the collection {G1 ∪ G2} is equivalent to an orthogonal double cover (ODC) of H
by G. An ODC of H by G is a collection F = {ϕ (x) : x ∈ V (H)} of subgraphs of H all
isomorphic to the graph G, such that every edge of H belongs to exactly two elements
from F and any two elements ϕ (x1) and ϕ (x2) from F have a common edge if and only
if the edge (x1, x2) ∈ E(H). Not all graphs H have an ODC. The necessary condition
to find an ODC of H is that the graph H is regular. For the complete graph Kn, ODC
is extensively studied, we refer the reader to a survey [14]. ODC of Cayley graphs was
studied in [6, 7, 10]. An ODC F of H is cyclic (CODC) if the cyclic group of order |V (H)|
is a subgroup of the automorphism group of H ( the group of automorphism of the graph
H which preserves the covering) [16]. Sampathkumar et al. [20] investigated CODCs of
circulant graphs by 4-regular circulant graphs. In [11], the authors attacked the problem
of the existence of ODCs of 2-regular graphs and 3-regular graphs. Sampathkumar et al.
[21] presented σ−labeling, as a special category of orthogonal labeling. Using σ−labeling,
they constructed CODCs of circulant graphs by some caterpillars of diameters 4. Higazy
et al. [22] gave a complete classification for circulant graphs of degree five which lead to
an ODC by some graphs.

The present paper is interested in studying ODC for balanced complete bipartite
graph Kn,n. Given a positive integer n, the balanced bipartite graph Kn,n is a bipar-
tite graph with a 2n−element vertex set V . This set V is divided into two partite sets
of vertices, each containing n elements. The vertices of Kn,n are labeled by the ele-
ments of Zn × {0, 1} where Zn = {0, 1, 2, · · · , n − 1} represents all residue classes mod-
ulo n. The edge set of Kn,n is defined as pairs E(Kn,n) = {((u, 0), (v, 1)) ; u, v ∈ Zn}.
For simplicity and if there is no danger of ambiguity,we use vr for the vertex
(v, r) ∈ Zn×{0, 1}, and (u0, v1) for the edge ((u, 0), (v, 1)) . We aim to construct an ODC
of Kn,n by G where G is isomorphic to certain trees with n edges. In the next section,
we introduce the fundamentals of our approach for constructing an ODC of Kn,n. We
call this approach a base-generated approach (BGA). Section 3, shows the construction
of ODCs of Kn,n by certain trees based on BGA introduced in Section 2. An application
of BGA in designing graph error detecting and correcting codes is presented in Section
4. Section 5 introduces a recursive construction of ODC of higher order balanced com-
plete bipartite graph by disjoint trees. The conclusion of the paper and future work are
presented in Section 6.

2. Fundamentals of base-generated approach

To construct an ODC of Kn,n we have to find two orthogonal decompositions of Kn,n.
In base-generated approach (BGA) we first seek to find the base for each decomposition.
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Then ODC is generated from such two bases. Let us introduce the principals of this
approach. Assume e = (a0, b1) be an edge belonging to E(Kn,n).The length of the edge
e is defined by d(e) = b− a, where addition and subtraction are calculated modulo n.

Definition 1. Let G to be a subgraph of Kn,n, and s ∈ Zn. Then the graph G+s (or Gs)
with E(G+ s) = {((a+ s)0 , (b+ s)1); (a0, b1) ∈ E(G)} is called s- translation of G.

Definition 2. A subgraph G of Kn,n is called a base of an edge decomposition of Kn,n

by G if and only if
n−1⋃
s=0
{E (G+ s)} = E (Kn,n) .

The next theorem proves the validity of the method by which we build a base.

Theorem 1. Let G be a subgraph of Kn,n such that |E(G)| = n. Then G is a base of an
edge decomposition of Kn,n by G if all the edges of G are mutually different in lengths,
i.e.{d(e); e ∈ E(G)} = Zn.

Proof. Let X = {(ai, bi) ; i ∈ Zn} be the set of all edges of G, such that the edge
ei = (ai, bi) . Since all the edges of G are mutually different in lengths, then the set
X satisfies {bi − ai ; i ∈ Zn} = Zn. Let di = bi − ai that is a unique for every edge
(ai, bi) ∈ E(G); i ∈ Zn. For any s, t ∈ Zn and s ̸= t, let (ai + s, bi + s) ∈ E(Gs) and
(ai + t, bi + t) ∈ E(Gt). Assume that |E(Gs) ∩ E(Gt)| ≠ 0, that is there is at least one
edge (ai, bi) ∈ |E(Gs) ∩ E(Gt)| . From the definition of s- translation of G, we know that

(ai + s− s, bi + s− s) = (ai, bi) . Also (ai + t− t, bi + t− t) = (ai, bi) . Since bi − ai =
di is unique for every edge (ai, bi) ∈ E(G), then we have a contradiction. Therefore,

|E(Gs) ∩ E(Gt)| = 0 for any s, t ∈ Zn and s ̸= t. Moreover,
n−1⋃
i=0
{E (Gi)} = E (Kn,n) ,

thus G is a base of an edge decomposition of Kn,n by G.

2.1. Construction of an ODC of Kn,n using two orthogonal bases

Let G1 and G2 be two bases of two decompositions of Kn,n. Such two bases are
orthogonal if |E(G1) ∩ E(G2)| = 1.

If two bases G1 and G2 are orthogonal, then the collection G ={Gi
a : a ∈ Zn, i ∈ {1, 2}}

with Gi
a = (Gi + a) is equivalent to an ODC of Kn,n. Moreover, G represents an ODC of

Kn,n by G if G1 ≊ G ≊ G2.

Definition 3. Let G to be be a subgraph of Kn,n, the subgraph G
′
of Kn,n with E(G

′
) =

{{a0, b1} : {b0, a1} ∈ E(G)} is called the symmetric graph of G.

Remark 1. The graph G
′
is a base of a decomposition of Kn,n by G if and only if G is

also a base of a decomposition of Kn,n by G.

in the next section, we use an algebraic representation for a base G of a decomposition
of Kn,n.
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2.2. Bases representation

The representation of the base G is given by the ordered n-tuple v(G) = (v0, v1, · · · , vn−1) ∈
Zn × Zn × · · · × Zn︸ ︷︷ ︸

n times

such that vi ∈ Zn for all i ∈ {0, 1, 2, · · · , n− 1} and (vi)0 is the unique vertex
((vi, 0) ∈ Zn×{0}) that belongs to the unique edge of length i in G. The edge set of G is
E(G) = {((vi)0 , (vi + i)1); 0 ≤ i ≤ n− 1} . For instance, the base in Figure 1 is represented
by the vector v(P4) = (0, 1, 1), (e.g. (10,01) is the unique edge of length 2, thus v2 = 1). If
G is a base, we will call also v(G) a base.

