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Abstract. We define and characterize the notion of (i, j)-Baireness for bilocales. We also give in-
ternal properties of (4, j)-Baire bilocales which are not translated from properties of (7, j)-Baireness
in bispaces. It turns out (¢, j)-Baire bilocales are conservative in bilocales, in the sense that a
bitopological space is almost (i, j)-Baire if and only if the bilocale it induces is (i, 7)-Baire. Fur-
thermore, in the class of Noetherian bilocales, (i, j)-Baireness of a bilocale coincides with (i, 7)-
Baireness of its ideal bilocale. We also consider relative versions of (4, j)-Baire where we show that
a bilocale is (4, j)-Baire only if the subbilocale induced by the Booleanization is (4, j)-Baire. We
use the characterization of (i, j)-Baire bilocales to introduce and characterize (7, 7;)-Baireness in
the category of topobilocales.
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1. Introduction

In classical topology, a space is called Baire if the intersection of every sequence of dense
open sets is dense. Baire spaces play an important role in different areas of mathematics
such as analysis and mathematical logic. The concept of Baire spaces has also appeared
in fuzzy set theory as well as soft set theory, see [22] and [2]. Fuzzy sets were introduced
by Zadeh [23] and soft sets were initially introduced by Molodtsov [13]. Both of these sets
were developed to solve the problem of modeling vagueness in real-life problems. Fuzzy
sets have been applied in medical diagnosis [1] while fuzzy soft sets have been used to
classify wood materials to prevent fire-related injuries and deaths [9].

In bispaces (spaces endowed with two topologies), an almost (i, j)-Baire bispace refers
to a bispace (X, 71, 72) in which the intersection of any sequence of 7;-dense 7;-open subsets
is 7;-open. A study of almost (7, j)-Baire bispaces is documented in [8]. These bispaces
also appear in a number of articles such as [7] and [6]. In locale theory, a Baire locale
was introduced by Isbell [10] as one in which every non-void open sublocale is of second
category. To our knowledge, (i,j)-Baireness has not yet appeared in the category of

DOI: https://doi.org/10.29020/nybg.ejpam.v18il.5362
Email address: sibahlezwide@gmail.com (M. Nxumalo)

https://www.ejpam.com 1 Copyright: (©) 2025 The Author(s). (CC BY-NC 4.0)



M. Nxumalo / Eur. J. Pure Appl. Math, 18 (1) (2025), 5362 2 of 21

bilocales. In this paper, we introduce and study (i, j)-Baire bilocales. Our definition is
rather an extension of almost (7, j)-Baire bispaces instead of Baire locales, with the prefix
“almost” being dropped. Since the definition of almost (i, j)-Baire bispace is purely in
terms of open subsets, we extend it to bilocales almost verbatim. We aim to extend some
known bispaces results and also give some natural properties of (i, j)-Baire bilocales. Some
of the natural results include (7, j)-Baireness of both the ideal bilocale and the subbilocale
induced by the smallest dense sublocale. Extending results from spaces or bispaces to
bilocales/biframes is not outrageous. For instance, Schauerte in [21] extended the notion
of a normal space to a normal biframe. This paper contributes to the theory of bilocales.

This paper is organized as follows. Section two consists of the necessary background.
In section three we introduce and characterize (i, j)-Baire bilocales. We also show that the
class of (7, j)-Baire bilocales includes the following classes: (i) compact i-prefit bilocales,
(ii) bilocales (L, L1, La) where there is an i-prefit compactification h : (M, My, My) —
(L, L1, Ly) with which h.[L] is i-Gs-dense in M, and (iii) i-pseudocomplete bilocales. In the
class of Noetherian bilocales, a bilocale is (i, j)-Baire if and only if the induced ideal bilocale
is (i, j)-Baire. In section four, we investigate relative versions of (i, j)-Baireness. We show
that a bilocale is (4, j)-Baire only if the subbilocale induced by the smallest dense sublocale
s (i,7)-Baire. We also introduce and characterize relatively (i, j)-Baire subbilocales. It
turns out that in a class of dense subbilocales, (i, j)-Baire coincides with relatively (i, j)-
Baire. In section five, we define and characterize (7;, 7;)-Baire topobilocales.

2. Preliminaries

The book [17] is our main reference for notions of locales and sublocales. See [4, 15, 18]
for the theory of bilocales.

2.1. Locales

A locale L is a complete lattice in which

a/\\/B:\/{a/\b:bEB}

for all @ € L, B C L. 1 and Op, with subscripts dropped if there is no possibility of
confusion, respectively denote the top element and the bottom element of a locale L. By a
point of a locale L we mean an element a of L such that a # 1 and bAc < a implies b < a
or ¢ < a for all b,c € L. We denote by a* the pseudocomplement of an element a € L.
An element a € L is said to be dense and complemented in case a* =0 and aV a* =1,
respectively. An element x € L is compact if < \/ A for A C L implies x < \/ F for
some finite F* C A. By a compact locale L we mean a locale in which the top element is
compact. A regular locale is a locale L in which

an{wGL:x%a}

for every a € L, where z < a means that z* Va = 1.
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By a subframe of a locale L, we mean a subset which is closed under joins and finite
meets.

We denote by DX the locale of open subsets of a topological space X.

A localic map is an infima-preserving function f : L — M between locales such that
the corresponding left adjoint f*, called the frame homomorphism, preserves binary meets.
A frame homomorphism h : M — L is dense if h(z) = 0 implies x = 0 for all z € M.

