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Abstract. In 1965, Zadeh introduced the foundational concept of fuzzy sets, followed by Atanassov’s
introduction of intuitionistic fuzzy sets in 1986. Yager expanded this field with Pythagorean fuzzy
sets in 2013, and in 2020, Senapati and Yager further advanced the theory by proposing Fermatean
fuzzy sets. This study applies Fermatean fuzzy sets to IUP-algebras, focusing on Fermatean fuzzy
IUP-subalgebras, IUP-ideals, IUP-filters, and strong IUP-ideals. We examine their properties, in-
cluding characteristic Fermatean fuzzy sets and upper and lower t-(strong) level subsets, offering
deeper insights into their structural relationships.
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1. Introduction

The concept of fuzzy sets (FSs), introduced by Zadeh [15], revolutionized the handling
of uncertainty by allowing elements to have varying degrees of membership. This founda-
tional idea was extended by Atanassov [2] with intuitionistic fuzzy sets (IFSs), which added
a degree of non-membership. Yager [14] further advanced this field with Pythagorean fuzzy
sets (PFSs), where the square sum of membership and non-membership degrees is ≤ 1.
The most recent development, Fermatean fuzzy sets (FFSs), was introduced by Senapati
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and Yager [11]. Fermatean fuzzy sets allow the sum of the cubes of membership and
non-membership degrees to be ≤ 1, providing even greater flexibility and precision. These
progressive enhancements have significantly enriched decision-making, medical diagnosis,
and risk assessment, showcasing fuzzy logic’s dynamic evolution and growing sophistica-
tion in modelling complex uncertainties.

After that, the concept of Fermatean fuzzy sets has been studied extensively and con-
tinuously in many spaces, such as Lalitha and Buvaneswari [10] identified and proved
various properties, especially those involving the operation A ⇁ B defined as Fermatean
fuzzy implication with other operations. Muhammad et al. [8] proposed a new type of
fuzzy system known as the Fermatean fuzzy system. More precisely, they presented the
notion of Fermatean fuzzy ideal theory and rough Fermatean fuzzy sets in semigroups
and initiated the idea of lower and upper approximations in Fermatean fuzzy sets. They
extended the study to rough Fermatean fuzzy left (resp., right, interior) ideals in semi-
groups. Balamurugan and Nagarajan [3] came up with the idea of a Fermatean fuzzy
soft-covered generalized bi-ideal on a semigroup. This extends the idea of a Fermatean
fuzzy soft bi-ideal and describes regular semigroups in terms of Fermatean fuzzy soft gen-
eralized bi-ideals. They framed the combining of fuzzy relations, composition relations,
and compatible relations with Fermatean fuzzy sets. They also introduced the notions
of a Fermatean fuzzy soft equivalence relation and a Fermatean fuzzy soft compatible
relation on a semigroup. Finally, they provided a Fermatean fuzzy soft inverse relation
and a Fermatean fuzzy soft congruence on a semigroup. Balamurugan and Nagarajan [4]
first discussed bipolar Fermatean uncertainty subalgebras regarding R-ideals. They also
discussed some exciting ideas and examined how bipolar Fermatean uncertainty soft ideals
and bipolar Fermatean uncertainty soft R-ideals are related. Adak et al. [1] introduced
the concept of Fermatean fuzzy semi-prime ideals and Fermatean fuzzy prime ideals of
ordered semigroups. They illustrated some novel concepts to construct Fermatean fuzzy
intra-regular and regular ideals and gave several relations for the family of Fermatean
fuzzy regular ideals of ordered semigroups.