Figure 1: The base P4 in K3,3 with the length of each edge, where v(P4) = (0, 1, 1).

Definition 4. Let v(G1) and v(G2) be two different bases in Kn,n. Then, G1 and G2 are
orthogonal if and only if {vi(G1)− vi(G2) : i ∈ Zn} = Zn.

Theorem 2. If G1
0 and G2

0 are the orthogonal bases in Kn,n, then the collections G1={G1
0+x :

x ∈ Zn} and G2={G2
0+y : y ∈ Zn} with

(
Gi

0+x = (Gi
0 + x)

)
and

(
Gi

0+y = (Gi
0 + y)

)
for i ∈ {1, 2} represent an ODC of Kn,n.

Proof. Since G1
0 and G2

0 are bases then each collection from the collections G1={G1
0+x :

x ∈ Zn} and G2={G2
0+y : y ∈ Zn} forms an edge decomposition of Kn,n. Assume that

the edge {a0, b1} ∈ E(Kn,n). Then there are exactly two graphs G1
x and G2

y from the
collections G1 and G2 such that {a0, b1} ∈ E(G1

x) and {a0, b1} ∈ E(G2
y). Moreover,

for any x, y ∈ Zn and s, t ∈ {1, 2},
∣∣E(Gs

0+x) ∩ E(Gt
0+y)

∣∣ = 0 whenever s = t. Besides

that, there is a unique vi satisfies vi(G
1
0) − vi(G

2
0) = b − a and vi(G

1
0) + a = vi(G

2
0) + b.

Thus, there is exactly one edge l = {(vi(G0) + a)0 , (vi(G0) + a+ vi)1} ∈ E(G1
0+x) and l =

{(vi(G1) + b)0 , (vi(G1) + b+ vi)1} ∈ E(G2
0+y). Thus,

∣∣E(Gs
0+x) ∩ E(Gt

0+y)
∣∣ = 1 whenever

s ̸= t.

Hereafter, we show a method by which we can construct an ODC of Kn,n using only
one base instead of two bases.

Definition 5. A base G is called a symmetric base with respect to Zn if v(G) and v(G
′
)

are orthogonal.

The following theorem introduces the condition for a symmetric base.
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Theorem 3. A base G in Kn,n represented by the vector v(G) = (v0, v1, · · · , vn−1) is
called a symmetric base if it satisfies {vi − v−i + i} = Zn for all i ∈ Zn.

Proof. Since G is a base in Kn,n.The graph G
′
is also a base in Kn,n represented by

v(G
′
). Let the edge e =

{
vi(G

′
), vi(G

′
) + i

}
∈ E

(
G

′
)
such that the length of e equals i.

Following the definition of a symmetric graph, the edge
{
vi(G

′
) + i, vi(G

′
)
}

of length −i
will belong to E (G) . Whence, v−i(G) = vi(G

′
)+ i, which means that vi(G

′
) = v−i(G)− i.

Following Definition 4, v(G) and v(G
′
) are orthogonal if

{
vi(G)− vi(G

′
); i ∈ Zn

}
= Zn.

Then the necessary and sufficient condition for the orthogonality of the bases G and G′ is
{vi(G)− v−i(G) + i; i ∈ Zn} = Zn. Since G

′
is the symmetric graph of G, then the base G

is a symmetric base with respect to Zn if and only if {vi(G)− v−i(G) + i; i ∈ Zn} = Zn.

Theorem 3 yields the next theorem.

Theorem 4. There is an ODC of Kn,n by G if there exists a symmetric base that is
isomorphic to the graph G.

In the next section we use the symmetric base in constructing an ODC of Kn,n by
different classes of graphs.

Definition 6. Let r ≥ 1, and n1, n2, n3, · · · , nr be positive integers such that ni ≥ 0 for
i ∈ {1, 3, · · · , r}.The caterpillar tree Cr(n1, n2, n3, · · · , nr) is the tree obtained from the
path Pr = x1x2x3 · · ·xr by joining vertex xi to ni new vertices, i ∈ {1, 2, · · · , r}.

Definition 7. Let δ, α be positive integers and the parameter xδ, ≥ 0. The rooted tree
τα(x1, x2, x3, · · · , xδ) is the tree with a root α (α ∈ V (Kn,n)) and for all i ∈ {1, 2, · · · , δ} ,
xi is the number of leaves of level i.

Figure 2: Tree τ00(1, 3) as a subgraph of K4,4.

For example, the graph in Figure 2, represents a tree τα(x1, x2) ≊ τ00(1, 3) as a
subgraph of K4,4. Such tree τ00(1, 3) is a rooted tree with a root α = 00, x1 = 1 (one
leaf in level 1), while x2 = 3 (3 leaves with level 2).

Remark 2. A Path Pr is caterpillar tree Cr(0, 0, 0, · · · , 0←−−−−−−−→
r

)
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3. Designing orthogonal decompositions of Kn,n by certain trees

In this section, we claim to construct ODC of Kn,n by certain trees based on BGA
approach introduced in Section 2.

3.1. Orthogonal decompositions of Kn,n by rooted trees

Theorem 5. Let n ≥ 3 be a positive integer and x1 ∈ {1, 2}, then there is a symmetric
base of an ODC of Kn,n by G ≊ τ01(x1,

⌊
n−1
2

⌋
).

Proof. case 1. Let x1 = 1, m ∈ Z+ and n = 2m+1. Then the vector v(G) of the base

G, is defined as

vi(G) =

{
i if 0 ≤ i ≤ m
−i if m+ 1 ≤ i ≤ 2m

Therefore,

v−i(G) =

{
i if 0 ≤ i ≤ m
−i if m+ 1 ≤ i ≤ 2m

For all i ∈ Z2m+1, vi−v−i+ i = i. By Theorem 3, G is a symmetric base. By definition
of v(G), the graph G ≊ τ01(1,m).

E(G) = {(00, 01)} ∪ {(i0, 01) : 1 ≤ i ≤ m} ∪ {(i0, (2i)1 : 1 ≤ i ≤ m)}

Case 2. Let x1 = 2, m ∈ Z+ and n = 2m, then the vector v(G) of the base G is

defined as:

vi(G) = v−i(G) =

{
i if 0 ≤ i ≤ m
−i if m+ 1 ≤ i ≤ 2m− 1

For i ∈ Z2m, vi − v−i + i = i. By Theorem 3, G is a symmetric base. By definition of
v(G), for any i ∈ Z2m, the graph G ≊ τ01(2,m− 1).