A sublocale of a locale L is a subset S closed under all meets and x — s € S for every
x € L and s € S, where — is a Heyting operation on L satisfying that

a<b—»cifandonlyifand<c

for all a,b,c € L. We denote by O the smallest sublocale of a locale L. We use S(L) to
represent the coframe of sublocales of a locale L. For each S € S(L), we define

LNS:=\/[{TeS8I):TnS =0}
The sublocales
c(a)={xe€eL:a<z} and o(a)={a—z:z€ L},

of a locale L are respectively the closed and open sublocales induced by an element a of L.
They are complements of each other. The smallest closed sublocale of L that contains a
sublocale S is called the closure of S and denoted by S or cly,(S) with subscript L dropped
when the locale is clear from the context.

For every A,
¢ (\/ iL‘a) = /\ (zq).

aEA a€eA

A sublocale S of a locale L is dense and nowhere dense if S = L and S NBL = O,
respectively, where B(L) = {z — 0 : z € L} is the smallest dense sublocale of L. We refer
a reader to [14] for a comprehensive study of nowhere dense sublocales. By a Gs-sublocale
of a locale L, we mean a sublocale of the form S = A cyo(z,).

For each sublocale S C L there is an onto frame homomorphism vg : L — S defined
by vs(a) = A{s € S : a < s}. Open sublocales and closed sublocales of a sublocale S of L
are given by

0s(vs(a) = SNo(a) and cs(vs(a)) = SNela),

respectively, for a € L.
Each localic map f : L — M induces the functions f[—]: S(L) — S(M) given by the
set-theoretic image of each sublocale of L under f, and f_1[—]: S(M) — S(L) given by

Fall) = \/{A e S(L): AC (D).
For a localic map f: L - M and x € M,
falem(@)] = cp(h(z)) and  foilonr ()] = or(h(x)).

We denote by A the sublocale of OX induced by a subset A of a topological space X.
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2.2. Bilocales

A bilocale is a triple (L, Ly, Ly) where Ly, Lo are subframes of a locale L and for all
a€ L,
a=\/{a1/\a2 cay € L1,a3 € Ly and a1 A ag < a}.

We call L the total part of (L,Ly,Ls), and Ly and Lo the first and second parts,
respectively. We use the notations L;, L; to denote the first or second parts of (L, L1, La),
always assuming that ¢,j = 1,2, i # j.

For every bispace (X, 71,72), there is a corresponding bilocale (11 V 72,71, 72). For
example, let (X, 71, 72) be a bispace where X = {a,b}, 1 = {0, X} and 7 = {0, X, {a}}.
Then (71 V 19 = 72,71, 72) is a bilocale.

The bilocale pseudocomplement of ¢ € L; is given by

c’z\/{mGLj:m/\c:O}.

For all @ € Lj,b € L;, a ANb=0if and only if a < b°.
A bilocale (L, L1, La) is compact if its total part is compact, and regular provided that

$=\/{G€Li:a<¢$}

for every x € L;, where a <;  means that there is ¢ € L; such that aAc=0and cVz = 1.

A biframe homomorphism (or biframe map) h : (M, My, My) — (L, L1, Ly) is a frame
homomorphism h : M — L for which A(M;) € L; (i = 1,2). The map h : M — L is
called the total part of h : (M, My, Ms) — (L,L1,Ls). By a biframe map we mean a
function h : (M, My, M3) — (L, L1, Lo) with a dense total part h : M — L. It is onto if
h[MZ] = Lz for i = 1, 2.

A subbilocale of a bilocale (L, L1, Lo) is a triple (S, S1, S2) where S is a sublocale of L
and

Si = Vs[Li] for i= 1,2

We shall say that (5,51, 52) is a P-subbilocale in case S has property P.
Recall that for a bilocale (L, L1, L2) and a sublocale S of L: [15]

int; () = \/{o(a) : a € Li,0(a) C S} (i =1,2).

and [18]

ci(S) = N\{e(a):a € Li,S Ce(a)} = ¢ (\/{a €Li:SC c(a)}) (i=1,2).

For each a € L;, ¢(a®) = clj(o(a)).

A sublocale A of a bilocale (L, L1, Lg) is i-dense if cl;(A) = L. This is equivalent to
saying that S is i-dense if and only if for each non-zero x € L;, o(x) NS # O. Every
sublocale containing an ¢-dense sublocale is ¢-dense.

Given a bilocale (L, L1, L), a sublocale S of L is (i, j)-nowhere dense if int;(cl;(S)) = O
(i #j € {1,2}). As a result, a sublocale S of a bilocale (L, L1, L2) is (i, j)-nowhere dense
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if and only if L \ cl;(9) is j-dense if and only if S is (i,7)-nowhere dense. Furthermore,
an element a € L; is j-dense if and only if ¢(a) is (¢, j)-nowhere dense.

When dealing with subbilocales, say (.S, S1, S2), we write ig-dense, ig-open and (ig, js)-
nowhere dense instead of i-dense, i-open and (i, j)-nowhere dense.

By an i-Gs-sublocale of a bilocale (L, L1, Ls), we mean a sublocale of the form S =
Anen 0(25) where each z,, € L;. A sublocale of a bilocale (L, L1, L) is i-Gs-dense if it
meets every nonvoid i-Gg-sublocales.

For the bilocale (11 V 72,71, 72) induced by a bispace (X, 71,72), we shall write U is
T-open if U € 7; and U is 7;-dense if U is dense with respect to the topological space
(X, Ti) .

3. (i,j)-Baire Bilocales

Recall that a bispace (X, 71, 72) is almost (i, j)-Baire [8] if any collection {U,, : n € N} of
Ti-dense 7;-open subsets of X satisfies the condition ﬂneN U, is T;-dense. In this section, we
extend the definition of almost (4, j)-Baire bispaces to bilocales where the prefix “almost”
shall be dropped. We aim to define (i, j)-Baire bilocales in such a way that a bispace
(X, 71,72) is almost (i, j)-Baire if and only if the bilocale (11 V 72, 71, 72) is (i, j)-Baire.

