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Abstract. This article examines the analytical solution for Burger’s equations utilizing MADM
and AHPMTM. We compare both analytical methods for convergence. The MADM uses a novel
integral transform (the Mohand transform) with the Adomian decomposition method. The MADM
solves the proposed problem using series form solutions that quickly converge to the exact solu-
tions. The homotopy process with Mohand transformed and accelerated He’s polynomials underlie
the novel AHPMTM approach to accelerate the convergence of the homotopy perturbation Mo-
hand transform method (HPMTM). We compare solutions for MADM and AHPMTM to an exact
solution. The methodology can be applied to different models in applied sciences and technology.
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1. Introduction

In mathematical language, differential equations (DEs) are major sources for modeling
physical phenomena that arise in applied sciences and technology. These equations have
different parameters that describe the present state of most physical phenomena. The DEs
have numerous applications in real-world problems, such as in neural networks [17], the
dynamics of the system are largely determined by the time delay, which is a fundamental
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component of the system [6], delays have been demonstrated to cause oscillations in cou-
pled systems with synchronization, but they can also improve synchronization between
coupled elements [16], time delay laser dynamics model [27], traffic dynamics that include
a delay to account for drivers’ finite reaction times [8], a time-delayed compensation ap-
plied to both the local and remote sites of the teleportation system can be used to stabilize
the control for teleporting mobile robots [30], time delay for controlling unstable motion
[15], the non-instantaneous consequences of relaxation stresses in some materials’ delay
system of viscoelastic effects [28].
The solutions such as type DEs are investigated by different researchers. The Boubaker
used polynomials to solve DEs [14]. Sedaghat et al. proposed a new numerical technique
based on the transferred Chebyshev polynomials. Also they used the variational iteration
technique for solving the pantograph equation with delay, Cevik implemented the per-
turbation method with an iteration algorithm for the selected DEs [4]. The solution of
high-order DEs is approximated by exponential polynomials given in [9]. The pantograph
generalized equation solution with variable coefficient and delay is found by using Bessel
polynomials [19]. In [26], the author used the homotopy perturbation method (HPM)
for the numerical solution of DEs. In [18], the authors presented a combination of two
semi-analytical methods called the ”singular perturbed homotopy analysis method” and
applied it to give a numerical s‘imulation for the combustion of spray fuel droplets. Tohidi
et al. and Akyuz and Sezer checked the validity and applicability of the Bernoulli col-
location technique for the solution of pantograph generalized problems [10]. Some other
methods are also implemented for the solution of DEs such as the Jacobi rational Gauss
collocation method [13], Runge-Kutta methods [12], Hermite polynomials [21], Chebyshev
wavelet method [11, 29] and others ([1, 2]).

Besides these methods, we have implemented two newly developed approaches for
the analytical solution of these proposed models. The first one is the MADM, which is
based on the Adomain decomposition procedure with the Mohand transform. The MADM
provides a series-form solution that converges to the exact-form solution. The second
method is the AHPMTM, which employs the homotopy perturbation procedure with the
Mohand transform and utilizes accelerated He’s polynomials for the nonlinearity terms.
Solving nonlinear Burger’s DEs verifies the applicability and validity of these methods.
We compare the obtained results using tables and plotting.

We prearrange the rest of the article as follows: in Section 2, we introduce the studied
problem; in Section 3, we define the fundamental concepts for completing this research
work; in Section 4, we elaborate on the MADM general procedure; in Section 5, we explain
the new AHPMTM for the solution of nonlinear PDEs; in Section 6, we consider testing
problems to ensure the validity and applicability of the proposed methods; in Section 7, we
present the results and discussions; and in Section 8, we conclude the comparison analysis.
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2. The studied problems

In this article, the Burger’s equations are considered as follows:

ϑt (x, t) = ϑxx (x, t)ϑx (x, t)− ϑx (x, t)− ϑ (x, t) , t > 0, x ∈ R,

ϑt (x, t) = ϑx (x, t)ϑ (x, t) + ϑxx (x, t) +
1

2
ϑ (x, t) , t > 0, x ∈ R.