E(G) = {(00, 01)} ∪ {(i0, 01) : 1 ≤ i ≤ m} ∪ {(i0, (2i)1 : 1 ≤ i ≤ m− 1)}

Example 1. There is an ODC of K5,5 by τ01(1, 2), since v(G) = (0, 1, 2, 2, 1) is a sym-
metric base, see Figure 3.
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Figure 3: Symmetric base of an ODC of K5,5 by τ01(1, 2).

Theorem 6. Let n ≥ 5 be a positive integer, then there is an ODC of Kn,n by τ00(n−4, 2)

Proof. For any positive integer n ≥ 5, the vectors v(G) and u(F ) of the bases G and
F are represented as :

vi(G) =


(n− 2)i if i = 0, n− 2
−2i− 1 if i = 1, n− 1
−i otherwise

ui(F ) =


(n− 1)i if i = 0, n− 2
−i− 1 if i = 1, n− 1

0 otherwise

From the representation of v(G) and u(F ), vi(G)−ui(F ) = 0 at i = 0, vi(G)−ui(F ) = 2
at i = n− 2, and vi(G)− ui(F ) = −i otherwise. Consequently, {vi(G)− ui(F ); i ∈ Zn} =
Zn. By theorem 4, the two bases v(G) and u(F ) are orthogonal. Moreover, the edges set
E(G) and E(F ) of the bases G and F respectively can be represented by:

E(G) = {(((n− 2)i)0 , ((n− 1)i)1 ; i = 0, n− 2}

∪{((−2i− 1)0 , (−i− 1)1) ; i = 1, n− 1}

∪{(−i0, 01); i ∈ Zn\ {0, 1, n− 2, n− 1}}

and
E(F ) = {(((n− 1)i)0 , 01); i = 0, n− 2}

∪{((−i− 1)0 , (n− 1)1); i = 1, n− 1}

∪{(00, i); i ∈ Zn\ {0, 1, n− 2, n− 1}}

Therefore, G ∼= F ∼= τ00(n− 4, 2).
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Theorem 7. Let n > 3 to be an odd integer and x1, x2 and γ ∈ Zn. Then there is a
symmetric base of an ODC of Kn,n by G ≊ τ00(x1, x2) ∪ γK2.

Proof. Case 1. Let m,n be positive integers such that n = 2m + 1, n > 3 and
n ≇ 0mod 3. The vector v(G) of the base G is defined as:

vi(G) =

{
2i if 0 ≤ i ≤ m
0 if m+ 1 ≤ i ≤ 2m

Hence,

v−i(G) =

{
0 if 0 ≤ i ≤ m
−2i if m+ 1 ≤ i ≤ 2m

For i ∈ Z2m+1, vi − v−i + i = 3i,since gcd(3, 2m + 1) = 1, By Theorem 3, G is
a symmetric base. By definition of v(G), the graph G ≊ τ00(⌈n+1

3 ⌉, ⌈
n−3
6 ⌉) ∪ ⌊

n−1
3 ⌋K2,

where x1 = ⌈n+1
3 ⌉, x2 = ⌈

n−3
6 ⌉ and γ = ⌊n−1

3 ⌋.
Case 2. For an odd integer n > 3, n ≡ 0mod 3, the vector v(G) of the base G is

represented as :

vi(G)=

{
2i if 0 ≤ i ≤ n−1

2
0 if n+1

2 ≤ i ≤ n− 1

Hence,

v−i(G)=

{
0 if 0 ≤ i ≤ n−1

2
−2i if n+1

2 ≤ i ≤ n− 1

For i ∈ Zn, vi−v−i+i = 3i. By Theorem 3, G is a symmetric base. By the definition of
v(G), the graph G ≊ τ00(n3 , ⌊

n+1
5 ⌋)∪ ⌊

n−4
5 ⌋K2, where x1 =

n
3 , x2 = ⌊

n+1
5 ⌋ and γ = ⌊n−4

5 ⌋.

Theorem 8. Let n > 3,and n ≇ 0mod 3 be an even integer, then there is an ODC of
Kn,n by G ≊ τ00(⌈n+2

3 ⌉, ⌈
n−3
6 ⌉) ∪ ⌊

n−2
3 ⌋K2.

Proof. For any even integer n = 2m, m ∈ Z+, the vector v(G) of the base G is defined
as :

vi(G) =

{
2i if 0 ≤ i ≤ ⌈n−1

2 ⌉
0 if ⌈n+1

2 ⌉ ≤ i ≤ n− 1

Hence,

v−i(G) =

{
0 if 0 ≤ i ≤ ⌈n−1

2 ⌉
−2i if ⌈n+1

2 ⌉ ≤ i ≤ n− 1

For i ∈ Z2m, vi− v−i + i = 3i. Since gcd(3, 2m) = 1, By Theorem 3, G is a symmetric
base. Moreover, the edges set E(G) of the basis G can be represented by:

E(G)=

{
((2i)0 , (3i)1) : 0 ≤ i ≤ ⌈n− 1

2
⌉
}
∪ {(00, i1) : ⌈

n+ 1

2
⌉ ≤ i ≤ n− 1}.

By the definition of v(G), the graph G ≊ τ00(⌈n+2
3 ⌉, ⌈

n−3
6 ⌉) ∪ ⌊

n−2
3 ⌋K2.
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Theorem 9. Let m > 2, m ≇ 0mod 3, and m+ 3 to be an odd integer. Then there is a
symmetric base of an ODC of Km+3,m+3 by G ∼= τ01(1, 2) ∪ (n− 5)K2.

Proof. For all odd integer n > 5, n = m+ 3 such that m > 2, m ≇ 0mod 3, the vector
v(G) of the symmetric base G can be defined as:

vi(G) =


0 if i = 0
n− 1 if i = 1
3 if i = n− 1
xj − i if i ∈ {2, 3, · · · ,m+ 1} , j = i− 2

,

Where xj = 1−j, for j ∈ {0, 1, 2, · · · ,m− 1} . From the definition of v(G), we find that
vi−v−i+i = 0, for i = 0, for i = 1, vi−v−i+i = n−3, for i = n−1, vi−v−i+i = 3, and
for i = j+2, j ∈ {0, 1, 2, · · · ,m− 1} , vi− v−i+ i = xj −xm−(j+1)− i. By Theorem 3, the
base v(G) is symmetric. Moreover, the edges set E(G) of the base G can be represented
by:

E(G) = {(00, 01), ((n− 1)0 , 01), (30, 21)} ∪ {
(
(xj − i)0 , (xj)1

)
}

for all i = j + 2, j ∈ {0, 1, 2, · · · ,m− 1} .