We shall call an open (resp. closed) sublocale i-open (resp. i-closed) in case the
inducing element is an element of L;.

Definition 1. A bilocale (L, L1, Ls) is said to be (i, j)-Baire if the intersection of countably
many t-dense j-open sublocales is i-dense.

Example 1. Since, in locales, the intersection of dense sublocales is dense, every sym-
metric bilocale (bilocale of the form (L, L, L)) is (i,j)-Baire.

For a bispace (X, 71,72) and A C X, define
A = {intr,yn (X ~A)UG) : G e V).

It is clear that A is a sublocale of 71V 79. For each z € X, 7 = X ~ clyvr, {2} is a point
of 71 V 7. Just like in the case of locales, o(U) = U for every U € 71 V To.

Recall from [11] that given a topological property P, a bispace (X, 7y, T2) is sup-P if
(X, 71V 72) has property P. In [16], we proved the following result.

Lemma 1. Let (X, 711,72) be a sup-Tp-bispace. Then A C X is 7;-dense in (X, 11, 72) iff
A isi-dense in (11 V T9,T1,T2).

In [19], the authors show that if X is a topological space and Y C X, then
Y =\V{X ~{y} lox}:ye Y}

Proposition 1. Let (X, 1, 72) be a sup-Tp-bispace in which Gg-sublocales of (T1V 12, T1,T2)
are complemented. Then (X, 11, 72) is almost (i, j)-Baire iff (11 V 72,71, T2) s (i, j)-Baire.
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Proof. (=>): Let {0(Uy,) : n € N} be a collection of i-dense j-open sublocales. It
follows that {U, : n € N} is a collection of 7;-dense 7j-open subsets of X. It follows that
Mnen Un is Ti-dense.

Claim: A, cyo0(Uy) is i-dense.

Proof: Let o(V') be an i-open sublocale such that o(V) N A,y 0(Un) = O. Then

/\ o(VNU,) =0.

neN

We must have that (), cy(V NU,) = 0. Otherwise, there is x € V N U, for each n € N.
Since each V NU, is 11 V 79,

VAU, =o(VNU,)>7

for each n € N. Therefore T € A, oy 0o(V NUy) which is impossible. Therefore V' = ) so
that o(V) = O. Thus A,y 0(Uy) is i-dense.

(<): Let {U, : n € N} be a collection of 7;-dense 7;-open subsets of X. Then
{o(U,) : n € N} is a collection of i-dense j-open sublocales of 71 V 7. It follows that
Anen 0(Un) is T-dense. To show that (), Un is 7-dense, let V' be a nonempty 7;-open
subset of X such that V N ((,,cyUn) = 0. Then

U&E~vnu)) =x.
neN

Observe that \/, cnc(V NU,) = OX: Let p € X. Then p € X ~ (VNU,) for some

n € N. Therefore@ C X~ (VNU,) for some n € N so that VNU, C X ~ {p}. This
implies that X \ {p} € ¢(V NU,). As a result,

(X~ {p}, Lunt Cc(VNU,).

Therefore

TV Ty = \/{{X\@v 17’1\/72} ‘pE X}
- \/{C(VﬂUn) :n € N}

C 71V

Since A\, ey 0(Uy) is i-dense and o(V') is non-void i-open,

o(V)n A o(Un) #0,

neN

so that
0# N\ o(VNU,).

neN
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Because A,y o(V NU,) is a complemented Gs-sublocale, we have that
\/ (VU #m V1,
neN

which is impossible.

Definition 2. Let (L, Ly, Ls) be a bilocale. A sublocale S of L is said to be of (i, j)-first
category if there are countably many (i, j)-nowhere dense sublocales Sy, n € N, such that
S C V,en Sn- It is of (i,7)-second category if it is not of (i,7)-first category.

Theorem 1. Let (L, L1, La) be a bilocale whose j-Gs-sublocales are complemented in L.
The following statements are equivalent:

(i) (L, Ly, Ls) is (i, j)-Baire.
(i) Each non-void i-open sublocale is of (j,i)-second category.
(iii) Every sublocale of (j,1)-first category has void i-interior.
(iv) The supplement of every sublocale of (j,i)-first category is i-dense.

Proof. (i) = (ii): Let U be a non-void i-open sublocale of L and assume that
U C V,en Sn for some collection {S,, : n € N} of (j,i)-nowhere dense sublocales. Then
U C V,en Sn where members of the collection {S,, : n € N} are (j,7)-nowhere dense. It

follows that members of the collection {L \ cl;(Sy,) : n € N} are i-dense j-open sublocales.

By hypothesis, A, cn(L ~ cl;(Sy) is i-dense so that

Un </\ (L~ clj(sn))> +0.

neN
Therefore

04 (\/ sk> m (/\(L\dJ-(sn)))

keN neN

PAGHUIS)

C \V (Skn (L~ 5)
keN

=0

which is impossible.

(19) = (iii): Let S be a sublocale of (j,4)-first category with a non-void i-interior.
We then get that int;(S) is a non-void i-open sublocale which must be of (j,%)-second
category by (ii). This is a contradiction.



M. Nxumalo / Eur. J. Pure Appl. Math, 18 (1) (2025), 5362 8 of 21

(7i1) = (iv): Let S be a sublocale of L which is of (j,)-first category and choose
x € L; with o(z) N (L~ S) = O. Then o(z) C S. Since S satisfies the conditions
hypothesized in (iii), int;(S) # O, so that the i-open sublocale o(z) is void.