Iampan et al. [7] introduced the groundbreaking concept of IUP-algebras. This innova-
tive theory defines four key subsets: IUP-subalgebras, IUP-filters, IUP-ideals, and strong
IUP-ideals. Each subset’s fundamental properties were meticulously examined, unveiling
new research avenues and applications in the mathematical world. Since its introduction,
the mathematical structure of IUP-algebras has captivated numerous researchers, sparking
extensive studies that continue to this day. Enthusiastic scholars have delved deep into
the intricacies of IUP-algebras and applied its principles to various other concepts. This
has led to the creation of many new definitions and theories, significantly expanding the
field and demonstrating the far-reaching impact of IUP-algebras on modern mathematics.
Chanmanee et al. [6] introduced the concept of the direct product of an infinite family
of IUP-algebras. They explored the external direct product of specific subsets and intro-
duced the weak direct product. Additionally, they presented fundamental theorems on
(anti-)IUP-homomorphisms within this context. Their work significantly advances both
the theoretical framework and practical understanding of IUP-algebras. Chanmanee et
al. [5] pioneered the concept of the direct product for an infinite family of IUP-algebras,
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demonstrating that it forms a DIUP-algebra. Additionally, they introduced the innovative
idea of weak direct product DIUP-algebras, further expanding the theoretical framework
of IUP-algebras. Kuntama et al. [9] has revolutionized the application of fuzzy set the-
ory to IUP-algebras by introducing four groundbreaking concepts: fuzzy IUP-subalgebras,
fuzzy IUP-ideals, fuzzy IUP-filters, and fuzzy strong IUP-ideals. Their study delves deep
into these innovative ideas, meticulously exploring their unique properties and intricate
interrelationships. This work marks a significant advancement in the field, opening new
avenues for research and application. Suayngam et al. [13] made significant steps for-
ward in the study of IUP-algebras in 2024 by coming up with the ideas of intuitionistic
fuzzy IUP-subalgebras, intuitionistic fuzzy IUP-ideals, intuitionistic fuzzy IUP-filters, and
intuitionistic fuzzy strong IUP-ideals. This pioneering work expands the theoretical land-
scape of IUP-algebras, blending intuitionistic fuzzy set theory with algebraic structures in
innovative ways.

Building on extensive research into Fermatean fuzzy sets, this paper aims to ex-
tend these concepts to IUP-algebras. We introduce and explore Fermatean fuzzy IUP-
subalgebras, Fermatean fuzzy IUP-ideals, Fermatean fuzzy IUP-filters, and Fermatean
fuzzy strong IUP-ideals. Our study investigates their properties, focusing on characteris-
tic Fermatean fuzzy sets, upper t-(strong) level subsets, and lower t-(strong) level subsets.

2. Preliminaries

Before delving into our study, let’s review the foundational concepts of IUP-algebras,
including their various properties and pertinent definitions crucial to this research.

Definition 1. [7] An algebra X = (X; ·, 0) of type (2, 0) is called an IUP-algebra, where
X is a non-empty set, · is a binary operation on X, and 0 is a fixed element of X if it
satisfies the following axioms:

(∀x ∈ X)(0 · x = x) (IUP-1)

(∀x ∈ X)(x · x = 0) (IUP-2)

(∀x, y, z ∈ X)((x · y) · (x · z) = y · z) (IUP-3)

Example 1. [7] Let (G, •, e) be a group such that all elements self-inverse. Then (G, •, e)
is an IUP-algebra.

Example 2. [7] Let X be a set and P(X) means the power set of X. It follows from
Example 1 that (P(X),△, ∅) is an IUP-algebra where the binary operation △ is defined as
the symmetric difference of any two sets.

Example 3. [7] Let (G, •, e) be a group with the identity element e. Define a binary
operation • on G by:

(∀x, y ∈ G)(x • y = yx−1) (2.1)

Then (G, •, e) is an IUP-algebra.
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For convenience, we refer to X as an IUP-algebra X = (X; ·, 0) until otherwise speci-
fied.

Proposition 1. [7] In X, the following assertions are valid (see [7]).

(∀x, y ∈ X)((x · 0) · (x · y) = y) (2.2)

(∀x ∈ X)((x · 0) · (x · 0) = 0) (2.3)

(∀x, y ∈ X)((x · y) · 0 = y · x) (2.4)

(∀x ∈ X)((x · 0) · 0 = x) (2.5)

(∀x, y ∈ X)(x · ((x · 0) · y) = y) (2.6)

(∀x, y ∈ X)(((x · 0) · y) · x = y · 0) (2.7)

(∀x, y, z ∈ X)(x · y = x · z ⇔ y = z) (2.8)

(∀x, y ∈ X)(x · y = 0 ⇔ x = y) (2.9)

(∀x ∈ X)(x · 0 = 0 ⇔ x = 0) (2.10)

(∀x, y, z ∈ X)(y · x = z · x ⇔ y = z) (2.11)

(∀x, y ∈ X)(x · y = y ⇒ x = 0) (2.12)

(∀x, y, z ∈ X)((x · y) · 0 = (z · y) · (z · x)) (2.13)

(∀x, y, z ∈ X)(x · y = 0 ⇔ (z · x) · (z · y) = 0) (2.14)

(∀x, y, z ∈ X)(x · y = 0 ⇔ (x · z) · (y · z) = 0) (2.15)

the right and the left cancellation laws hold (2.16)

In the realm of IUP-algebras, four key subsets are crucial: IUP-subalgebras, IUP-
filters, IUP-ideals, and strong IUP-ideals. These subsets provide a nuanced framework
essential for understanding and applying IUP-algebras in various mathematical contexts.