Then the graph G ∼= τ01(1, 2) ∪ (n− 5)K2.

Theorem 10. Let n ≥ 3 to be a positive integer, then there is a symmetric base of an
ODC of Kn,n by C4(0, 0, 0, 0) ∪ τ (n−1)1(n− 3).

Proof. For a positive integer n ≥ 3, the vector v(G) of the base G can be written as:

vi(G) =


0 if i = 0
n− 1 if i = 1, n− 1
−i− 1 otherwise

,

therefore,

v−i(G) =


0 if i = 0
n− 1 if i = 1, n− 1
i− 1 otherwise

,

For i ∈ {0, 1, n− 1}, vi− v−i + i = i. For any i ∈ Zn\ {0, 1, n− 1} , vi− v−i + i = −i.
Consequently, {vi − v−i + i; i ∈ Zn} = Zn. By Theorem 3, the base v(G) is symmetric.
Moreover the edges set E(G) of the base G can be represented by:

E(G) = {(00, 01) , (01, (n− 1)0) , ((n− 1)0, (n− 2)1)}
∪{(β0, (n− 1)1) : 1 ≤ β ≤ n− 3}

.

Then the graph G ∼= C4(0, 0, 0, 0) ∪ τ (n−1)1(n− 3).
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3.2. ODCs of Kn,n by a combination of caterpillar trees

Theorem 11. Let α, β and γ be elements of Zn. For all positive integers n ≥ 7, and
n ≇ 0mod 3, there is a symmetric base of an ODC of Kn,n by αC4(0, 0, 0, 0)∪βC3(0, 0, 0)∪
γC2(0, 0).

Proof. Case 1. For an even integer n, let α = 2, β = n−8
2 , and γ = 2. The vector v(G)

of a base G can be defined as:

vi(G) =

{
−2i− 1 if i = 1, n− 1
−2i otherwise

,

Hence,

v−i(G) =

{
2i− 1 if i = 1, n− 1
2i otherwise

For any i ∈ Zn, vi− v−i + i = −3i. By Theorem 3, the base v(G) is symmetric.
Moreover, the edges set E(G) of the base G can be represented by:

E(G) = {10, 01, 00, (n2 )1, 10} ∪ {(n− 3)0, (n− 2)1, (
n
2 )0, (⌊

n−3
2 ⌋)1}

∪{(2, n+2
2 ), (n− 2, n−2

2 )} ∪ {(n+4
2 )1, 40, 21} ∪ {(n+6

2 )1, 60, 31}

∪{(n+8
2 )1, 80, 41}∪, ...,∪{(n− 3)1, (n− 6)0, (

n−6
2 )1}

then the graph G ≊ 2C4(0, 0, 0, 0) ∪ (p− 8)C3(0, 0, 0) ∪ 2C2(0, 0).
Case 2. For an n odd integer n, let α = 1, β = 1, and γ = n− 5. The vector v(G) of

a base G can be defined as:

vi(G) =

{
−2i− 1 if i = 1, n− 1
−2i otherwise

Hence,

v−i(G) =

{
2i− 1 if i = 1, n− 1
2i otherwise

For any i ∈ Zn, vi− v−i + i = −3i. By Theorem 3, the base v(G) is symmetric.
Moreover the edges set E(G) of the base G can be represented by:

E(G) = {(−2i− 1)0 , (−i− 1)1 ; i ∈ {1, n− 1}} ∪ {(−2i)0 , (−i)1 ; i ∈ Zn \ {1, n− 1}}

then the graph G ≊ C4(0, 0, 0, 0) ∪ C3(0, 0, 0) ∪ (n− 5)C2(0, 0).

Theorem 12. Let p ≥ 13 to be a prime integer, then there an ODC of Kp,p by
G = C4(0, 0, 0, 0) ∪ C3(0, 0, 0) ∪ (p− 5)C2(0, 0).
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Proof. For any prime integer p ≥ 13, the vectors v(G) and u(F ) of the bases G and F

are:

vi(G) =


(p−5

2 )i if i = 0, 1

(p−3
2 )i if 2 ≤ i ≤ p− 3

(p−5
2 )i− 2 if i = p− 2, p− 1

,

and

ui(F ) =


( ⌈p−2

2 ⌉)i if i = 0, 1

(⌈p2⌉)i if 2 ≤ i ≤ p− 3

⌈p−2
2 ⌉)i− 2 if i = p− 2, p− 1

,

Hence, vi(G)−ui(F ) = (p−5
2 )i−

(
⌈p−2

2 ⌉
)
i if i ∈ {0, 1} , vi(G)−ui(F ) = (p−3

2 )i−
(
⌈p2⌉

)
i

if i ∈ {2, 3, · · · , p− 3} , and vi(G) − ui(F ) = (p−5
2 )i − ⌈p−2

2 ⌉)i if i ∈ {p− 2, p− 1} . By
theorem 4, then the two bases v(G) and u(F ) are orthogonal. Moreover, the edges set
E(G) and E(F ) of the bases G and F respectively can be represented by:

E(G) =
{((

(p−5
2 )i

)
0
,
(
(p−3

2 )i
)
1

)
; i ∈ {0, 1}

}
∪
{((

(p−3
2 )i

)
0
,
(
(p−1

2 )i
)
1

)
; i ∈ {2, 3, · · · , p− 3}

}
∪
{((

(p−5
2 )i− 2

)
0
,
(
(p−3

2 )i− 2
)
1

)
; i ∈ {p− 2, p− 1}

}
.

And

E(F ) =
{((
⌈p−3

2 ⌉i
)
0
,
(
⌈p−1

2 ⌉i
)
1

)
; i ∈ {0, 1}

}
∪
{((
⌈p−5

2 ⌉i
)
0
,
(
⌈p−3

2 ⌉i
)
1

)
; i ∈ {2, 3, · · · , p− 3}

}
∪
{(((

⌈p−3
2 ⌉i

)
− 2

)
0
,
((
⌈p−1

2 ⌉i
)
− 2

)
1

)
; i ∈ {p− 2, p− 1}

}
.

Hence G ≊ F ≊ C4(0, 0, 0, 0) ∪ C3(0, 0, 0) ∪ (p− 5)C2(0, 0).