Burger’s equations can be used to model dynamics and communicate with acoustic waves,
reaction devices, convection effects, heat conduction, diffusion transports, and more. Ad-
ditional references ([24]-[31]) are included for more information. In [3], some well-known
mathematical methods for coupled Burger’s equations are compared. This comparison
used the following methods: The optimal homotopy asymptotic method (OHAM), OHAM
with Daftardar-Jafari polynomials, Laplace transform Adomian decomposition, and ho-
motopy perturbation methods. Burger’s model has been examined and researched by
numerous scientists for various fluid dynamics and physical flow issues. Burger’s equa-
tion, due to the diffusion term with viscosity coefficient and the non-linear convection
term, resembles Navier-Stokes equations (NSEs) in structure. Thus, one may think of this
equation as a simplified version of the NSEs.

3. Basic definitions

The Mohand transform has some useful properties, including linearity, convolution,
differentiation, and inversion, which make it a powerful tool in signal processing and other
areas. It also has some connections with other well-known transforms, such as the Laplace
transform and the Mellin transform. In this section, we present some key definitions and
introductory ideas for the Mohand transform [20] and accelerated He’s polynomials.

3.1. Mohand transform

Mahgoub and Mohand explained the Mohand transform for the first time in 2017 for
the function f(t) for t ≥ 0. For a function f(t), the Mohand transformation indicated by
M is defined as:

M{f(t)} = F (s) = s2
∫ ∞

0
f(t)e−stdt, k1 ≤ s ≤ k2.

If the Mohand transform of a function f(t) is F (s) then f(t) is known as the inverse of
F (s) which can be described by ([23], [25]):

M−1{F (s)} = f(t) =
1

2π i

∫ x+i∞

x−i∞
est

F (s)

s2
ds, M−1 is the inverse Mohand operator.

Some properties of the Mohand transform [20]:
- Linearity property for M{.}: For arbitrary constants a1, a2, we have

M{a1f1(t) + a2f2(t)} = a1M{f1(t)}+ a2M{f2(t)}.
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- Change of scale property: If M{f(t)} = F (s), then

M{f(at)} = aF
(s
a

)
.

- Shifting property for M{.}: If M{f(t)} = F (s), then

M{eatf(t)} =
s2

(s− a)2
F (s− a).

- Convolution theorem for M{.}: If M{f1(t)} = F1(s) and M{f2(t)} = F2(s), then

M {f1(t) ∗ f2(t)} =
1

s2
F1(s)F2(s).

- Mohand transforms of the derivatives of the function f(t): If M{f(t)} = F (s) then we
have the following three properties of the derivatives:

M
{
f ′(t)

}
= sF (s)− s2f(0),

M
{
f ′′(t)

}
= s2F (s)− s3f(0)− s2f ′(0),

M
{
f (n)(t)

}
= sn F (s)− sn+1f(0)− snf ′(0)− . . .− s2 f (n−1)(0).

(1)

Mohand transforms for some famous functions:

f(t) M{f(t)} = F (s)

1 s

t 1

t2 2!
s

tn, n ∈ N n!
sn−1

tn, n > −1 Γ(n+1)
sn−1

eat s2

s−a

sin(at) as2

s2+a2

cos(at) s3

s2+a2

3.2. Accelerated He’s polynomials

The nonlinear term N(ϑ) in the differential equations under study can be expressed
as a linear combination of the accelerated He’s polynomials in the following series from:

N(ϑ) =
∞∑
n=0

H̄n, (2)

where the accelerated He’s polynomials H̄n can be defined and constructed with the help
of the standard He’s polynomials as follows [22]:

H̄n = N(ϑn)−
n−1∑
j=0

Ĥj , (3)
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here, Ĥ is the general He’s polynomials.
Consider a nonlinear term N(ϑ) = ϑxx (x, t)ϑ (x, t), by using the definition given in equa-
tions (2) and (3), we can get the accelerated He’s polynomials as:

H̄0 = (ϑ0)xx (x, t)ϑ0 (x, t) ,

H̄1 = (ϑ0)xx (x, t)ϑ1 (x, t) + (ϑ1)xx (x, t)ϑ0 (x, t) + (ϑ1)xx (x, t)ϑ1 (x, t) ,

H̄2 = (ϑ0)xx (x, t)ϑ2 (x, t) + (ϑ1)xx (x, t)ϑ2 (x, t) + (ϑ2)xx (x, t)ϑ2 (x, t)