Definition 2. [7] A non-empty subset S of X is called

(i) an IUP-subalgebra of X if it satisfies the following condition:

(∀x, y ∈ S)(x · y ∈ S) (2.17)

(ii) an IUP-filter of X if it satisfies the following conditions:

the constant 0 of X is in S (2.18)

(∀x, y ∈ X)(x · y ∈ S and x ∈ S ⇒ y ∈ S) (2.19)

(iii) an IUP-ideal of X if it satisfies the condition (2.18) and the following condition:

(∀x, y, z ∈ X)(x · (y · z) ∈ S and y ∈ S ⇒ x · z ∈ S) (2.20)

(iv) a strong IUP-ideal of X if it satisfies the following condition:

(∀x, y ∈ X)(y ∈ S ⇒ x · y ∈ S) (2.21)
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According to [7], the concept of IUP-filters serves as a generalization encompassing
IUP-ideals and IUP-subalgebras. Both IUP-ideals and IUP-subalgebras, in turn, gen-
eralize strong IUP-ideals. In an IUP-algebra X, it is observed that strong IUP-ideals
coincide with X itself. This relationship is illustrated in the diagram of special subsets of
IUP-algebras, depicted in Figure 1.

Figure 1: Special subsets of IUP-algebras

3. Main results

Before diving into the definition of Fermatean fuzzy sets, it’s essential to revisit and
understand the foundational concepts that underpin them. This background will provide
the necessary context and enhance our comprehension of Fermatean fuzzy sets.

From now on, we will use abbreviations to represent the following technical terms.

Technical terms Abbreviations

Fuzzy set FS
Fermatean fuzzy set FFS
Fermatean fuzzy IUP-subalgebra FFIUP-subalgebra
Fermatean fuzzy IUP-ideal FFIUP-ideal
Fermatean fuzzy IUP-filter FFIUP-filter
Fermatean fuzzy strong IUP-ideal FFSIUP-ideal

Definition 3. [2] Let X be a universe of discourse. A Fermatean fuzzy set F (FFS) in X
is an object having the form F = {(x, αF (x), βF (x)) : x ∈ X}, where αF (x) : X → [0, 1]
and βF (x) : X → [0, 1], including the following condition:

(∀x ∈ X)(0 ≤ (αF (x))
3 + (βF (x))

3 ≤ 1) (3.1)

The numbers αF (x) and βF (x) denote, respectively, the degree of membership and the
degree of non-membership of the element x in the set F .

For any FFS F and x ∈ X, πF (x) = 3
√
1− (αF (x))3 − (βF (x))3 is identified as the

degree of indeterminacy of x to F .
In the interest of simplicity, we shall mention the symbol F = (αF , βF ) for the FFS

F = {(x, αF (x), βF (x)) : x ∈ X}.
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For a subset G of a non-empty set X, the characteristic functions αFG
and βFG

are
functions of X into {0, 1} defined as follows:

αFG
(x) =

{
1 if x ∈ G

0 otherwise

βFG
(x) =

{
0 if x ∈ G

1 otherwise

By the definition of the characteristic function, αFG
and βFG

are functions of X into
{0, 1} ⊂ [0, 1]. Therefore, the FFS FG = (αFG

, βFG
) is defined as the characteristic FFS

of G in X.

Definition 4. Let f be an FS in a non-empty set X. Then the FS f defined by f(x) =
1− f(x) for all x ∈ X is called the complement of f in X.

Definition 5. Let F be an FFS in a non-empty set X. Then the FFS F = (αF , βF ) is
called the complement of F in X.

We extend FFSs to IUP-algebras, introducing four innovative types: Fermatean fuzzy
IUP-subalgebras, IUP-ideals, IUP-filters, and strong IUP-ideals. This application opens
new dimensions in the study of IUP-algebras, enriching both their theoretical and practical
frameworks.