(iv) = (i): Let {o(z,) : n € N} be a collection of i-dense j-open sublocales and
assume that there is an i-open sublocale o(y) with

o(y) N (/\ o<zn>> -0

neN

Then o(y) €V, en ¢(2,), making o(y) a sublocale of (j,i)-first category. By (iv), L~o(y) =
¢(y) is i-dense, i.e., cli(¢(y)) = ¢(y) = 1. Therefore y = 0 so that o(y) = O. Hence

(/\neN U(JUn)) is i-dense.

We shall say that a collection C of sublocales of L has the Finite Intersection Property
(FIP) if the intersection of every finite subcollection of C has a non-void intersection.

Proposition 2. If a bilocale (L, Ly, L2) is compact, then every collection of closed sublo-
cales with the FIP has a non-void intersection.

Proof. Let {c¢(zq) : & € A} be a collection with the FIP and assume that A ¢, ¢(zq) =

O. Then
L=L~ /\ (zq) = \/ 0(za),

a€EN aEA

making o (VaeA a:a) = L. Therefore \/ cp o = 1. Since (L, L1, L) is compact, there is
a finite set F' C A such that \/ cpzo = 1. We get that

O:c(\/xa> = A c(@a),

aclF a€F

which contradicts that {c¢(z4) : @ € A} has the FIP.

Remark 1. The converse of the preceding result holds. We are however interested in the
forward direction, that is why we only proved it.

Recall from [20] that a locale L is prefit if for each nonzero x € L there is a nonzero
y € L such that y*Va = 1. A bispace (X, 7, 72) is almost regular if for each nonempty
U € 7;, there is nonempty V € 7; such that clTj(V) C U. Since prefitness is a localic
version of almost regularity in spaces (spaces in which every nonempty open set contains
some closure of a nonempty open subset), we define a prefit bilocale (L, L1, Lo) using the
notion of almost regular bispace as one in which for each x € L;, i = 1,2, there is y € L;
such that y®* vV z = 1. Related to prefit bilocales, we give the following definition.

Definition 3. Call a bilocale (L, L1, L) i-prefit in case for every nonzero x € L, there is
a nonzero y € L; such that y*V z = 1.
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We consider some examples.

Example 2. (i) The bilocale of reals is an example of a prefit bilocale which is not
i-prefit.

(ii) For any almost reqular bispace (X, 1, T2) with 11 C T2, the bilocale (11 V T2, T1,T2) is
2-prefit. In particular, if L is prefit, then (L, L, L) is i-prefit (i =1,2).

(iit) By [21], a bilocale (L, L1, Ly) is Boolean if for each x € L;, i = 1,2, there is ¢ € L;
(i # j) such that x N¢ =0 and x V ¢ = 1. Boolean and i-prefit are incomparable:
Consider the set X = {a, b, c,d} endowed with topologies 71 = {0, X,{a}, {b},{a,b}}
and o = {0, X,{b,c,d},{a,c,d},{c,d}}. It is clear that (11 V T2, 71, 72) is Boolean.
This bilocale is not i-prefit (i = 1,2) since for the set {a} € 11V T2, there is no
nonempty U € 7; satisfying that U* V {a} = X.

For any non-Boolean prefit locale L, (L, L, L) is an example of a non-Boolean i-prefit
(i =1,2) bilocale.

In the following result, we show that the class of (i, j)-Baire bilocales contains compact
i-prefit bilocales.

Proposition 3. Every compact i-prefit bilocale is (i, j)-Baire.

Proof. Let (L, Ly, L2) be a compact i-prefit bilocale and choose a collection {o(z,,) :
n € N,z, € L;} of i-dense j-open sublocales and a non-void j-open sublocale o(y). Then

o(y) No(zn) # O

for each n € N. This makes y Ax,, # 0. Since (L, L1, Lo) is i-prefit, there is nozero by € L;
such that b} V (y A z1) = 1. Because o(x2) is i-dense, we have that o(x2) No(b1) # O so
that xo A by is a nonzero element of L. By i-prefitness again, there is nonzero by € L;
such that b3 V (z2 A by) = 1. Continuing like this for n = 3,4, .., we find b,, € L; such that
by V (xy, Abp—1) = 1. Therefore ¢(by,) C o(zy) No(by—1). Since each b, € L;, we have that
c(by,) = clj(o(by)). Therefore

e Ce(B3) = el (o(bs)) C e(83) = Ly (0(b2)) < c(b3) = el (0(b1)) < o(y) N o(x1).

We now have the decreasing sequence ¢(b}), ¢(b3), ¢(b3), ... of closed sublocales, so that the
collection {c(by) : n € N} has the FIP. By compactness of (L, L1, La), A\, cxnc(05) # O.

Because
N\ c) Coy)n N o(zn),

neN neN
we then have that

oy) N /\ o(zn) # O,

neN

making A, .y 0(z,) an i-dense sublocale.

The converse of Proposition 3 is not always true, as shown below.



M. Nxumalo / Eur. J. Pure Appl. Math, 18 (1) (2025), 5362 10 of 21

Example 3. For the bispace (N,7p,7c¢), (Tp V Tef = Tp,TD, Tef) @5 (Tp, Tef)-Baire but
not compact. Its (Tp,T.f)-Baireness follows since N is the only Tp-dense member of T.¢.

Recall that for any onto frame homomorphism h : M — L, h, : L — h,[L] is a frame
isomorphism. If h is further dense, then h.(0) = 0.

Lemma 2. Let h : (M, My, Ms) — (L, L1, L) be a dense and onto biframe map. If v € L;
is j-dense, then h.(x) A a # 0 whenever a € M; is nonzero.

Proof. Let a € M; be nonzero such that a A hy(z) = 0. Then
0 = h(a) A h(hi(x)) = h(a) A z.

