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Abstract. Worldwide, smoking is a common social practice, especially in places like schools and
on important occasions. World Health Organization (WHO) states that smoking is the third
leading cause of death worldwide and the most significant avoidable reason for disease. So, this
work is devoted to giving a numerical simulation of the smoking model in its fractional form
(Liouville-Caputo sense). The novel numerical scheme used is the modified fractional Euler method
(MFEM). We compare the given technique with the traditional fractional Euler method. In the
hope of providing some recommendations to reduce the risks of this bad behavior, the effect of
some parameters and external factors affecting the solution behavior of this proposed mathematical
model was studied, including the recruitment rate (due to immigration or birth) and the smoking
cessation rate. The results confirm the implemented scheme is a straightforward and efficient tool
for obtaining solutions to these problems.
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1. Introduction

According to a report by the WHO, many smokers pass away in their prime years.
More than 5 million deaths globally occur each year as a result of smoking’s effects on
various body processes; by 2030, this number may increase to 8 million ([14], [17]). Smokers
are 70% more likely to experience a heart attack compared to non-smokers. Lung cancer
occurs 10% more frequently in smokers than in non-smokers. Smokers often live 10 to 13
years less than others do. Researchers work to extend people’s lives to reduce smoking.
Many researchers have attempted to investigate a variety of efficient smoking models to
give the finest description of the phenomena of cigarette smoking. By categorizing the
entire population into three groups-potential smokers, chain smokers, and permanently
abstinent smokers. The smoking model was expressed in mathematical equations and was
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originally developed in 1997 [7]. More recently, in 2007, a survey conducted in Korea by
Ham [8] recorded the various stages and practices of smoking among students. In this
work, the creation of an integer-order model with a dynamic interaction and a new class
of infrequent smokers was described as an expansion of the model. The smoking models
have also been provided by several other authors in integer and fractional orders ([3]-[13]).

The numerical evaluation of fractional-order delay differential equations is done us-
ing a spectral collocation-based approximate technique [11]. The authors used fractional
operators namely, Caputo-Fabrizio and Liouville-Caputo derivatives. The collocation ap-
proach uses Narayana polynomials and their generalization forms. Using convergence
analysis in a weighted L2 norm, they found an upper bound on the Narayana polynomi-
als’ series expansion form. The present matrix collocation solves three fractional operator
and fractional order test situations to demonstrate its performance. In [10], the authors
solved fractional-order differential equations with singularity and strong nonlinearity for
electro-hydrodynamic flow in a circular cylindrical conduit numerically. By using the
quasi-linearization technique, they obtained a set of linearized equations from the nonlin-
ear model. Using the generalized shifted airfoil polynomials of the second kind (SAPSK)
and appropriate collocation points as SAPSK roots, they created an iterative algebraic
system of linear equations. The error analysis and convergence are established in L2, and
L∞ norms.

The novelty in the current research is the attempt to reach numerical simulations
(through a good numerical method) to study the important system under consideration
which is of interest to many researchers, so we presented by shedding some light on the
convergence and calculating the resulting error as well as comparisons with the same
method but in a less accurate case and finally the effect of the parameters in the system
on the behavior of the solution to provide recommendations that can be used by those
interested in studying this model medically or industrially. This work is devoted to giving
a numerical solution for the fractional smoking model. This is by using the MFEM see [9].

The outline of the paper is given as follows: Section 2, presents some basic concepts of
fractional calculus. Section 3, describes the smoking system in its fractional form. Section
4, introduces the modified fractional Euler method. Section 5, solves the fractional-order
smoking model. Section 6, presents a numerical simulation for the model under study.
Section 7, gives the conclusions and discussions.

2. Basic concepts of fractional calculus

To improve the system’s ability to describe memory and global correlation, fractional
derivative models have employed power-law memory kernels to give the fractional deriva-
tives. The most important definition that is utilized in the creation of fractional calculus
theory is this one. While modeling certain real-world problems, the Riemann-Liouville
formulation has some restrictions [11]. On the other hand, these issues were addressed in
the creation of the Liouville-Caputo definition. Here, we will present some concepts of the
fractional calculus ([2]-[12]).

Definition 1. The fractional Riemann-Liouville integral of a function Ψ(τ) of order β ∈
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(0, 1) is defined as:

IβΨ(τ) =
1

Γ(β)

∫ τ

0
(τ − s)β−1Ψ(s)ds, t > 0.