Theorem 13. Let n ≥ 8 to be a positive integer, then there is an ODC of Kn,n

by C5(0, 0, (n− 4), 0, 0).

Proof. For all positive integers n ≥ 8, the vectors v(G) and v(F ) of the bases G and
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F are defined as:

vi(G) =


−3i if i = 0, 1
−i if 2 ≤ i ≤ n− 3
−2− 3i if i = n− 2, n− 1

and

vi(F ) =


−2i if i = 0, 1
0 if 2 ≤ i ≤ n− 3

−2i− 2 if i = n− 2, n− 1

Since {vi(G)− vi(F ); i ∈ Zn} = Zn, following Theorem 4, the bases G and F are
orthogonal. From the above definitions of vi(G) and vi(F ) with the two relations
E(G) = {(vi(G))0 , (vi(G) + i)i} and E(F ) = {(vi(F ))0 , (vi(F ) + i)i} for all i ∈ Zn, then
G ≊ C5(0, 0, (n− 4), 0, 0) ≊ F .

Theorem 14. Let n to be a positive integer such that n ≥ 5, then there is a symmetric
base of an ODC of Kn,n by G = C3(1, 0, n− 3).

Proof. For n ≥ 5, the vector v(G) of the base G can be defined by:

vi(G) = v−i(G) =

{
n− 1 if i = 1, n− 1
1 otherwise

For any i ∈ Zn, vi− v−i+i = i. By Theorem 3, the base v(G) is a symmetric. Moreover,
the edges set E(G) of the base G can be represented by:

E(G) = {01, (n− 1)0, (n− 2)1} ∪10 {(10, β1) : β ∈ {1, 3, · · · , n− 1}}

Thus, the graph G ∼= C3(1, 0, n− 3).

Theorem 15. Let p ≥ 5 to be prime integer, then there is a symmetric base of an ODC
of Kp,p by C5(0, 0, 0, 0, 0) ∪ (p− 4)C2(0, 0).

Proof. For a prime integer p ≥ 5, the vector v(G) of the base G is defined as:

vi(G) =

{
i− 1 if i = 1, p− 1
3 + i otherwise

hence,

v−i(G) =

{
−i− 1 if i = 1, p− 1
3− i otherwise

For any i ∈ Zp, vi−v−i+ i = 3i, Since gcd(3, p) = 1, By Theorem 3, G is a symmetric
base. By the definition of v(G), the base G ∼= C5(0, 0, 0, 0, 0) ∪ (p− 4)C2(0, 0).
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Theorem 16. Let p ≥ 5 to be prime integer such that p = 5 + 6n, and n be a non
negative integer, such that n ̸= 0mod 5, then there is a symmetric base of an ODC of Kp,p

by C3(0, 0, 0) ∪ Cp−1(0, 0, · · · , 0︸ ︷︷ ︸
p−1 times

).

Proof. For all prime integers p ≥ 5, p = 5 + 6n, and a non negative integer n ̸=
0mod 5.The vector v(G) of the base G can be defined as:

vi(G) =

{
0 if i = 0
i2 + i+ 1 otherwise

,

hence,

v−i(G) =

{
0 if i = 0
i2 − i+ 1 otherwise

From the definition of vi(G) and v−i(G), {vi − v−i + i; i ∈ Zp }=Zp. By Theorem 3,
the base v(G) is symmetric. Moreover, the edges set E(G) of the base G can be represented
by:

E(G) = {(00, 01) , (10, 01) } ∪ {
(
(i2 + i+ 1)0,

(
(i+ 1)2

)
1

)
; 1 ≤ i ≤ p− 2}

thus the graph G ∼= C3(0, 0, 0) ∪ Cp−1(0, 0, · · · , 0︸ ︷︷ ︸
p−1 times

).

Theorem 17. Let m ≥ 2, then there is a symmetric base of an ODC of Km+3,m+3 by
G ∼= C4(0, 0, 1,m− 1).

Proof. For a positive integer m ≥ 2,the vector v(G) of the base G in Km+3,m+3 can
be defined as:

vi(G) =


0 if i = 0, 1
2 if i = m+ 2
xj if i ∈ {2, 3, · · · ,m+ 1} , j = i− 2

,

Where xj = 1− j, for j ∈ {0, 1, 2, · · · ,m− 1} . Moreover,

vi − v−i + i =


0 if i = 0
− i if i ∈ {1,m+ 2}

xj − xm−(j+1) + i if i = j + 2; j ∈ {0, 1, 2, · · · ,m− 1} .

Hence, {vi − v−i + i; i ∈ Zm+3} = Zm+3. By Theorem 3, the base v(G) is symmetric.
Moreover, the edges set E(G) of the base G can be represented by:
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E(G) = {(00, 01), (10, 31)} ∪ (20, 11) , (11, 00) , (00, 31)}

∪{((31, (3− i)0) : 4 ≤ i ≤ m+ 1}

That yields G ∼= C4(0, 0, 1,m− 1).

Theorem 18. Let p to be a prime integer s.t p ≥ 13, and m = n− 3. Then there is an
ODC of Kp,p by C4(0, 0, 0, 0) ∪ 2C3(0, 0, 0) ∪ (p− 7)C2(0, 0, ).

Proof. For a prime integer p ≥ 13, the vectors v(G) and u(F ) of the bases G and F
are defined as :

vi(G) =


i if i = 0, p− 1
3 if i = 1
xj + 3i if i = j + 2, j ∈ {0, 1, 2, · · · ,m− 1}

,

and

ui(F ) =


0 if i = 0
(n− 2) if i = 1
2− 2i if i = p− 1
xj − 2i if i = j + 2, j ∈ {0, 1, 2, · · · ,m− 1}

,

For all i ∈ Zp, vi(G) − ui(F ) = 5i. By theorem 4, then the two bases v(G) and u(F )
are orthogonal. Moreover the edges set E(G) and E(F ) of the bases G and F respectively
can be represented by:

E(G) = {(00, 01), ((p− 1)0 , (p− 2)1), (30, 41)}

∪{
(
(xj + 3i)0 , (xj + 4i)1

)
; i = j + 2, j ∈ {0, 1, 2, · · · ,m− 1}}

and

E(F ) = {(00, 01), ((p− 2)0 , (p− 1)1), (40, 31)}

∪{
(
(xj − 2i)0 , (xj − i)

)
; i = j + 2, j ∈ {0, 1, 2, · · · ,m− 1}}

which yields G ∼= F ∼= C4(0, 0, 0, 0) ∪ 2C3(0, 0, 0) ∪ (p− 7)C2(0, 0, ).