+(ϑ2)xx (x, t)ϑ0 (x, t) + (ϑ2)xx (x, t)ϑ1 (x, t) ,

H̄3 =(ϑ0)xx (x, t)ϑ3 (x, t) + (ϑ1)xx (x, t)ϑ3 (x, t) + (ϑ2)xx (x, t)ϑ3 (x, t)

+ (ϑ3)xx (x, t)ϑ3 (x, t) + (ϑ3)xx (x, t)ϑ2 (x, t) + (ϑ3)xx (x, t)ϑ1 (x, t) .

In the current section, we briefly explained the procedure of a newly adopted modified
technique. We have considered the general Burger’s equation which is defined as:

ϑt (x, t) = £ (ϑ (x, t)) +N (ϑ (x, t)) + δ (x, t) , t > 0, x ∈ R, (4)

with the initial condition:
ϑ(x, 0) = w1(x),

where, £, N are the linear and nonlinear terms, respectively, and δ (x, t) is the source
function.
Applying the Mohand transform with Burger’s equation (4) gives us:

M {ϑt (x, t)} = M {£ (ϑ (x, t)) +N (ϑ (x, t)) + δ (x, t)} ,

by applying the transformation property (1) we can get:

s{R(x, s)− s ϑ(x, 0)} = M {£ (ϑ (x, t)) +N (ϑ (x, t)) + δ (x, t)} , (5)

after some calculation, the equation (5) was simplified as:

R(x, s) = s ϑ(x, 0) +
1

s
M {£ (ϑ (x, t)) +N (ϑ (x, t)) + δ (x, t)} ,

by using the inverse Mohand transformation we get:

ϑ (x, t) = ϑ(x, 0) +M−1

{
1

s
M {£ (ϑ (x, t)) +N (ϑ (x, t)) + δ (x, t)}

}
. (6)
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4. The implementation of the modified Adomian decomposition method

Thus, the first initial component for the approximate solution of the given problem (4)
will be obtained as follows:

ϑ0 (x, t) = ϑ(x, 0) +M−1

{
1

s
M {δ (x, t)}

}
,

then, the final iterative scheme for the other terms becomes as:

ϑm+1 (x, t) = M−1

{
1

s
M {£ (ϑm (x, t)) +Am}

}
, m ≥ 0. (7)

The nonlinear term N is decomposed by using the Adomian’s polynomials defined as:

N(ϑ) =
∞∑

m=0

Am, (8)

where,

Am =
1

m!

[
∂m

∂λm

[
N

( ∞∑
i=0

λiϑi

)]]
λ=0

, m = 0, 1, · · · (9)

For more details and applications of the modified decomposition method see [7].

5. Basic concepts of AHPMTM

In this section, a semi-analytical method known as the AHPMTM is used for the
solution of Burger’s equation. Consider the same general nonlinear Burger’s equation,
which takes the form (4).

By using the homotopy perturbation technique to its corresponding equation (6), we
get:

(1− ρ) (ϑ (x, t)− ϑ (x, 0)) + ρ (ϑ (x, t)− ϑ(x, 0)))− ρ
(
M−1

{1
s
M
{
£ (ϑ (x, t))

+N (ϑ (x, t)) + δ (x, t)
}})

= 0,
(10)

here, ϑ(x, t) takes the following form:

ϑ(x, t) =

∞∑
n=0

ϑn(x, t)ρ
n, (11)

and the nonlinear term takes the following form:

N (ϑ(x, t)) =
∞∑
n=0

Hnρ
n, (12)
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where Hn represent the accelerated He’s polynomials and are defined as:

Hn(ϑ0, ϑ1, ..., ϑn) = N(ϑn)−
n−1∑
j=o

Ĥj ,

where Ĥj are the general He’s polynomials.
Now, by substituting the equations (11) and (12) in equation (10), we get the final recursive
scheme:

∞∑
n=0

ϑn (x, t) ρ
n = ρ

(
ϑ (x, 0) +M−1

{
1

s
M

{ ∞∑
n=0

£ (ϑn(x, t)) ρ
n +

∞∑
n=0

Hnρ
n + δ (x, t)

}})
,

(13)
and the approximated terms will be obtained by comparing the coefficient of the like
powers of ρ.

