
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 17, No. 4, 2024, 2692-2705
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

Enhanced Conjugate Gradient Method for
Unconstrained Optimization and Its Application in

Neural Networks

Dlovan Haji Omar1, Alaa Luqman Ibrahim1,∗, Masoud Muhammed Hassan2,
Bayda Ghanim Fathi1, Diman Abdulqader Sulaiman1

1 Department of Mathematics, College of Science, University of Zakho, Kurdistan Region,
Iraq
2 Department of Computer Science, College of Science, University of Zakho,
Kurdistan Region, Iraq

Abstract. In this study, we present a novel conjugate gradient method specifically designed for
addressing with unconstrained optimization problems. Traditional conjugate gradient methods
have shown effectiveness in solving optimization problems, but they may encounter challenges
when dealing with unconstrained problems. Our method addresses this issue by introducing mod-
ifications that enhance its performance in the unconstrained setting. We demonstrate that, under
certain conditions, our method satisfies both the sufficient descent criteria and establishes global
convergence, ensuring progress towards the optimal solution at each iteration. Moreover, we es-
tablish the global convergence of our method, providing confidence in its ability to find the global
optimum. To showcase the practical applicability of our approach, we apply this novel method to
a dataset, applying a feed-forward neural network value estimation for continuous trigonometric
function value estimation. To evaluate the efficiency and effectiveness of our modified approach, we
conducted numerical experiments on a set of well-known test functions. These experiments reveal
that our algorithm significantly reduces computational time due to its faster convergence rates
and increased speed in directional minimization. These compelling results highlight the advan-
tages of our approach over traditional conjugate gradient methods in the context of unconstrained
optimization problems.
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1. Introduction

The conjugate gradient (CG) method’s ability to effectively solve a large number of
unconstrained optimization problems in a short amount of time and with fewer iterations
is one of its main advantages. Because CG methods don’t rely on the Hessian matrix or its
approximation, they have lower computational costs and storage requirements. Further-
more, the CG method satisfies the descent condition and exhibits fast global convergence.
This method’s unique quality is its simplicity, which makes the algebraic processes and
writing computer code easy to understand. As a result, the approach shows promise and
competence in handling large-scale unconstrained minimization problems [2]. This study
will consider the following model

minf (x) ∀ x ∈ Rn, (1)

where f : Rn → R is a continuously differentiable function, gk = ∇f (xk) is a gradient
at point xk are solved using this expression

xk+1 = xk + αkdk k = 0, 1, 2, . . . (2)

where xk is a solution in current iteration and xk is a new iteration point, αk > 0 is a step
size determined by some line searches. dk is a search direction which is determined by:

d0 = −g0 and dk+1 = −gk+1 + βkdk for k ≥ 1, (3)

where βk is an important parameter. The different choices for the parameter βk correspond
to different CG methods. The Fletcher-Reeves (FR) method [12], the Polak-Ribitere-
Polyak (PRP) method [29, 30], the Dai-Yuan (DY) method [8], the Conjugate Descent
(CD) method [9], and others [20], are some of the well-known CG methods used in the
study of optimization problems to obtain the solution of the models.

A number of researchers [4], have discussed the convergence of the well-known clas-
sical CG methods, such as Hestenes–Stiefel (HS) [16], Polak–Ribiere–Polyak (PRP) [13,
30], Fletcher–Reeves (FR) [11], Liu–Storey (LS) [26], conjugate descent (CD) [10], and
Dai–Yuan (DY) [7].

Although the PRP formula is thought to be the most efficient in terms of numerical
computation, there is no guarantee that it will converge under multiple line searches
[31]. This disadvantage prompted several changes to the PRP parameter. For in-depth
discussions on the PRP technique, see Yuan et al. [36], Andrei [4], and Zhang et al. [37].

Recently, there has been a significant trend among researchers to develop the best and
fastest optimization methods, driven by the increasing number of real-world applications
that rely on optimization techniques. These applications span various fields, including
machine learning, engineering design, logistics, finance, and healthcare, where efficient and
accurate optimization is crucial for improving performance, reducing costs, and solving
complex problems. The quest for more effective optimization methods is fueled by the
need to handle larger datasets, higher-dimensional problems, and more intricate models,
making optimization a key area of research and innovation see [1, 6, 15, 19, 22, 24, 34].
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Due to their exceptional capacity for self-learning and self-adaptation, artificial neural
networks (ANNs) have been employed successfully in numerous machine learning appli-
cations for decades [5, 17, 35]. They have been heavily utilized in fields like robotics,
security, and self-driving automobiles. Because of their ability to solve problems with flex-
ibility and support for parallel processing, they are frequently found to be more active and
precise than other classification techniques [25, 33]. While there are a number of proposed
training techniques, feed forward neural networks (FNNs) are one of the most well-known
and frequently applied training styles across a wide range of domains and applications.