Theorem 19. Let p ≥ 7 to be a prime integer, then there is an ODC of Kn,n by
2C3(0, 0, 0) ∪ (p− 4)C2(0, 0).

Proof. For any prime integer p ≥ 7, α1 = ⌊3p−7
10 ⌋, α2 = ⌊2p3 ⌋ − 1, the vectors v(G) ,

v(M) and v(F ) of the starters G,M and F are defined as:
Case 1. let p be a prime integer such that p ≡ 1mod 6 and α1be a positive integer

α1 = ⌊3p−7
10 ⌋. The vectors v(G) , u(M) of the bases G and M are defined as:
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vi(G) =


0 if i = 0, p− 2

p− 1 if i = 1, p− 1
i otherwise

and

ui(M) =


α1i if i = 0, p− 2

α1i− 1 if i = 1, p− 1
(α1 + 1)i otherwise

Therefore, vi(G)−ui(M) = −α1i for any i ∈ Zp. Consequently, {vi(G)−ui(M)} = Zp.
By theorem 4, then the two bases v(G) and u(M) are orthogonal. Moreover, the edges
set E(G) and E(M) of the bases G and M respectively, can be represented by:

E(G) = {(00, 01), (00,−21)}
∪{((p− 1)0 , (i− 1)1); i = 1, p− 1}
∪{(i0, 2i1); i ∈ Zn\ {0, 1, p− 2, p− 1}}

E(M) = {((α1i)0 , ((α1 + 1)i)1) ; i = 0, p− 2}
∪{((α1i− 1)0 , (((α1 + 1)i)− 1)1); i = 1, p− 1}

∪{(((α1 + 1)i)0 , ((α1 + 2)i)1) ; i ∈ Zn\ {0, 1, p− 2, p− 1}}

and hence G ∼= M ∼= 2C3(0, 0, 0) ∪ (p− 4)C2(0, 0).
Case 2. let p to be a prime integer such that p ≡ 5mod 6 and α2 be a positive

integer α2 = ⌊2p3 ⌋ − 1. The vectors v(G) , h(F ) of the bases G and F are defined as:

vi(G) =


0 if i = 0, p− 2

p− 1 if i = 1, p− 1
i otherwise

and

hi(F ) =


α2i if i = 0, p− 2

α2i− 1 if i = 1, p− 1
(α2 + 1)i otherwise

Therefore, vi(G)−hi(F ) = −α2i for any i ∈ Zp. Consequently, {vi(G)−hi(F )} = Zp.
By theorem 4, then the two bases v(G) and h(F ) are orthogonal. Moreover, the edges set
E(F ) of the basis F can be represented by:

E(F ) = {((α2i)0 , ((α2 + 1)i)1) ; i = 0, p− 2}
∪{((α2i− 1)0 , (((α2 + 1)i)− 1)1); i = 1, p− 1}

∪{(((α2 + 1)i)0 , ((α2 + 2)i)1) ; i ∈ Zn\ {0, 1, p− 2, p− 1}}

and hence F ∼= 2C3(0, 0, 0) ∪ (p− 4)C2(0, 0).
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Theorem 20. Let p > 7 to be a prime integer, then there is an ODC of Kn,n by
C3(1, p− 4, 1) ∪ (p− 5)C2(0, 0).

Proof. Case 1. For any prime integer p > 7 such that p ≡ 5mod 6 and a positive
integer α1 = ⌊p3⌋, the vectors v(G) and u(M) of the bases G and M are defined as:

vi(G) =


0 if i = 0, p− 2

p− 1 if i = 1, p− 1
i otherwise

and

ui(M) =


α1i if i = 0, p− 2

α1i− 1 if i = 1, p− 1
(α1 + 1)i otherwise

,

Therefore, vi(G)− ui(M) = −α1i for every i ∈ Zp. Consequently, {vi(G)− ui(M)} =
Zp. By theorem 4, then the two bases v(G) and u(M) are orthogonal. Moreover, the edges
set E(G) and E(M) of the bases G and M respectively, can be represented by:

E(G) = {((p− 1)0 , (i− 1)1); i = 1, p− 1}
∪{(00, 01), (00,−21)}

∪{(i0, 2i1); i ∈ Zn\ {0, 1, p− 2, p− 1}}

and

E(M) = {((α1i)0 , ((α1 + 1)i)1) ; i = 0, p− 2}
∪{((α1i− 1)0 , (((α1 + 1)i)− 1)1); i = 1, p− 1}

∪{(((α1 + 1)i)0 , ((α1 + 2)i)1) ; i ∈ Zn\ {0, 1, p− 2, p− 1}}

and hence G ∼= M ∼= C3(1, p− 4, 1) ∪ (p− 5)C2(0, 0).
Case 2. For any prime integer p > 7 such that p ≡ 1mod 6 and a positive integer

α2 = ⌊3p−1
5 ⌋ , the vectors v(G) and h(F ) of the bases G and F are defined as:

vi(G) =


0 if i = 0, p− 2

p− 1 if i = 1, p− 1
i otherwise

and

hi(F ) =


α2i if i = 0, p− 2

α2i− 1 if i = 1, p− 1
(α2 + 1)i otherwise

Therefore, vi(G)−hi(F ) = −α2i for every i ∈ Zp. Consequently, {vi(G)−hi(F )} = Zp.
By theorem 4, then the two bases v(G) and h(F ) are orthogonal. Moreover, the edges set
E(F ) of the bases F can be represented by:
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E(F ) = {((α2i)0 , ((α2 + 1)i)1) ; i = 0, p− 2}
∪{((α2i− 1)0 , (((α2 + 1)i)− 1)1); i = 1, p− 1}

∪{(((α2 + 1)i)0 , ((α2 + 2)i)1) ; i ∈ Zn\ {0, 1, p− 2, p− 1}}.

and hence F ∼= C3(1, p− 4, 1) ∪ (p− 5)C2(0, 0).

Theorem 21. Let p > 7 to be a prime integer, then there is an ODC of Kp,p by
C4(0, 0, 0, 0) ∪ 2C3(0, 0, 0) ∪ (p− 7)C2(0, 0).