6. Numerical applications

In this section, we have tested the applicability and validity of the MADM and AH-
PMTM in the solution for nonlinear Burger’s equations.

6.1. Implementation of the MADM on Problem 1

Consider the nonlinear Burger’s equation defined as [5]:

ϑt (x, t) = ϑxx (x, t)ϑx (x, t)− ϑx (x, t)− ϑ (x, t) + δ(x, t), t > 0, x ∈ R, (14)

with the initial condition ϑ(x, 0) = 0. Here, δ(x, t) = e−x + t2 e−2x, and the nonlinear
operator N (ϑ(x, t)) = ϑxx (x, t)ϑx (x, t).

Using Mohand transformation to equation (14) as:

M {ϑt (x, t)} = M {−ϑx (x, t)− ϑ (x, t) +N (ϑ(x, t)) + δ(x, t)} ,

by using the transformation property defined by (1), we get:

s{R(x, s)− s ϑ(x, 0)} = M {−ϑx (x, t)− ϑ (x, t) +N (ϑ(x, t)) + δ(x, t)} , (15)

after the simplification of the equation (15), the simplified form takes the following form:

R(x, s) = s ϑ(x, 0) +
1

s
M {−ϑx (x, t)− ϑ (x, t) +N (ϑ(x, t)) + δ(x, t)} , (16)

implementing the inverse of Mohand transformation equation (16), the scheme becomes
as:

ϑ (x, t) = ϑ(x, 0) +M−1

{
1

s
M {−ϑx (x, t)− ϑ (x, t) +N (ϑ(x, t)) + δ(x, t)}

}
. (17)
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Thus, the first term becomes as:

ϑ0 (x, t) = ϑ(x, 0) +M−1

{
1

s
M {δ(x, t)}

}
,

then, the final iterative scheme for other terms becomes as:

ϑm+1 (x, t) = M−1
{
1
sM {−(ϑm)x (x, t)− ϑm (x, t) +Am}

}
, m ≥ 0, (18)

with using the initial condition and the nonlinear term N (ϑm(x, t) which is decomposed
by using the formula (8), the approximated term ϑ0 (x, t) = t e−x + 1

3 t
3 e−2x, and the

others can be obtained.
Thus, the solution is obtained by summation of approximated terms:

ϑ(x, t) = ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + ϑ3(x, t) + · · · = t e−x +
1

3
t3 e−2x + · · · .

This series form solution converges to the exact solution ϑ(x, t) = t e−x of the given
problem (14) as m approaches to infinity.

6.2. Implementation of the AHPMTM on Problem 1

Consider the same nonlinear Burger’s equation defined by equation (14), with the same
initial condition.
Now, from equation (17) and applying the procedure of AHPMTM, we get:

∞∑
n=0

ϑn (x, t) ρ
n = M−1

{
1

s
M (δ(x, t))

}
+ρM−1

{
1

s
M

(
−

∞∑
n=0

((ϑn)x + ϑn) ρ
n +

∞∑
n=0

Hn ρ
n

)}
,

by using He’s polynomials and comparing different powers of ρ, we get the approximated
terms:

ρ0 : ϑ0 (x, t) = M−1

{
1

s
M (δ(x, t))

}
= t e−x +

1

3
t3 e−2x,

ρ1 : ϑ1 (x, t) = M−1

{
1

s
M (−(ϑ0)x − ϑ0 +H0)

}
,

ρ2 : ϑ2 (x, t) = M−1

{
1

s
M (−(ϑ1)x − ϑ1 +H1)

}
,

...