In recent times, there has been a growing trend towards utilizing the conjugate gradient
method for training neural networks, with various new approaches and techniques being
introduced to enhance its efficiency and applicability in machine learning tasks [18, 21, 23].

Motivated by the previously mentioned trend, this paper presents an improved conju-
gate gradient method and uses feed-forward neural networks to solve different datasets.

The remaining sections of this paper are organized as follows: The new conjugate
parameter’s derivation process and a thorough explanation of its algorithm are presented
in Section 2. Section 3 discusses the global convergence properties of the method, along
with the sufficient descent condition. The numerical results of applying the new method
to a number of benchmark test problems are presented in Section 4. Lastly, the approach
is expanded to handle issues with feed-forward neural networks

2. Derivation of New Method and Algorithm

In this section, a new conjugate gradient method for unconstrained optimizations is
present based on suggested vector y∗k and Perry conjugate gradient parameter [28],

βk
Perry =

gk+1
T (yk − νk)

dk
T yk

. (4)

Consider the vector y∗k is defined by

y∗k = (1 + σ + λ)yk,

where σ and λ are given by:

σ =
1

1 + e−∥yk∥
, λ =

µ
√
m

∥gk∥
(1 + ∥gk+1∥) [3]

with m representing machine accuracy, taking (m = 1∗ 10−16
)
, and µ = 0.1. Substituting

these into the expression for y∗k gives:

y∗k = yk +
1

1 + e−∥yk∥
yk +

µ
√
m

∥gk∥
(1 + ∥gk+1∥) yk′ (5)

Now, by replacing yk by y∗k in equation (4), we obtained a new parameter

βNew
k =

gk+1
T (y∗k − vk)

dkT y
∗
k

=
gk+1

T ((1 + σ + λ)yk − vk)

(1 + σ + λ)dkT yk
.
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or

βNew
k =

gk+1
T yk

dTk yk
− gk+1

T vk
(1 + σ + λ)dkT yk

. (6)

Algorithm 2.1: New Method
Require: Initial point x0 ∈ Rn.
Step 1: Set k = 0, g0 = ∇f (x0), d0 = −g0. If g0 = 0, then stop.
Step 2: Compute αk to minimize f(xk+1) (i.e., fk+1 ≤ fk) using cubic line search.
Step 3: Update xk+1 = xk + αkdk.
Step 4: Compute gk+1 = ∇f (xk+1). If ||gk+1|| ≤ 10−5, then stop.
Step 5: Compute βk from equation (6).
Step 6: Set dk+1 = −gk+1 + βNew

k dk.
Step 7: If k = n or if

∣∣gTk gk+1

∣∣ ≥ 0.2||gk+1||2 is satisfied, go to Step 3.
Otherwise, set k = k + 1 and go to Step 4.

Theorem 1: Let the sequences {xk} and {dk} be generated by Equations (2), (3),
and (6). Then the search direction dk+1 satisfies the sufficient descent condition:

gTk+1dk+1 ≤ −c∥gk+1∥2

Proof: From Equations (3) and (6), we have

dk+1 = −gk+1 +

(
gk+1

T yk

dk
T yk

− gk+1
T νk

(1 + σ + λ) dk
T yk

)
dk. (7)

Now, by multiplying the above equation by gTk+1 from both sides, we get

gTk+1dk+1 = −∥gk+1∥2 + βHS
k gTk+1dk − αk

(gTk+1dk)
2

(1 + σ + λ)dTk yk
. (8)

If dTk gk+1 = 0, then gTk+1dk+1 = −∥gk+1∥2 ≤ 0. Then the proof is complete.

Now, if dTk gk+1 ̸= 0, we know that the first two terms of the above equation correspond
to the search direction of the HS method, so it is less than or equal to zero. And it is
obvious that αk, 1 + σ + λ, dk

T yk, and (gTk+1dk)
2 are positive. Therefore, we have

gTk+1dk+1 = −∥gk+1∥2 + βHS
k gTk+1dk − αk

(gTk+1dk)
2

(1 + σ + λ)dTk yk
≤ 0

, so, the above equation can be written as

gTk+1dk+1 ≤ −

(
αk

(gTk+1dk)
2

(1 + σ + λ)dTk yk∥gk+1∥2

)
∥gk+1∥2. (9)

Then,
gTk+1dk+1 ≤ −c∥gk+1∥2,
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where

c = αk

(gTk+1dk)
2

(1 + σ + λ)dTk yk∥gk+1∥2
.

This completes the proof.

To prove the global convergence of the new method, we need to make the following
fundamental assumptions about the objective function in this section.

Assumption [38]:

(i) The level set δ = {x | f(x) ≤ f(x0)} is bounded.