Definition 2. The Liouville-Caputo fractional derivative Dβ of a function Ψ(τ) of order
β ∈ (m− 1,m], m ∈ N is formulated by:

DβΨ(τ) =
1

Γ(m− β)

∫ τ

0
(τ − s)m−β−1Ψ(m)(s)ds.

The relation between the fractional derivatives and fractional integral for their signif-
icance is stated as:

IβDβΨ(t) = Ψ(t)−
m∑
j=1

Ψ(j)(0+)
tj

j!
, t > 0, β ∈ (m− 1,m].

3. Description of the smoking system

Given the importance of mathematical modeling as a good tool for pandemic grasp in
recent decades, we may use it to stop tobacco smoking from spreading. A generic model
is the susceptible-exposed-infected-recovered (SEIR). In this section, to gain a deeper
understanding of the qualitative analysis and the numerical iterative analysis utilized to
solve it, the updated version of the smoking model will be considered as follows ([1], [4]):

Ṡ1(t) = κ− ε1 S1(t)S2(t) + ω S4(t)− µ S1(t),
Ṡ2(t) = ε1 S1(t)S2(t)− ε2 S2(t)S3(t)− (κ1 + µ) S2(t),
Ṡ3(t) = ε2 S2(t)S3(t)− (φ+ κ2 + µ) S3(t),
Ṡ4(t) = φS3(t)− (λ+ µ+ ω) S4(t),
Ṡ5(t) = λS4(t)− µS5(t),

(1)

where Ṡi(t) = dS
dt , i = 1, 2, 3, 4, 5. With the initial conditions Si(0) = S0i . The whole

population is split into five classes in this model: At a time t, the susceptible smokers
(S1, S2, S3, S4, and S5) represent respectively, the snuffing class, irregular smokers, regular
smokers, and quitters. The parameters (κ, φ, λ, µ, ω, ε1, ε2, κ1, κ2) utilized in the system
(1) are explained and defined as in the following Table 1:
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Table 1: Description of the included parameters of the system (1).

Symbol Description
S1 The susceptible smokers
S2 The snuffing (ingestion) class
S3 The irregular smokers
S4 The regular smokers
S5 The quit smokers
κ The rate of recruitment (due to migration or birth)
φ The percentage of infrequent smokers who start smoking regularly

λ, µ, ω The rate of natural death, the rate of departure, and the pace of recuperation
ε1 The proportion of the population that moves from being vulnerable to being snuffers
ε2 Snuffing rates start to fluctuate among smokers
κ1 The percentage of smoking-related deaths class
κ2 The percentage of smoking-related deaths among the snuffing class

3.1. Liouville-Caputo-fractional smoking system

The fractional derivative increases the opportunity to study and evaluate the real
phenomenon in terms of fractional, which is why a lot of academics have focused on this
subject ([15], [16]). We reinterpret the smoking system in terms of fractional derivatives
of order α ∈ (0, 1] as follows:

DαS1(t) = κ− ε1 S1(t)S2(t) + ω S4(t)− µ S1(t),
DαS2(t) = ε1 S1(t)S2(t)− ε2 S2(t)S3(t)− (κ1 + µ) S2(t),
DαS3(t) = ε2 S2(t)S3(t)− (φ+ κ2 + µ) S3(t)),
DαS4(t) = φS3(t)− (λ+ µ+ ω) S4(t),
DαS5(t) = λS4(t)− µS5(t)).

(2)

Throughout the examination of the model presented in (2), the subsequent approaches
will be employed. We will provide the necessary definitions in the next sections. The
advanced portions will then contain numerical results, simulations, and a conclusion. This
study’s primary goal is to examine the model under the fractional derivative.

4. Modified fractional Euler method

Theorem 1. For the function Ψ(t) which satisfies the condition

DkαΨ(t) ∈ C(0, a], for k = 0, 1, ..., n+ 1, where 0 < α ≤ 1.

Then the generalization of Taylor’s formula that involves Liouville-Caputo fractional deriva-
tives can be defined as follows [18]:

Ψ(t) =

n∑
i=0

tiα

Γ(iα+ 1)
DiαΨ(0+) +

D(n+1)αΨ(ξ)

Γ((n+ 1)α+ 1)
t(n+1)α, 0 ≤ ξ ≤ t, ∀ t ∈ (0, a].