Definition 6. An FFS F in X is called a Fermatean fuzzy IUP-subalgebra (FFIUP-
subalgebra) of X if it satisfies the following properties:

(∀x, y ∈ X)(αF (x · y) ≥ min{αF (x), αF (y)}) (3.2)

(∀x, y ∈ X)(βF (x · y) ≤ max{βF (x), βF (y)}) (3.3)

Definition 7. An FFS F in X is called a Fermatean fuzzy IUP-ideal (FFIUP-ideal) of
X if it satisfies the following properties:

(∀x ∈ X)(αF (0) ≥ αF (x)) (3.4)

(∀x ∈ X)(βF (0) ≤ βF (x)) (3.5)

(∀x, y, z ∈ X)(αF (x · z) ≥ min{αF (x · (y · z)), αF (y)}) (3.6)

(∀x, y, z ∈ X)(βF (x · z) ≤ max{βF (x · (y · z)), βF (y)}) (3.7)

Definition 8. An FFS F in X is called a Fermatean fuzzy IUP-filter (FFIUP-filter) of
X if it satisfies (3.4), (3.5), and the following properties:

(∀x, y ∈ X)(αF (y) ≥ min{αF (x · y), αF (x)}) (3.8)

(∀x, y ∈ X)(βF (y) ≤ max{βF (x · y), βF (x)}) (3.9)
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Definition 9. An FFS F in X is called a Fermatean fuzzy strong IUP-ideal (FFSIUP-
ideal) of X if it satisfies the following properties:

(∀x, y ∈ X)(αF (x · y) ≥ αF (y)) (3.10)

(∀x, y ∈ X)(βF (x · y) ≤ βF (y)) (3.11)

Lemma 1. Every FFIUP-subalgebra of X satisfies (3.4) and (3.5).

Proof. Assume that F is an FFIUP-subalgebra of X. Let x ∈ X. Then

αF (0) = αF (x · x) (by (IUP-2))

≥ min{αF (x), αF (x)} (by (3.2))

= αF (x),

βF (0) = βF (x · x) (by (IUP-2))

≤ max{βF (x), βF (x)}. (by (3.3))

Hence, F satisfies (3.4) and (3.5).

Theorem 1. Every FFSIUP-ideal of X satisfies (3.4) and (3.5).

Proof. Assume that F is an FFSIUP-ideal of X. Let x ∈ X. Then

αF (0) = αF (x · x) (by (IUP-2))

≥ αF (x), (by (3.10))

βF (0) = βF (x · x) (by (IUP-2))

≤ βF (x). (by (3.11))

Hence, F satisfies (3.4) and (3.5).

Theorem 2. An FFSIUP-ideal and constant FFS coincide.

Proof. Assume that F is an FFSIUP-ideal of X. Let x ∈ X. Then

αF (x) = αF ((x · 0) · 0) (by (2.5))

≥ αF (0), (by (3.10))

βF (x) = βF ((x · 0) · 0) (by (2.5))

≤ βF (0). (by (3.11))

It follows from Theorem 1 that F is a constant FFS of X.
Conversely, it is obviously true that every constant FFS is an FFSIUP-ideal of X.

The following theorem is a direct consequence of Theorem 2.

Theorem 3. Every FFSIUP-ideal of X is an FFIUP-subalgebra of X.
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Example 4. Let X = {0, 1, 2, 3, 4, 5} with the following Cayley table:

· 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 0 4 5 2 3
2 3 5 0 4 1 2
3 2 4 5 0 3 1
4 5 3 1 2 0 4
5 4 2 3 1 5 0

Then X is an IUP-algebra. We define an FFS F in X as follows:

αF =

(
0

0.9

1

0.1

2

0.1

3

0.1

4

0.5

5

0.5

)

βF =

(
0

0.2

1

0.8

2

0.8

3

0.8

4

0.6

5

0.6

)
Then F is an FFIUP-subalgebra of X. Since αF (1 · 4) = αF (2) = 0.1 ≱ 0.5 = αF (4) and
βF (3 · 4) = βF (3) = 0.8 ≰ 0.6 = βF (4). Hence, F is not an FFSIUP-ideal of X.

The following theorem is a direct consequence of Theorem 2.