Proof. For any prime integer p > 7, the vectors v(G) and u(F ) of the starters G and
F are defined respectively as:

vi(G) =


0 if i = 0

(p−1
2 )i− 1 if i = 1, p− 1

(p−3
2 )i− 1 otherwise

and

ui(F ) =


0 if i = 0

(p+1
2 )i− 1 if i = 1, p− 1

(p−1
2 )i− 1 otherwise

Thus, for any i ∈ Zp, vi(G)− ui(F ) = −i. Consequently,
{vi(G)− ui(F ); i ∈ Zp} = Zp. By theorem 4, then the two bases v(G) and u(F ) are

orthogonal. Moreover, the edges set E(G) and E(F ) of the bases G and F respectively,
can be represented by:

E(G) =
{((

(p−1
2 )i− 1

)
0
,
(
(p+1

2 )i− 1)
)
1

)
; i ∈ {1, p− 1}

}
∪{(00, 01)}

∪
{((

(p−3
2 )i− 1

)
0
,
(
(p−1

2 )i− 1)
)
1

)
; i ∈ Zp\ {0, 1, p− 1}

}
and

E(F ) =
{((

(p+1
2 )i− 1

)
0
,
(
(p+3

2 )i− 1)
)
1

)
; i ∈ {1, p− 1}

}
∪{(00, 01)}

∪
{((

(p−1
2 )i− 1

)
0
,
(
(p+1

2 )i− 1)
)
1

)
; i ∈ Zp\ {0, 1, p− 1}

}
.

Hence, G ∼= F ∼= C4(0, 0, 0, 0) ∪ 2C3(0, 0, 0) ∪ (p− 7)C2(0, 0).
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4. Tree- binary error detecting and correcting codes

Various combinatorial designs and related structures can be utilized to create codes
using the incidence matrix. The interaction between designs and codes has led to many
intriguing and valuable results [12] as a good survey. Lately, there has been a heightened
focus on codes derived from graphs. The literature extensively delves into the relationship
between codes and graphs from multiple perspectives. The primary aim of these studies
is to select a specific class of graphs and form codes from the graph’s adjacency matrix.
The characteristics of the graph can give rise to diverse types of codes, including self-dual
codes, self-orthogonal codes, authentication codes, etc. Further details on this subject
can be found in [2, 4, 5, 8, 9, 13, 15, 17–19]. Binary codes can be produced from various
graphs such as Paley graphs and Latin square graphs [3, 23]. Furthermore, non-isomorphic
codes have been generated from non-isomorphic graphs. This section focuses on binary
codes originating from the row span of the incidence matrices of particular graphs that
appear as induced subgraphs of complete bipartite graphs. These codes are termed binary
graph-codes. Additionally, if each codeword in a graph-code corresponds to a graph that
is isomorphic to graph G, the code is known as a binary G−code. By utilizing an ODC
of a complete bipartite graph, we develop binary codes that ensure the inner product of
any two codewords is less than or equal to 1. Therefore, binary G−codes are viewed as
a distinct subset of orthogonal codes. The unique properties of an ODC of a complete
bipartite graph suggest that binary G−codes derived from ODCs may serve as effective
error detection and correction codes.

Theorem 22. Let there is an ODC of Kn,n by a tree. Then there is a tree- binary code
of length n2.

Proof. Given an ODC G ={Gi
a : a ∈ Zn, i ∈ {1, 2}} of Kn,n by a tree G. The incidence

matrix L = L (s, t) for such ODC G ={Gi
a; a ∈ Zn, i ∈ {1, 2}} is a 2n× n2 binary matrix

showing the relation between the edges of Kn,n and the the members of G such that every
row in L corresponds to a unique graph in G and every column in L corresponds to a unique
edge in Kn,n. Let the edge (α0, β1) ∈ E (Kn,n) . Then L has a unique column t corresponds
to this edge (α0, β1). Such column t is defined from an injective function C : E (Kn,n)→{
0, 1, · · · , n2 − 1

}
where C ((α0, β1)) = t = nα + β; α, β ∈ Zn. For each a graph Gi

a :
(a ∈ Zn, i ∈ {1, 2}), a ∈ Zn from G, there is exactly one row s ∈ {0, 1, · · · , 2n− 1} in L
corresponds to Gi

a according the injective function RG : Zn × {1, 2} → {0, 1, · · · , 2n− 1}
where

RG (a, i) = s =

{
a if i = 1

a+ n if i = 2.

Then, The incidence matrix L = L (s, t) of an ODC G is defined as

L (s, t) =

{
1 if (α0, β1) ∈ E

(
Gi

a

)
0 if (α0, β1) /∈ E

(
Gi

a

)
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The rows of L can form a graph binary code. This binary code will be denoted as Cr.
The encoding process in Cr is manipulated in two consecutive steps. Suppose that (a, i)
∈ Zn×{1, 2} is a plain text. . In order to build the cipher text for (a, i) , firstly, we calculate
s = RG ( a, i) . using the above definition of RG. Secondly, the cipher text corresponds to
the plain text ( a, i) is the concatenation of bits of the row s in the matrix Lso will be
the codeword ls0ls1ls2···ls(n2−1) is the corresponding cipher text (of length n2 ) to the a
plain text (a, i) . The definition of the matrix L = L (s, t) implies that every row in L
is isomorphic to the tree G. Whence every codeword in Cr is also so. Thus, Cr is a tree
binary code induced from an ODC of Kn,n by a tree G.

The significance of the Hamming distance in binary codes lies in its ability to determine
error detection and correction capabilities within the code. Consider a binary code C,
where each codeword has a length of h. Let X = x1x2 · · ·xh and Y = y1y2 · · · yh be two
codewords from C.The distance d (X,Y ) between X and Y is calculated as the count of
differing bits between X and Y. Hence, d (X,Y ) =

∑h
i=1 d (xi, yi) where, d (xi, yi) = 0 if

xi = yi and d (xi, yi) = 1 if xi ̸= yi. The distance d (X,Y ) for any codewords X and Y in
the binary code C follows specific properties:

(i) d (X,Y ) ≥ 0.

(ii) d (X,Y ) = 0 if and only if X = Y.

(iii) d (Y,X) = d (X,Y ) .

(iv) d (X,Z) ≤ d (X,Y ) + d (Y, Z) .

The minimum distance d (C) of a code C is defined as

d (C) = min {d (X,Y ) ; X,Y ∈ C and X ̸= Y } .

Lemma 1. Let Cr be a tree binary codes constructed from the rows of the incidence matrix
of an ODC of Kn,n by a tree. Then the minimum distance d (Cr) is 2n− 2.

Proof. From the relation between ODC and the incidence matrix L, there exists n 1’s
in every row. Any two rows have at most 1 position of 1’s common. Then the minimum
distance of Cr is 2 (n− 1) = 2n− 2.

Theorem 23. The binary code Cr can detect up to 2n − 3 errors or correct up to⌊
2n−3

2

⌋
errors.