(3)
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The classical Taylor’s formula [5] can be obtained from this formula (3) at α = 1.
Now, we introduce the generalized Euler’s method (GEM) which was derived by Zaid and
Momani [18].
Consider the following general form of the initial value problem (IVP) in the interval [0, T ]
with Liouville-Caputo derivatives of order 0 < α ≤ 1 [18]:

Dαz(t) = g(t, z(t)), z(0) = z0. (4)

To get the required scheme of the GEM, we follow the following steps:

(i) Divide the interval [0, T ] into n subintervals [tj , tj+1] of equal width (step size) h =
T/n with nodes tj+1 = tj + h, for j = 0, 1, ..., n.

(ii) Assume that Dℓ αz(t), ℓ = 0, 1, 2 are continuous on [0, T ].

(iii) Use the generalized Taylor’s formula (3) to expand z(t) about t = t0 = 0 as follows:

z(t) = z(t0) +
Dαz(t0)

Γ(α+ 1)
tα +

D2αz(c1)

Γ(2α+ 1)
t2α, 0 < c1 < T. (5)

(iv) Substitute by Dαz(t0) = g(t0, z(t0)) and h = t1 − t0 in equation (5), to get the
following expression for z(t1):

z(t1) = z(t0) + g(t0, z(t0))
hα

Γ(α+ 1)
+D2αz(c1)

h2α

Γ(2α+ 1)
.

(v) If we choose h small enough, then we may neglect the second-order term (involving
h2α) in the previous expansion and get the following approximation:

z(t1) = z(t0) + g(t0, z(t0))
hα

Γ(α+ 1)
.

(vi) Repeat the above process to generate a sequence of points zj = z(tj) that approxi-
mates the solution z(t) at the nodes tj , j = 0, 1, 2, ... .
The general formula for the GEM is given as follows:

z(tj+1) = z(tj) + g(tj , z(tj))
hα

Γ(α+ 1)
, j = 0, 1, ..., n− 1. (6)

(vii) Apply the developed a new modification in [6], to obtain the general form of the
scheme of the MFEM for solving fractional IVP (4) as follows:

z(tj+1) = z(tj)+
hα

Γ(α+ 1)
g

(
tj +

hα

2Γ(α+ 1)
, z(tj) +

hα

2Γ(α+ 1)
g(tj , z(tj)

)
. j = 0, 1, ..., n−1.

(7)
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The upper bound of the error generated by the given numerical scheme (7) will be esti-
mated through the next theorem.

Theorem 2. [6] Suppose that g is a continuous real-valued function and satisfies the
following Lipschitz condition:

|g(t, z1)− g(t, z2)| ≤ κ|z1 − z2|, κ ∈ Ω = [a, b]× R.

Suppose that a constant δ exists with |Dnαz(t)| ≤ δ, ∀ a ≤ t ≤ b. Then, we have:

|z(tk)− zk| ≤ γ (ek θ − 1), k = 0, 1, 2, ..., n, (8)

where γ and θ are defined as follows:

γ =
2Γ2(α+ 1)h2α δ

Γ(2α+ 1)(2Γ(α+ 1)hα + h2ακ)
, θ =

2Γ(α+ 1)hα + h2ακ

2Γ2(α+ 1)
.

Proof. The detail of the proof of this theorem can be found in [6].

5. Solving fractional-order smoking model

In this section, we obtain numerical solutions for the smoking model in its fractional
form using the method proposed in the previous section (MFEM). For this purpose, we
can revise this model (2) again as follows:

DαSr(t) = gr(S1,S2, S3,S4,S5, t), r = 1, 2, 3, 4, 5, (9)

where

g1(S1, S2,S3,S4, S5, t) = κ− ε1 S1(t)S2(t) + ω S4(t)− µS1(t),
g2(S1, S2,S3,S4, S5, t) = ε1 S1(t)S2(t)− ε2 S2(t)S3(t)− (κ1 + µ) S2(t),
g3(S1, S2, S3,S4, S5, t) = ε2 S2(t)S3(t)− (φ+ κ2 + µ)S3(t),
g4(S1,S2, S3,S4, S5, t) = φS3(t)− (λ+ µ+ ω)S4(t),
g5(S1,S2, S3,S4,S5, t) = λ S4(t)− µ S5(t).