Since h[M;] C L;, h(a) € L; so that h(a) = 0. Therefore a < hy(h(a)) = h.«(0) = 0.

Proposition 4. Let (L, Ly, Ly) be a bilocale. If there is a dense onto biframe map h :
(M, My, Ms) — (L, Ly, L2) from an (i,7)-Baire bilocale (M, My, M) with which h.[L] is
i-Gs-dense in M, then (L, L1, La) is (i,j)-Baire.

Proof. Suppose that the hypothesized statement is true and let {o(z,) : n € N} be a
collection of i-dense j-open sublocales of L. Now, if o(y) N (A,ey0(zn)) = O for some
i-open sublocale o(y) of L, then

O = hufo(y)] N hs [/\ O(fffn)] = h.[o(y)] N (/\ h*[ﬂ(fvn)])

neN neN

where the first equality follows since h,[O] = O and h, is injective, and the second equality
follows since the total part h, : L — M is a right adjoint. By virtue of h, : L — hy[L]
being a frame isomorphism and hence open, we get that

o, ) (h«(y)) N (/\ Oh*[L}(h*(xn») =0.

neN

For each n € N, hy(zy,) = h«(h(ay)) for some a,, € M;. Therefore

0= Oh*[L](h*(y» N (/\ Uh*[L](h*(h<an))))

neN

= h*[L] N o(h*(y)) N (/\ (h*[L] N o(h*(h(an))))>

neN

— ho[L) No(ha(y)) N (/\ o(h*<h<an>>>>

neN

2 hi[L] Mo(hi(y)) N (/\ U(an)> :

neN
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Since i-Ggs-dense sublocales are dense, hy[L] is a dense sublocale of M. Each of the ay’s
is i-dense: Pick b € M; such that b A a, = 0. Then h(b) A h(ay) = 0 so that

ha(h (b)) A ha(h(an)) = hi(0) = 0,

where the latter equality follows since hy : L — M is a dense localic map. Therefore
b A hy(zn) =0. By Lemma 2, b = 0 and hence each a,, is i-dense.

Therefore the collection {0(a,) : n € N} consists of i-dense j-open sublocales of M. We
then get that o(h«(y)) N (A, (0(an))) is an i-Gs-sublocale. Because h.[L] is i-Gs-dense,

o(hy(y)) N (/\ o(an)> = 0.

neN

Since (M, My, Ms) is (i, j)-Baire, it follows that A yo(ay) is i-dense, so that o(h«(y))
O. Therefore h,(y) = 0, so that

0 =h(h«(y)) = .

This means that o(y) = O. Thus A, cyo(z,) is i-dense, and hence (L, L1, Lo) is (4, j)-
Baire.

A compactification of a bilocale (L, Ly, Ls) is a dense and onto biframe map h :
(M, My, Ms) — (L, Ly, Ly) from a compact regular bilocale (M, My, Ms). So, for a bilo-
calic property P, we shall say that (L, L1, L2) has a P-compactification in case (M, My, Ms)
has property P.

Corollary 1. Let (L, Ly, Ls) be a bilocale. If there is a i-prefit compactification h :
(M, My, Ms) — (L, L1, L2) with which hy[L] is i-Gs-dense in M, then (L, L1, L2) is (i,7)-
Bajre.

Definition 4. Let (L, L1, Ls) be a bilocale. An i-w-base for (L, L1, Ls) is a collection
C of non-void i-open sublocales such that each non-void i-open sublocale of L contains a
member of C. A bilocale is said to be i-pseudocomplete if it is i-prefit and it has a sequence
(Cn)nen of i-m-bases such that whenever o(xy) € C,, and clj(o(zn11)) C o(zy) for each n,
then \, ey 0(zn) # O.

Proposition 5. FEvery i-pseudocomplete bilocale is (i, j)-Baire.

Proof. Let (L, L1, L2) be a pseudocomplete bilocale and pick a collection {o(z,) : n €
N} of i-dense j-open sublocales. Since (L, L1, Lo) is pseudocomplete, there is a sequence
(Cn)nen of i-m-bases with the corresponding pseudocompleteness property. For each non-
void i-open sublocale o(y), we have that each o(y) N o(zy,) is a non-void open sublocale,
so that y A x, # 0. Since (L, L1, Lo) is i-prefit, for n = 1, there is nonzero a; € L; such
that a} V (y A z1) = 1. This makes

O # o(a1) C clj(o(ar)) C o(y) No(z).
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For the i-m-base Cy, there is o(c;) € C; with
o(c1) € clj(o(er)) € o(ar) C o(y) No(zy).

Using the fact that o(x2) is i-dense and o0(cp) is non-void i-open, we get that o(c1) No(z2)
is a non-void open sublocale. Since (L, L1, L9) is i-prefit, there is nonzero ag € L; such
that

0 75 0(@2) - C].j(O((lQ)) - 0(01) N 0(332).
An application of pseudocompleteness to the i-m-base Cy yields an existence of o(cz) € Cao

such that
0(62) - Clj(o(CQ)) - 0((12) C 0(61) N 0(1’2).

Since o(x3) is i-dense and o(c2) is a non-void i-open sublocale, it follows that o(c2)No(z3) #
O. Applying that (L, Ly, L) is i-prefit again implies that there is a nonzero as € L; such
that

O +# 0((13) - Cli(O(ag)) - O(CQ) N 0(1’3).

Therefore, for the i-m-base Cs, there is 0(c3) € C3 such that
o(c3) Cclj(o(ez)) C o(as) C o(c) No(z3).

Continuing like this for n = 4,5, ...., we get that for each i-m-base C,, there is o(cy,) € Cy,
such that
o(cn) Cclj(o(cn)) C o(cn—1) No(zy).