(ii) In some neighborhood N of δ, f is continuously differentiable, and its gradient is
Lipschitz continuous with a Lipschitz constant δ > 0, i.e.,

∥g(x)− g(y)∥ ≤ δ∥x− y∥ ∀x, y ∈ δ.

(iii) From the above assumptions, there exists a positive constant b such that:

∥g(x)∥ ≤ b ∀x ∈ δ. (10)

(iv) If f is a uniformly convex function, there exists a constant ϑ > 0 such that:

(g(x)− g(y))T (x− y) ≥ ϑ∥x− y∥2 ∀x, y ∈ Ω, (11)

can be rewrite (11), in the following manner:

yTk vk ≥ ϑ||vk||2. (12)

Lemma 1: [37] Let the above assumptions hold. Consider the methods (2), and (3),
where dk+1 is a descent direction and αk satisfies the standard Wolfe line search. If∑

k≥1

1

∥dk∥2
= ∞.

Then,
lim
k→∞

inf ∥gk∥ = 0.

Theorem 2: If above assumptions are true and the corresponding sequences {xk}, {dk},
{gk}, {αk} are generated by the new method (2), (3), and (6), then

lim
k→∞

inf ∥gk+1∥ = 0.

Proof: From Equations (3), and (6), we have
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∥dk+1∥ ≤ ∥gk+1∥+ (

∣∣∣∣∣gTk+1yk

dTk yk
−

gTk+1vk

(1 + σ + λ)dTk yk

∣∣∣∣∣) ∥dk∥ ,
≤∥gk+1∥+

∣∣∣∣∣gTk+1yk

dTk yk

∣∣∣∣∣ ∥dk∥+
∣∣∣∣∣ gTk+1vk

(1 + σ + λ)dkT yk

∣∣∣∣∣ ∥dk∥ .
(13)

Given that gTk+1vk ≤ αkd
T
k yk and considering the Lipschitz condition ∥yk∥ ≤ L∥vk∥ with

L > 0, along with the use of equation (12), it follows that

∥dk+1∥ ≤ b+
αkbL ∥vk∥
ϑ ∥vk∥2

∥dk∥+
αk

(1 + σ + λ)
∥dk∥ . (14)

Since, ∥vk∥ = ∥x− xk∥ , D = max {∥x− xk∥} ,∀x, xk ∈ R}. Hence Equations (14), be-
comes

∥dk+1∥ ≤ b+

(
bL

ϑ
+

D

(1 + σ + λ)

)
= β

⇒
∑
k≥1

1

∥dk+1∥2
≥
∑
k≥1

1

β2
= ∞

which completes the proof.

3. Numerical results

The performance of the new method was evaluated using standard test functions as
described by Andrei [2], with initial points ranging from 5 to 5000. The assessment
was conducted by comparing the new method against the classical Hestenes-Stiefel (HS)
conjugate gradient method. Key metrics for comparison include the number of iterations
(NOI) required for convergence and the number of function evaluations (NOF) during
the optimization process. All programs were implemented in FORTRAN 95, and a cubic
interpolation line search method, which uses both function and gradient information, was
employed. The results are summarized in Tables 1 and 2.

Table 1: The results of the new method with standard
method.

Test Function N
HS New

NOI NOF NOI NOF

Mile

4 28 85 27 83
10 31 102 27 83
100 33 114 30 98
500 40 147 32 105
1000 46 176 33 129
5000 54 211 33 129
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Powell

4 38 108 31 87
10 38 108 31 87
100 40 122 33 102
500 41 124 33 102
1000 41 124 33 102
5000 41 124 33 102

Wolfe

5 11 24 11 24
10 32 65 32 65
100 49 99 49 99
500 52 105 48 99
1000 70 141 43 91
5000 165 348 102 227

G-Cantrel

4 22 159 14 47
10 22 159 15 58
100 22 159 17 74
500 23 171 17 74
1000 23 171 21 110
5000 28 248 23 126

OSP.

4 8 45 8 43
10 13 58 13 53
100 49 185 45 160
500 112 353 100 316
1000 156 473 150 471
5000 256 774 250 772

Wood

5 30 68 28 62
10 30 68 28 62
100 30 68 28 62
500 30 68 28 62
1000 30 68 28 62
5000 30 68 28 62

Rosen

4 30 83 29 80
10 30 83 29 80
100 30 83 29 80
500 30 83 29 80
1000 30 83 29 80
5000 30 83 29 80

Edger

4 5 14 5 14
10 5 14 5 14
100 5 14 5 14
500 6 16 5 14
1000 6 16 6 16
5000 6 16 6 16
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Shallow

4 8 21 8 21
10 8 21 8 21
100 8 21 8 21
500 8 21 8 21
1000 9 24 9 24
5000 9 24 9 24

Total 2027 6410 1758 5190

Table 2: The improvement percentage of the new method compared to the standard method.