(10)

We assume that DkαSr(t), k = 0, 1, 2 are continuous on (0, T ]. Then we can generate
the numerical solution Sr(tk), r = 1, 2, 3, 4, 5 of the system (9) by applying the derived
numerical scheme (7) with the following iteration form:

Sr(tj+1) = Sr(tj) +
hα

Γ(α+ 1)
gr

(
tj +

hα

2Γ(α+ 1)
,Sr(tj) +

hα

2Γ(α+ 1)
.

gr(tj , S1(tj),S2(tj),S3(tj),S4(tj), S5(tj))
)
, r = 1, 2, 3, 4, 5,

(11)

where gr, r = 1, 2, 3, 4, 5 are defined in (10).
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6. Computational results

In this section, we give a numerical simulation of the proposed model (2) in the interval
[0, 30] with varying values of the initial solution and fractional order α, and the important
two parameters µ, κ; with step size h = 0.3 and we will be able to confirm the accuracy
and persistency of the given technique. However, we use the same values in all figures:

κ = 0.1, ε1 = ω = κ1 = κ2 = 0.003, ε2 = µ = 0.002, φ = λ = 0.05.

The following two cases of the initial solutions are considered:

(i) Case 1: S01 = 25, S02 = 20, S03 = 15, S04 = 10, S05 = 5;

(ii) Case 2: S01 = 65, S02 = 55, S03 = 45, S04 = 25, S05 = 15.

To assess the accuracy and efficiency of the proposed scheme, we also provide a comparison
between the results produced by the given scheme and those obtained by applying the
generalized Euler method.

Labels of Figures.

No. Description Used values Initial conditions
1 Numerical solution α = 1.0, 0.9, 0.8, 0.7 Case 1
2 Numerical solution α = 1.0, 0.9, 0.8, 0.7 Case 2
3 Comparison between the method and GEM α = 0.95 Case 1
4 Comparison between the method and GEM α = 0.95 Case 2
5 The impact of the system’s natural death rate µ = (3, 4, 11, 14)× 10−4 Case 1
6 The impact of the system’s recruitment rate κ = 0.1, 0.3, 0.5, 0.7 Case 1

Figures 1 through 6 present the numerical findings for the model under study that were
produced by using the suggested technique.

Based on these findings, we can conclude that the given technique is appropriate for
solving the current model in its Liouville-Caputo fractional form, as the behavior of the
numerical solution obtained by applying the proposed method depends on the values of
α, h, µ, and κ. Furthermore, the efficiency of the process and the outcomes are signif-
icantly enhanced by the suggested methodology. In Figures 5 and 6, respectively, the
effect of the recruitment rate (due to immigration or birth), and the smoking cessation
rate on the behavior and dynamics of the solutions was studied. From Figure 5, we find
that indeed, increasing the values of the departure rate leads to a decrease in the values
of each of the four components S2(t) to S5(t) without affecting the component S1(t), and
this is largely consistent with the natural meaning of the model under study, especially
from a medical and therapeutic perspective. Likewise, from Figure 6 we found that in-
deed, increasing the values of the recruitment rate (due to migration or birth) leads to an
increase in the values of each of the four components S1(t) to S4(t) without affecting the
component S5(t), and this is largely consistent with the natural meaning of the system
under study, especially from a medical and therapeutic perspective.
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Fig. 1: The solution Si(t), i = 1, 2, 3, 4, 5 for some α with small initial values.
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Fig. 2: The solution Si(t), i = 1, 2, 3, 4, 5 for some α with large initial values.
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Fig. 3: The Si(t), i = 1, 2, 3, 4, 5 by the present and GEM methods α = 1

with small initial values.

In addition, to strongly prove and confirm the effectiveness of the given technique, we
present a comparison between the MFEM with the generalized fractional Euler method.
This comparison is done through Table 2 at some different iterations of the procedure
with α = 0.95, and h = 0.15 in each method, but with the same initial conditions as in
Case 2 and the same parameters as in Figure 1. Where for each method, we computed the
Relative Approximate Error (RAE) which is defined as below to show that our presented
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Fig. 4: The solution Si(t), i = 1, 2, 3, 4, 5 by the present and GEM methods α = 1

with large initial values.

method is more accurate and computationally effective in solving the given system:

RAE of Sp(tk) =
∣∣∣∣Sp(tk+1)− Sp(tk)

Sp(tk+1)

∣∣∣∣ , p = 1, 2, 3, 4, 5.