The AHPMTM solution in series form (at ρ = 1) becomes as:

ϑ (x, t) =
∞∑
n=0

ϑn (x, t) , (19)

inserting the related iterations, we get ϑ (x, t) = t e−x, which is the exact solution for
equation (14).
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6.3. Implementation of the MADM on Problem 2

Consider the nonlinear Burger’s equation defined as:

ϑt (x, t) = ϑx (x, t)ϑ (x, t) + ϑxx (x, t) +
1

2
ϑ (x, t) + δ (x, t) , t > 0, x ∈ R, (20)

with the initial condition ϑ(x, 0) = 0, where,

£ = ϑxx (x, t) +
1

2
ϑ (x, t) , N(ϑ(x, t)) = ϑx (x, t)ϑ (x, t) ,

are the linear and nonlinear terms, respectively. Here, δ(x, t) = ex − t2 e2x − 3
2 t e

x.
Using the Mohand transformation to equation (20) as:

M {ϑt (x, t)} = M
{
ϑxx (x, t) +

1

2
ϑ (x, t) +N (ϑ(x, t)) + δ (x, t)

}
,

utilizing the transform property (1), we get:

s (R(x, s)− s ϑ(x, 0)) = M
{
ϑxx (x, t) +

1

2
ϑ (x, t) +N (ϑ (x, t)) + δ (x, t)

}
, (21)

after the simplification of the equation (21), the simplified form becomes as:

R(x, s) = s ϑ(x, 0) +
1

s
M
{
ϑxx (x, t) +

1

2
ϑ (x, t) +N (ϑ (x, t)) + δ (x, t)

}
, (22)

implementing the inverse of the Mohand transformation equation (22), the scheme becomes
as:

ϑ (x, t) = M−1

{
1

s
M {δ (x, t)}

}
+M−1

{
1

s
M
{
ϑxx (x, t) +

1

2
ϑ (x, t) +N (ϑ (x, t))

}}
.

(23)
Thus, the first term takes the form:

ϑ0 (x, t) = M−1

{
1

s
M {δ (x, t)}

}
= t ex − 3

4
t2ex − 1

3
t3e2x,

then, the final iterative scheme for the other terms becomes as:

ϑm+1 (x, t) = M−1

{
1

s
M
{
(ϑm)xx (x, t) +

1

2
ϑm (x, t) +Am

}}
, m = 0, 1, 2... , (24)

with using the initial condition and the nonlinear term N (ϑ(x, t)) which is decomposed
by using definition (8), the approximated term ϑ0(x, t) = t ex − 3

4 t
2ex − 1

3 t
3e2x, and the

others can be obtained.
Thus, the solution is obtained by summation of iteration terms:

ϑ(x, t) = ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + ϑ3(x, t) + · · · = t ex − 3

4
t2ex − 1

3
t3e2x + · · · .

This series form solution converges to the exact solution ϑ(x, t) = t ex of the given problem
(20) as m approaches to infinity.
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6.4. Implementation of the AHPMTM on Problem 2

Consider the same nonlinear Burger’s equation defined by equation (20), with the same
initial condition.
Now, from the equation (22), and using the procedure of AHPMTM, we get:

∞∑
n=0

ϑn (x, t) ρ
n = M−1

{
1

s
M (δ(x, t))

}
+ρM−1

{
1

s
M

( ∞∑
n=0

((ϑn)xx + 0.5ϑn) ρ
n +

∞∑
n=0

Hnρ
n

)}
,

by using He’s polynomials and comparing different powers of ρ, we get the approximation
terms:

ρ0 : ϑ0 (x, t) = M−1

{
1

s
M (δ(x, t))

}
= t ex − 3

4
t2ex − 1

3
t3e2x,

ρ1 : ϑ1 (x, t) = M−1

{
1

s
M ((ϑ0)xx + 0.5ϑ0 +H0)

}
,

ρ2 : ϑ2 (x, t) = M−1

{
1

s
M ((ϑ1)xx + 0.5ϑ1 +H1)

}
, ... .

The AHPMTM solution in series form (at ρ = 1) becomes as in (19), and by inserting the
related iterations, we get:

ϑ(x, t) = ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + ϑ3(x, t) + · · · = t ex − 3

4
t2ex − 1

3
t3e2x + · · · .

This series form solution converges to the given exact solution ϑ (x, t) = x et of the given
problem (20) as m approaches to infinity.