Proof. From Lemma 1, the minimum distance of Cr is 2 (n− 1) . Thus, in order to
change any codeword to another codeword requires at least 2n− 2 bit changes. Whence,
Cr can detect up to 2n−2−1 = 2n−3 errors, since any 2n−3 transmission errors cannot
change one codeword to another. Hence, in order to have a guarantee the detection of
up to k errors in all cases, the minimum distance of the code Cr, d (Cr) = k + 1. The
Geometric concept for finding d (Cr) in error detection is shown in Figure 4.
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Suppose that the codeword u was sent but for some reason v was received and d (u, v) ≤
2n−3

2 , that is less than 2n−3
2 errors occurred. Subsequently, the distance between v and

any codeword, excluding u, exceeds 2n−3
2 . Let w ∈ Cr then d (u,w) ≥ 2n− 2. Therefore,

if u is the closest codeword to v, the amount of bit changes needed to switch from u to
v (the number of errors in the transmission channel) is lower than the number of errors
needed to switch from any other codeword to v. The substitution of v with u enables Cr

to rectify up to 2n errors. Therefore, to ensure the correction of k errors in all instances,
the minimum distance of code Cr d (Cr) = 2k+1.The geometric principle for determining
d (Cr) in error correction is presented in Figure 5.

Figure 4: The Geometric concept for finding d (Cr) in error detection.

Figure 5: The Geometric concept for finding d (Cr) in error correction.
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Example 2. Let the vector (0, 1, 2, 1) be a symmetric base for an ODC of K4,4 by τ
01(2, 1).

The two orthogonal decompositions generated from the vector (0, 1, 2, 1) are shown in Fig-
ure 6.The incidence matrix L = L (s, t) for such ODC is a 8×16 binary matrix where the
rows correspond to elements of ODC G ={Gi

0+x : x ∈ Z4, i ∈ {1, 2}} of K4,4.The following
matrix is the incidence matrix L (s, t) for the ODC (described in Figure 6) of K4,4 by
τ01(2, 1). From the rows of the matrix L (s, t) we construct the code Cr such that Cr has 8
codewords each of length 16.

Figure 6: An ODC of K4,4 by τ01(2, 1) where the vector (0, 1, 2, 1) is the symmetric base for this ODC.



1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0
0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1


←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

The incidence matrix L(s,t) for the ODC described in Figure 6

↓

Cr =


1000101010000000, 0000010001010100, 001000000010100,
01010010000000, 1110000001000000, 0000011100000010,

0001000010110000, 0000100000001101


←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

The code Cr deduced from the rows of the above incidence matrix L(s,t)
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5. Recursive construction of an ODC by disjoint trees

Hereafter, we will show how to use an ODC of small complete bipartite graphs to
construct an ODC of larger complete bipartite graphs. In the following, for simplicity, if
(x, y) ∈ Zm × Zn, we use xy for (x, y) .

Theorem 24. Let m ≡ 1mod 6 or m ≡ 5mod 6 and let n be a positive integer.
If v(G) = (v0, v1, · · · , vn−1) be a symmetric base for an ODC of Kn,n by a certain tree G,
then there is an ODC of Kmn,mn by mG with respect to Zn×Zm, (the Cartesian product
of the groups Zn and Zm).

Proof. Let the vector u(F ) = (u0, u1, · · · , um−1) = (0, 1, · · · ,m − 1) represent a
base in Km,m with respect to Zm. From the definition of u(F ), We can conclude that
{ui − u−i + i; i ∈ Zm} = Zm. Therefore, u(F ) is a symmetric base an ODC of Km,m.
Whence, m ≡ 1mod 6 or m ≡ 5mod 6 the base F is isomorphic to mK2. Since the
vector v(G) = (v0, v1, · · · , vn−1) is a symmetric base for an ODC of Kn,n. Taking
the Cartesian product of the two vectors v(G) and u(F ) implies that v(G) × u(F ) =
((v0, u0) , (v0, u1) , · · · , (vi, uj) , · · · , (vn−1, um−1) ; i ∈ Zn, j ∈ Zm) is also a symmetric base
of an ODC of Kmn,mn by G× F with respect to Zn × Zm, as

{(vi, uj)− (v−i, u−j) + (i, j) ; i ∈ Zn, j ∈ Zm} = Zn × Zm,.

Moreover,the edge set of the the base G× F is

E(G× F ) =
{
(vi, uj)0 ,+((vi, uj) + (i, j))1 ; i ∈ Zn, j ∈ Zm

}
.

From the vectors u(F ) and v(G) the baseG×F is isomorphic tomG wheneverm ≡ 1mod 6
or m ≡ 5mod 6 and n be a positive integer. Note that the the vertices of Kmn,mn are
labelled by the elements of Zn ×Zm ×{0, 1}.For the vertex (x, y, i) we write (xy)0 where
x ∈ Zn, y ∈ Zn, i ∈ {0, 1}, and Zn = {0, 1, 2, · · · , n−1} is the group of all residual classes
modulo n, Zm = {0, 1, 2, · · · ,m− 1} is the group of all residual classes modulo m.

Example 3. Given the vector v(F ) = (0, 1, 2, 3, 4) as a symmetric base for an ODC of
K5,5 by 5K2. If there is an ODC of K3,3 by τ01(1, 1) where the vector v(G) = (0, 1, 1)
is the symmetric base for this ODC then we have a guarantee that there is an ODC of
K15,15 by 5τ01(1, 1) and the

v(G)× u(F ) = (00, 01, 02, 03, 04, 10, 11, 12, 13, 14, 10, 11, 12, 13, 14)

the base G× F is illustrated in Figure 7
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Figure 7: Symmetric base for an ODC of K15,15 by 5τ01(1, 1).

6. Concluding Remarks

The paper delves into the concept of graph decomposition, particularly focusing on
orthogonal decompositions. In this context, a graph H is divided into subgraphs in such
a way that any two subgraphs share at most one edge. These decompositions are re-
ferred to as G−orthogonal decompositions if each subgraph is isomorphic to the graph G.
The applications of such decompositions are widespread, encompassing fields like statis-
tics, information theory, and experimental design theory. The document also introduces
an approach for constructing orthogonal decompositions of regular graphs and discusses
its utilization in creating tree-orthogonal decompositions of complete bipartite graphs.
Additionally, the use of orthogonal decompositions in designing hamming tree-codes is
explored, supported by examples showcasing their effectiveness in error detection and cor-
rection during data transmission. In future wok, further investigations will be planed to
manipulate our approach to work on irregular graphs.
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