Tools HS (Standard) New (Proposed)

NOI 100% 86.7292%

NOF 100% 80.967%

Table 2 presents the improvement percentages of the new method compared to the stan-
dard HS method across two key metrics: the number of iterations (NOI) and the number
of function evaluations (NOF). The new method achieves a reduction of approximately
13.27 % in the number of iterations and 19.03 % in the number of function evaluations,
demonstrating its enhanced efficiency over the standard HS method.

4. Application in Neural Networks

Artificial Intelligence (AI) is designed to emulate human brain functionality [24].
Among the various branches of AI, artificial neural networks (ANNs) have gained sig-
nificant popularity [14]. ANNs are employed in tasks such as classification, optimization,
and prediction of given datasets to produce appropriate results or outputs. The training
and testing phases are pivotal in ANNs, allowing the network to discern patterns within
the data, even when the dataset is incomplete [19, 27, 32].

In this section, the performance of the HS method is evaluated in comparison with
the new method for training neural networks. The algorithms were implemented using
MATLAB (2013a) and the MATLAB Neural Network Toolbox version 8.1 for conjugate
gradient optimization. The network is trained until the mean squared errors fall below the
specified error target, indicating a decreasing trend in the error function. For consistency,
the same initial weights were used across all algorithms, which were randomly initialized
within the range (0, 1). The problems addressed in this evaluation are:

(i) Input: P = [−1,−1, 2, 2; 0, 5, 0, 5] and target: T = [−1,−1, 1, 1]. The target error
was set to 1× 10−10 and the maximum number of epochs was set to 1000.

(ii) Input: Continuous trigonometric function f(x) = sin(x) + cos(2x), where x ∈ [0, π].
The target error was set to 1 × 10−10 and the maximum number of epochs was set
to 1000.
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The results of the training methods are presented in Tables 3 and Figures 1, 2, 3, and
4 below.

Table 3: Comparing the Performance of new method with
standard method for training neural network

Methods No. Running Epochs CPUtime(s) Gradient

Problem1

Standard

1 1000 0:00:04 0.000376
2 34 0:00:00 0.000239
3 41 0:00:00 0.000173
4 21 0:00:00 0.000209
5 38 0:00:00 0.000157

New CG

1 6 0:00:00 0.153
2 4 0:00:00 0.121
3 6 0:00:00 0.0649
4 6 0:00:00 0.0499
5 4 0:00:00 0.382

Problem 2

Standard

1 296 0:00:01 0.000244
2 1000 0:00:02 0.00334
3 69 0:00:00 0.000186
4 1000 0:00:02 0.00219
5 1000 0:00:02 0.00374

New CG

1 2 0:00:00 0.89
2 2 0:00:00 0.975
3 2 0:00:00 0.525
4 2 0:00:00 0.697
5 3 0:00:02 0.332

Table 3 compares the performance of the new (CG) method with the standard method
in training neural networks. The new CG method significantly reduces the number of
epochs needed to converge, often achieving results in just 2 to 6 epochs compared to the
standard method’s 1000 epochs in several cases. Both methods show minimal CPU time
per epoch, but the new CG method generally achieves higher gradient values in fewer
epochs, indicating more efficient optimization. Overall, the new CG method outperforms
the standard method in terms of faster convergence and computational efficiency.
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Figure 1: Validation Performance HS method (left) and new method (right), of problem 1
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Figure 2: Training Performance HS method (left) and new method (right), of problem 1.
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Figure 3: Validation Performance HS method (left) and new method (right), of problem 2.
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Figure 4: Training Performance HS method (left) and new method (right), of problem 2.

5. Conclusion

In this paper, we have presented a modified conjugate gradient method specifically de-
signed for addressing unconstrained optimization problems. Our new method builds upon
the classical conjugate gradient method while incorporating enhancements that preserve
the sufficient descent properties. Moreover, we have explored the global convergence of
our method under appropriate conditions, providing reassurance of its ability to converge
to the optimal solution. Through extensive numerical computations and experiments, we
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have demonstrated the promising performance of our modified conjugate gradient method.
The results showcase its effectiveness in solving unconstrained optimization problems, sur-
passing the classical HS training function in terms of reducing the number of iterations and
CPU time. Furthermore, we have extended the application of our method to feed-forward
neural networks, demonstrating its compatibility with complex tasks such as value esti-
mation for continuous trigonometric functions. The outcomes of these experiments have
highlighted the advantages of our approach, showcasing its ability to enhance the efficiency
and effectiveness of neural network training. Overall, the introduction of our modified con-
jugate gradient method presents a significant advancement in the field of unconstrained
optimization. By combining the desirable properties of the classical conjugate gradient
method with enhancements tailored for unconstrained problems, our approach offers im-
proved convergence and computational efficiency. These findings have implications for a
wide range of domains where optimization plays a crucial role, paving the way for more
efficient and effective problem-solving methodologies.
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