Since (L, L1, Lo) is i-pseudocomplete, A, oy 0(cn) # O. Because
o(cn) C o(y) No(zn)

for each n € N, we have

0# A olea) Coly) N A ofan),

neN neN

making A, oy 0(z,) an i-dense sublocale. Thus (L, L1, L2) is (4, j)-Baire.

Recall from [5] that the triple (JL, (JL)1, (JL)2), where JL is the locale of all ideals of
L and (JL); (i = 1,2) is the subframe of JL consisting of all ideals J C L generated by
J N L;, is a bilocale called the ideal bilocale.

Call a bilocale (L, Ly, Ly) Noetherian in case its total part L is Noetherian, i.e., all of
its elements are compact. In a Noetherian locale, all ideals are principal [3]. This suggests
that in a Noetherian locale, the locale JL of ideals of a locale L is isomorphic to L.

For use below, we recall from [15, Proposition 6.9.] that in a bilocale (L, Ly, Lo), if
x € L; is j-dense, then |z € JL; is JL -dense. Furthermore, for a Noetherian bilocale
(L,Ly, L), \VJ € L; is j-dense whenever J € JL; is JL;-dense.
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Proposition 6. Let (L, Ly, Ls) be a bilocale. Then (L, Ly, Ls) is (i,j)-Baire only if
(L, (IL)1,(IL)2) is (i,7)-Baire. Moreover, if (L, L1, La) is Noetherian, then (L, Ly, L)
is (i,j)-Baire Zﬁ (3L7 (3L)17 (:‘L)Q) is (i,j)-Baire.

Proof.

Choose a collection {o(x,) : n € N} of i-dense j-open sublocales. Then {o37(lx,) :
n € N} is a collection of JL;-dense JL;-open sublocales. By hypothesis, A\, cy 03z (l2n) is
JL;-dense. To show that A, cyo(z,) is i-dense, let o(y) be an i-open sublocale such that

o(y) N (Aneno(zn)) = O.
Claim: o37,(Jy) N (/\nGN OJL(\/ ia:n)) =0.
Proof: Otherwise, A\, cyo(ly N lz,) # O which implies that
O#lyNlen =Ly Azn)

for each n € N. Therefore y A x,, # 0 for each n € N so that

0+ N olyAan) =o(y)N (/\ o(xn)>

neN neN

which is a contradiction.

Thus o037(Jy) = O implying that |y = O. Therefore o(y) = O and hence A,y o(zn)
is ¢-dense.

The particular case follows since L is isomorphic to JL.

4. Concerning relative versions of (i, j)-Baire bilocales

In this section, we consider (i, j)-Baireness of subbilocales.
We recall the following lemma from [16].

Lemma 3. Let (S,S51,52) be a dense subbilocale of a bilocale (L, Ly, Ly). An element y
of L; is j-dense iff vs(y) is js-dense.

Corollary 2. Let (S,51,952) be a dense subbilocale of a bilocale (L, L1, La). An element
y of L; is j-dense iff os(vs(y)) = S No(y) is js-dense ig-open.

We also have the following result.

Lemma 4. Let (L, L1, La) be a bilocale with (S, S1,S2) as its dense subbilocale. A sublocale
A of S isig-dense iff it is i-dense.

Proof. (=): Choose a non-void i-open sublocale o(z) of L. Then
0 # Sno(z) = o(vs(x))

where vg(x) € S;. This makes 0g(vg(z)) an non-void ig-open sublocale of S. Since A is
1g-open,

0 # Anogs(vs(z)) = Ano(x).
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Thus A is i-dense.
(<=): Let 0g(z) be a non-void ig-open sublocale of S. Then =z = vg(y) for some
y € L;. It follows from Lemma 3 that y is i-dense. Therefore

O#Ano(y) =ANog(x).

Thus A is ig-dense.

Proposition 7. A bilocale (L, L1, L) is (i, j)-Baire only if it contains some dense (i, j)-
Baire subbilocale.

Proof.

Let (S, S1,52) be a dense and (3, j)-Baire subbilocale of (L, L1, L2) and pick a collection
{o(x) : n € N} of i-dense j-open sublocales. Since the subbilocale (S, S1,S2) is dense,
it follows from Corollary 2 that {S No(z,) : n € N} is a collection of ig-dense jg-open
sublocales. By hypothesis, A, cy(SMNo(zy,)) is is-dense, so that it is i-dense by Lemma 4.

Since
A (S no) € A olan),

neN neN

it follows that A ,cyo(zy) is i-dense.

Corollary 3. A bilocale (L, Ly, La) is (i,7)-Baire only if (BL,vys[L1],vs[L2]) is (i,7)-
Baire as a bilocale.

Call a bilocale (L, L1, L) (i, 7)-submazimal if every i-dense sublocale of L is j-open

Proposition 8. Let (L, L1, L2) be an (i, j)-submazimal bilocale. Then (L, Ly, Ls) is (i,j)-
Baire iff ((BL,vy[L1],ves[L2]) is (i, j)-Baire as a bilocale.

Proof. We only prove the forward implication:

Let {ogsr(zn) : n € N} be a collection of igsz-dense jy-open sublocales. It follows that
{o(zp) : n € N} is a collection of i-dense j-open sublocales. Since (L, L1, L9) is (i, j)-Baire,
Anen 0(2rn) is i-dense. We must have that A\, _yonz(z,) is inz-dense, otherwise there is
a non-void vy [L;]-open sublocale oy (y) such that

O%L(y) N (/\ OsBL(l’n)> = 0.

neN

Therefore
oz (y) N (/\ o(xn)> =0.
neN

Since every dense sublocale is i-dense and (L, L1, Ls) is (i, j)-submaximal, we have that
BL is j-open so that opr(y) = BLNo(y) is a j-open sublocale. Therefore oy (y) = 0
which is impossible.
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Proposition 9. Every i-open subbilocale of an (i, j)-Baire bilocale is (i, j)-Baire.