Theorem 4. Every FFSIUP-ideal of X is an FFIUP-ideal of X.

Example 5. Let X = {0, 1, 2, 3, 4, 5} with the following Cayley table:

· 0 1 2 3 4 5

0 0 1 2 3 4 5
1 4 0 3 1 5 2
2 2 5 0 4 3 1
3 5 4 1 0 2 3
4 1 3 5 2 0 4
5 3 2 4 5 1 0

Then X is an IUP-algebra. We define an FFS F in X as follows:

αF =

(
0

0.5

1

0.1

2

0.1

3

0.3

4

0.1

5

0.3

)

βF =

(
0

0.6

1

0.9

2

0.9

3

0.7

4

0.9

5

0.7

)
Then F is an FFIUP-ideal of X. Since αF (5 · 0) = αF (3) = 0.3 ≱ 0.5 = αF (0) and
βF (1 · 5) = βF (2) = 0.9 ≰ 0.7 = βF (5). Hence, F is not an FFSIUP-ideal of X.

Theorem 5. Every FFIUP-ideal of X is an FFIUP-filter of X.
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Proof. Assume that F is an FFIUP-ideal of X. By the assumption, it satisfies (3.4)
and (3.5). Let x, y ∈ X. Then

αF (y) = αF (0 · y) (by (IUP-1))

≥ min{αF (0 · (x · y)), αF (x)} (by (3.6))

= min{αF (x · y), αF (x)}, (by (IUP-1))

βF (y) = βF (0 · y) (by (IUP-1))

≤ max{βF (0 · (x · y)), βF (x)} (by (3.7))

= max{βF (x · y), βF (x)}. (by (IUP-1))

Hence, F is an FFIUP-filter of X.

Example 6. Let X = {0, 1, 2, 3, 4, 5} with the following Cayley table:

· 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 0 5 4 3 2
2 2 4 0 5 1 3
3 3 5 4 0 2 1
4 5 3 1 2 0 4
5 4 2 3 1 5 0

Then X is an IUP-algebra. We define an FFS F in X as follows:

αF =

(
0

0.6

1

0.5

2

0.2

3

0.2

4

0.2

5

0.2

)

βF =

(
0

0.1

1

0.7

2

0.9

3

0.9

4

0.9

5

0.9

)
Then F is an FFIUP-filter of X. Since αF (2 · 5) = αF (3) = 0.2 ≱ 0.5 = min{0.6, 0.5} =
min{αF (0), αF (1)} = min{αF (2 · 2), αF (1)} = min{αF (2 · (1 · 5)), αF (1)} and βF (3 · 4) =
βF (2) = 0.9 ≰ 0.7 = max{0.1, 0.7} = max{βF (0), βF (1)} = max{βF (3 · 3), βF (1)} =
max{βF (3 · (1 · 4)), βF (1)}. Hence, F is not an FFIUP-ideal of X.

Theorem 6. Every FFIUP-subalgebra of X is an FFIUP-filter of X.

Proof. Assume that F is an FFIUP-subalgebra of X. By Lemma 1, we have F satisfies
(3.4) and (3.5). Let x, y ∈ X. Then

αF (y) = αF (0 · y) (by (IUP-1))

= αF ((x · 0) · (x · y)) (by (IUP-3))

≥ min{αF (x · 0), αF (x · y)} (by (3.2))

≥ min{min{αF (x), αF (0)}, αF (x · y)} (by (3.2))
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= min{αF (x), αF (x · y)}, (by (3.4))

βF (y) = βF (0 · y) (by (IUP-1))

= βF ((x · 0) · (x · y)) (by (IUP-3))

≤ max{βF (x · 0), βF (x · y)} (by (3.3))

≤ max{max{βF (x), βF (0)}, βF (x · y)} (by (3.3))

= max{βF (x), βF (x · y)}. (by (3.5))

Hence, F is an FFIUP-filter of X.

Example 7. [7] Let R∗ be the set of all nonzero real numbers. Define a binary operation
· on R∗ by:

(∀x, y ∈ R∗)(x · y =
y

x
).

Thus, (R∗, ·, 1) is an IUP-algebra.