Also, we computed the allowed time t̄ for obtaining these results by applying the two
methods (t̄=75 sec. for MFEM, t̄=160 sec. for GEM).
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Fig. 5: The effect of µ on the approximate solution Si(t), i = 1, 2, 3, 4, 5.
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Fig. 6: The effect of κ on the approximate solution Si(t), i = 1, 2, 3, 4, 5.
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Table 2: Values of the RAE for the present method (first row) and GEM (second row) with α = 0.95.

k RAE − S1(tk) RAE − S2(tk) RAE − S3(tk) RAE − S4(tk) RAE − S5(tk)
10 0.2583× 10−5 5.2660× 10−4 8.2511× 10−3 8.6542× 10−3 6.3508× 10−4

7.5621× 10−3 6.3255× 10−2 7.5621× 10−1 0.0226× 10−2 9.2145× 10−3

20 4.2154× 10−4 1.9512× 10−5 7.2584× 10−5 6.2581× 10−5 1.2005× 10−4

8.5201× 10−2 8.2509× 10−2 7.2156× 10−4 9.2812× 10−3 9.2580× 10−2

30 8.0056× 10−6 9.2258× 10−5 2.0897× 10−5 9.2581× 10−6 6.2581× 10−5

8.2581× 10−4 9.2581× 10−3 8.2554× 10−3 6.0057× 10−4 6.0257× 10−4

40 6.2014× 10−5 9.8025× 10−6 5.6241× 10−5 8.2943× 10−5 6.2581× 10−5

5.2210× 10−3 4.0579× 10−4 9.3025× 10−2 8.2581× 10−3 9.2508× 10−3

50 8.2030× 10−7 6.0258× 10−7 5.2017× 10−6 8.2589× 10−6 7.5623× 10−6

8.2587× 10−5 4.2587× 10−5 9.3652× 10−4 8.5214× 10−5 9.0258× 10−4

60 9.2584× 10−6 5.0254× 10−7 8.2541× 10−7 6.2587× 10−7 6.0258× 10−6

7.2564× 10−4 7.5824× 10−5 9.3587× 10−5 9.2587× 10−4 5.3698× 10−4

70 6.2874× 10−8 9.2580× 10−7 7.2054× 10−7 6.3258× 10−8 7.6250× 10−8

4.6528× 10−7 7.9542× 10−5 0.1593× 10−5 5.2810× 10−7 6.2591× 10−6

80 5.2914× 10−7 7.5630× 10−8 4.6528× 10−7 2.2147× 10−8 8.9254× 10−7

6.2581× 10−6 7.5829× 10−7 5.2810× 10−6 5.9190× 10−7 6.2581× 10−5

90 6.2587× 10−9 0.2580× 10−8 1.2250× 10−9 2.5879× 10−9 6.2415× 10−8

5.2614× 10−7 2.2581× 10−6 3.9650× 10−7 4.2589× 10−7 3.2590× 10−6

100 5.6280× 10−8 7.2941× 10−9 1.0236× 10−9 1.5587× 10−8 9.0054× 10−8

8.2541× 10−6 5.2913× 10−7 7.2564× 10−7 6.2591× 10−6 2.9514× 10−7

7. Conclusions and discussions

In this research work, we applied the modified fractional Euler method to provide a
numerical study and simulation of the smoking model in its fractional form, which is rep-
resented by a system of mathematical equations. Therefore, we paid attention to studying
the behavior of the numerical solution of the problem under study for different fractional
motions as well as for the standard motion α = 1. The resulting numerical solution was
also compared with its counterpart and the result of the generalized FEM, and this com-
parison helped us to fully confirm that the numerical solution resulting from this applied
numerical method agrees well with the standard case of the same method. In addition,
through this study, we found that this proposed approach can solve problems effectively
with high accuracy. Finally, the present study may contribute to providing more robust
physical explanations for future theoretical and computational studies on the same topic.
All calculations in this research work were done using Mathematica 8.0.
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