Proof. Let (S,S1,S2) be an i-open subbilocale of an (i, j)-Baire bilocale (L, L1, L2).
Choose a collection {og(z,) : n € N} of ig-dense js-open sublocales. We show that
Anen 05(2n) is is-dense. Pick an ig-open sublocale 0g(y) such that

(/\ OS(xn)) Nos(y) = O.

neN

Since 0g(y) € S, 05(y) N (L ~ S) = O. Therefore

05(y) N ((/\ og(xn)> Vv (L \S)> = ((/\ os(xn)> N os(y)> V (0s(y) N (LNS))
neN

neN

- ( A os<xn>> Nos(y)

neN

=0.

Because og(xy,) V (L \ S) is i-dense, it follows that

N\ (0s(zn) V(LNS)) = (LN S)V )\ os(zn)

neN neN

is i-dense. Therefore og(y) = O. Thus A,y 0s(zy) is is-dense.

Definition 5. Let (L, L1, L2) be a bilocale. A subbilocale (S,S1,S2) of (L,Li,Ls) is
relatively (i, j)-Baire if for every collection {o(x,) : n € N} of i-dense j-open sublocales,
S0 (Apen 0(zn)) is ig-dense.

Proposition 10. In a class of dense subbilocales, (i,j)-Baire coincides with relatively
(i,j)-Baire.

Proof. Let (S, S1,52) be an (i, j)-Baire subbilocale of a bilocale (L, L1, L2) and choose
a collection {o(z,) : n € N} of i-dense j-open sublocales of L. If

os(y) N SN (/\ o(xn)) =0,

neN

then
O =os(y)N (/\ (SN 0(%))) =os(y)N (/\ Os(Vs(fUn))>
neN neN

where each 0g(vs(xy,)) is ig-dense and jg-open. Since (S, S1, S2) is (4, j)-Baire as a bilocale,
Anen 05(vs(zn)) is ig-dense so that og(y) = O. Thus S N (A,,cn 0(2zn)) is ig-dense.
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On the other hand, let (5,57, 52) be a relatively (i,j)-Baire subbilocale and pick a
collection {og(zy) : n € N} of ig-dense jg-open sublocales of S. For each x,, there is
an, € Lj such that x, = vg(a,). Now, members of the collection {og(a,) : n € N} are
i-dense j-open in (L, L1, Ly). Since (5,51, S2) is relatively (i, j)-Baire,

SN (/\ o(an)> =\ os(xn)

neN neN
is ig-dense. Thus (5, S1,S2) is (i, j)-Baire.
Here is an example of what is illustrated in Proposition 10.

Example 4. Given a bilocale (L, Ly, La), the subbilocale (BL, vss[L1], ves[L2]) of (L, L1, L2)
is (i,j)-Baire if and only if it is relatively (i, j)-Baire.

We close this section with a characterization of relatively (i, j)-Baire subbilocales.

Proposition 11. Let (S, 51,52) be a dense and complemented subbilocale of a bilocale
(L, Ly, Ly) whose j-Gs-sublocales are complemented. The following statements are equiv-
alent:

(i) (S,S1,S2) is relatively (i, j)-Baire.

(ii) For every non-void i-open sublocale U of L, SN U is of (j,i)-second category in
(S, 51,52).

(111) For every sublocale U of (j,i)-first category in (L, Ly, La), int;i(SNU) = O.
(iv) If V is a sublocale of (j,i)-first category in (L, L1, La), then SN (L\V) is ig-dense.
Proof. (i) = (ii): Let o(x) be non-void i-open and assume that

S
Sno(x) C \/ cs(an)

neN

for some collection {cg(x,) : n € N} of (jg,is)-nowhere dense sublocales of S. Then

Sno(x) C \/ clan)

neN

where each ¢(x,) is (j,4)-nowhere dense because (S,S1,52) is dense. It is clear that the
collection {o(xy) : n € N} consists of i-dense j-open sublocales. It follows from (i) that
S0 (Anen 0(zn)) is is-dense. Since SNo(x) # O because of density of (3, S1, S2), we have
that

Sno(x)NSnN (/\ o(xn)) £ 0.

neN
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Therefore
<\/ c(:nk)> N (/\ o(:cn)) £ 0.
keN neN

Since A, ¢y 0(z,) is a j-Gs-sublocale of L, it follows that it is complemented. Therefore

0%\ <c<xk> n ( A o(xn>>> € V/ (clar) No(er)) = \/ (0) =0

keN neN keN neN

which is impossible. Thus S No(z) is (j,4)-second category.
(1i) = (i): Let {o(z,) : n € N} be a collection of i-dense j-open sublocales and
assume that there is non-void ig-open sublocale 0g(y) of S such that

os(y) N SN (/\ o(xn)) =0.

neN

Then o(y) is non-void i-open and

which implies
os(y) €SN (\/ 0(%)) = \/ cs(vs(an))
neN neN

where the latter equality holds since S is complemented. Since each c¢g(vs(zy)) is (Js, is)-
nowhere dense, S No(y) = os(y) is of (j,4)-first category in (5,51, S2) which is a contra-
diction.