7. Results and discussions

Here, we behold the two models (14) and (20) with different values of m and the
corresponding initial conditions for each one of them in (x, t) ∈ [0, 1] × [0, 1]. We give a
numerical simulation for Burger’s equation by implementing the indicated scheme during
in Figures 1-2.

(i) Figure 1, recognizes a comparison between the exact (ϑex(x, t)) and approximate
solutions by MADM (ϑMADM (x, t)), and AHPMTM (ϑAHPMTM (x, t)) for the Prob-
lem 1 (14). Where the order of approximation m = 6 (the number of the considered
terms of the series solution).

(ii) Figure 2, gives a comparison between the exact (ϑex(x, t)) and approximate solutions
by MADM (ϑMADM (x, t)), and AHPMTM (ϑAHPMTM (x, t)) for the Problem 2 (20).
Where the order of approximation m = 6 (the number of the considered terms of
the series solution).
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Fig. 1: Plot of Problem 1 for the exact and approximate solutions by MADM, and AHPMTM.

When looking at these two figures, we can emphasize that although the behavior of the
approximate solution using the two methods used is similar to the behavior of the exact
solution to the model under study, the approximate solution using the AHPMTM method
is better than the solution using the MADM method.

In addition, to validate our numerical solutions by the two proposed approximation
methods (MADM, and AHPMTM), we present a comparison in Tables 1 and 2 between
the absolute error |ϑexact(x, t) − ϑapproximation(x, t)| of the testing Problems 1 and 2 re-
spectively, with the order of approximation m = 10. This comparison shows that the
AHPMTM method is more accurate than the MADM method, and this indicates that the
AHPMTM is faster in convergence than the MADM.

8. Conclusions

In this case study, we compared the MADM and AHPMTM by solving the nonlinear
Burger’s differential equation. The MADM has a straight-forward decomposition proce-
dure with the Mohand transform and requires less computational work. It provides a
series of approximate solutions that converge with high accuracy to exact solutions for the
given problems. The AHPMTM, on the other hand, used the homotopy perturbation pro-
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Fig. 2: Plot of Problem 2 for the exact and approximate solutions by MADM, and AHPMTM.

Table 1: The absolute error of testing Problem 1 by using MADM and AHPMTM

t x AR of MADM AR of AHPMTM

0.0 0.0 0.0 0.0
0.1 0.1 0.0000085232 2.672× 10−7

0.2 0.2 0.0000123952 0.054× 10−7

0.3 0.3 0.0007418025 0.0000065142
0.4 0.4 0.0009021720 0.0000096325
0.5 0.5 0.0006500430 0.0000654120
0.6 0.6 0.0006548526 0.0000951019
0.7 0.7 0.0002540567 0.0000254075
0.8 0.8 0.0009871258 0.0000654987
0.9 0.9 0.0009602581 0.0000369025
1.0 1.0 0.0 0.0

cedure with the Mohand transform to accelerate He’s polynomials. The accelerated He’s
polynomials improve the proposed method’s convergence. The testing problems showed
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Table 2: The absolute error of testing Problem 2 by using MADM and AHPMTM

t x AR of MADM AR of AHPMTM

0.0 0.0 0.0 0.0
0.1 0.1 0.0000038259 3.19× 10−8

0.2 0.2 0.0000555400 4.889× 10−7

0.3 0.3 0.0002511656 0.0000023462
0.4 0.4 0.0006948186 0.0000068870
0.5 0.5 0.0014439690 0.0000151782
0.6 0.6 0.0024475200 0.0000272779
0.7 0.7 0.0034758120 0.0000410602
0.8 0.8 0.0040415190 0.0000505910
0.9 0.9 0.0033103111 0.0000438964
1.0 1.0 0.0 0.0

that the AHPMTM method provided the exact solution, while the MADM provided a
series-form solution that converged to the exact solution. Both table values evaluated up
to three terms of the proposed two methods. Overall, it is concluded that the AHPMTM
has a large computational procedure but has a higher rate of convergence as compared to
MADM. In future work, we will attempt to provide a theoretical study of the convergence
and stability of the presented methods in some depth, as well as to apply this study to
problems with industrial, biological, or other applications and to more complex systems.
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