(19) = (44i): Let U be a sublocale of L which is of (j,)-first category in (L, L1, L2)
and assume that int;( (S N U) # O. Then

int;s(SNU) =o(z)NS
for some x € L;. Such o(z) is a non-void i-open sublocale of L, so
int;(SNU) =S No(z)

must be of (j,4)-second category in (S5, S1,S2) by (#). But U C \/, cyc¢(z,) for some
collection {c(zy) : n € N} of (j,7)-nowhere dense sublocales of L, so

int;s (SNU)=o(x)NSCUNS TSN\ c(wn) =\ cslvs(an))
neN neN

where each c¢g(vs(zy)) is (js,ig)-nowhere dense in (S, S1,S52). This makes o(z) N S a
sublocale of (j,4)-first category in (.5, S1,S2) which is impossible.
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(7i1) = (iv): Let V be a sublocale of L which is of (j,)-first category in (L, Ly, Ls)
and choose an ig-open sublocale 0g(z) such that

os(z)NSN(L~V)=0.

Then
os(z) CSNV.
By (ii7), int;5(S NV) = O, making og(z) = O.
(tv) = (ii): Let o(x) be a non-void i-open sublocale of L and assume that S N o(z)
is of (j,1)-first category. By (iv),

SN(L~o(x))=SNc(x)=-cs(rs(x))

is ¢g-dense which implies that vg(z) = 0. Therefore o(x) = O which is a contradiction.

5. Baireness of topobilocales

The aim of this section is to introduce and characterize Baireness in the category of
topobilocales.

A topobilocale [12] is a triple (L, 71, 7) where L is a locale, L; and Lo are subframes
of L all of whose elements are complemented in L. Each member of 7; (i = 1,2) is called
Ti-open.

For each a € L, the 7;-closure (i = 1,2) of a in L is defined by

Ln /\{bET a<b}

and the 7;-interior of a is defined by

int(r, -y(a) = \/{b eti:b<a}l

We have the following result. See [24] for the proofs of some of the statements. For
the rest of the statements, the proofs resemble that of [16, Proposition 5.1.3.].

Proposition 12. Let (L, 7;,7;) be a topobilocale. Then
(i) cl(17)(0) = int(f, -,)(0) = 0.
(i) cl(p7)(1) = int(z, (1) = 1.
(iii) a < clp 7,)(a).
(iv) If a < b, then cli, -y(a) < clip (D).
(v) int(z -y(a) < a.

(vi) If a < b, then int(y, .y(a) < int (g .,y (D).
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(vii) For each a € L, (cl,1,)(a))" = int( ;) (a’).
(viii) For each a € L, (int(y .,y(a))" = clp ., (a’).

Call an element a € L 7;-dense if cl(p, ;,)(a) = 1. Clearly, a € L is 7;-dense if and only
if a Az # 0 for all nonzero = € 7;, see [15, Proposition 2.8.] for the proof.

Definition 6. Call a topobilocale (L, 11, 12) (74, 7;)-Baire if any sequence (xyn)nen of Ti-
dense elements of 7; satisfies the condition )\, cyZn is T;-dense.

Call an element a € L (7;, 7;)-nowhere dense if int(y, ;y(cl(z -,)(a)) = 0.

An element a € L is of (7, 7j)-first category if a < \/, oy n for some collection {zy, :
n € N} of (7, 7j)-nowhere dense elements of L. Otherwise it is of (73, 7;)-second category.
It is clear that if a is of (7, 7;)-first category and b < a, then b is of (7, 7;)-first category.

For use below, we give the following result with a proof similar to that of [16, Propo-
sition 2.1.4.]

Proposition 13. Let (L, 71, 72) be a topobilocale. Then a € L is (13, 7;)-nowhere dense iff
(clir,)(a))" is Tj-dense.

Proposition 14. Let (L, 11,72) be a topobilocale. The following statements are equivalent.
(i) (L,m1,72) is (13, 7;)-Baire.
(11) Each nonzero 1; element is of (75, 7;)-second category.
(iii) Every element of (;,7;)-first category has a zero T;-interior.
(i) The complement an element of (7;,T;)-first category is T;-dense.

Proof. (i) = (ii): Assume that there is a nonzero element a € 7; which is of (75, 7;)-
first category. Then a < \/, .y, for some collection {z, : n € N} of (7;,7;)-nowhere
dense elements. It is clear members of the collection {(clz -,)(%5))" : n € N} are 7;-dense.
By (i), Anen(cliz,r;)(zn))" is 7i-dense. It follows that

a i (/\ (Cl(L,Tj)($n))’> # 0.

neN

Therefore

0 # (\/ xk> A </\ (Cl(L,Tj)(xn))'>

keEN neN
_ \/ / . .
= (m A (/\ (clz,ry)(@n)) >> since L is a locale
keN neN

SAVECNCIRSIEN

keN
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< \/ (CI(L,Ti)(xk) A Cl(L,Tj)(xk))

keN
=0

which is a contradiction.

(i) = (i7): Let a € L be of (7, 7;)-first category and assume that int, .y(a) # 0.
We now have int(y, ..y(a) as a nonzero 7; element. It follows from (7i) that int;, ,,)(a) is of
(75, 7)-second category. This is not possible.

(#4i) = (iv): Let a € L be of (1, 7;)-first category and suppose that a’ is not 7;-dense.
Then cl(f, -,y(a’) # 1. Because cl, ,)(a') = (int(z ,)(a))’, we have that (int(s, .(a))" #
1. Since a is of (7j,7;)-first category, it follows from (iii) that int; . (a) = 0 so that
(int(, -,)(a))" = 1, which is a contradiction.

(tv) = (i): Let (2 )nen be a sequence of 7;-dense elements of 7; and assume that there
is y € 7; such that y A (/\nEN :En) = 0. Then

yS(/\wn>/=\/l’%

neN neN

since each x;, is complemented. This makes y to be of (7;, 7;)-first category. By (iv), v/’ is
Ti-dense so that y = 0. Thus A, cy 2y is 7i-dense. Hence (L, 71, 72) is (7;, 7;)-Baire.
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