Example 8. From Example 7, let S = {x ∈ R∗ | x ≥ 1}. Then 1 ∈ S. Next, let x, y, z ∈
R∗ be such that x · (y · z) ≥ 1 and y ≥ 1. Then

z

yx
≥ 1. Thus, x · z =

z

x
= (

z

yx
)y ≥ 1, that

is, x ·z ∈ S. Hence, S is an IUP-ideal of R∗. Then S is an IUP-filter of R∗. By Theorems
9 and 10, we have FS is an FFIUP-ideal and an FFIUP-filter of R∗. Since 1, 3 ∈ S but

3 · 1 =
1

3
∈ S, we have S is not an IUP-subalgebra of R∗. By Theorem 8, we have FS is

not an FFIUP-subalgebra of R∗.

Example 9. Let X = {0, 1, 2, 3, 4, 5} with the following Cayley table:

· 0 1 2 3 4 5

0 0 1 2 3 4 5
1 2 0 1 4 5 3
2 1 2 0 5 3 4
3 3 4 5 0 1 2
4 4 5 3 2 0 1
5 5 3 4 1 2 0

Then X is an IUP-algebra. We define an FFS F in X as follows:

αF =

(
0

0.8

1

0.2

2

0.2

3

0.7

4

0.2

5

0.2

)

βF =

(
0

0.1

1

0.9

2

0.9

3

0.5

4

0.9

5

0.9

)
Then F is an FFIUP-subalgebra of X. Since αF (1·4) = αF (5) = 0.2 ≱ 0.7 = min{0.8, 0.7} =
min{αF (0), αF (3)} = min{αF (1 · (3 · 4)), αF (3)} and βF (1 · 2) = βF (1) = 0.9 ≰ 0.5 =
max{0.5, 0.5} = max{βF (3), βF (3)} = max{βF (1 · (3 · 2)), βF (3)}. Hence, F is not an
FFIUP-ideal of X.
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The study revealed a relationship between the four concepts: FFIUP-ideals and FFIUP-
subalgebras are generalizations of FFSIUP-ideals of IUP-algebras, where FFSIUP-ideals
of IUP-algebras can only be a constant FFS. FFIUP-filters are a generalization of FFIUP-
ideals and FFIUP-subalgebras. We summarize the relationship between these four con-
cepts, shown in Figure 2.

Figure 2: FFSs in IUP-algebras

Theorem 7. If F is an FFIUP-filter of X satisfying the following condition:

(∀x, y, z ∈ X)

(
αF (y · (x · z)) = αF (x · (y · z))
βF (y · (x · z)) = βF (x · (y · z))

)
(3.12)

then F is an FFIUP-ideal of X.

Proof. Assume that F is an FFIUP-filter of X satisfying the condition (3.12). By the
assumption, it satisfies (3.4) and (3.5). Let x, y, z ∈ X. Then

αF (x · z) ≥ min{αF (y · (x · z)), αF (y)} (by (3.8))

= min{αF (x · (y · z)), αF (y)}, (by (3.12))

βF (x · z) ≤ max{βF (y · (x · z)), βF (y)} (by (3.9))

= max{βF (x · (y · z)), βF (y)}. (by (3.12))

Hence, F is an FFIUP-ideal of X.

Lemma 2. Let G be a non-empty subset of X. Then the constant 0 is in G if and only
if the characteristic FFS FG satisfies (3.4) and (3.5).

Proof. Assume that the constant 0 is in G. Then αFG
(0) = 1 and βFG

(0) = 0. Thus,
αFG

(0) = 1 ≥ αFG
(x) and βFG

(0) = 0 ≤ βFG
(x) for all x ∈ X, that is, FG satisfies (3.4)

and (3.5).
Conversely, assume that the characteristic FFS FG satisfies (3.4) and (3.5). Then

αFG
(0) ≥ αFG

(x) for all x ∈ X. Since G is a non-empty subset of X, we let a ∈ G. Then
αFG

(0) ≥ αFG
(a) = 1, so αFG

(0) = 1. Hence, the constant 0 is in G.

Theorem 8. A non-empty subset G of X is an IUP-subalgebra of X if and only if the
characteristic FFS FG is an FFIUP-subalgebra of X.
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Proof. Assume that G is an IUP-subalgebra of X. Let x, y ∈ X.
Case 1: Suppose x, y ∈ G. Then αFG

(x) = 1 and αFG
(y) = 1. Since G is an IUP-

subalgebra ofX, we have x·y ∈ G. Thus, αFG
(x·y) = 1 ≥ min{1, 1} = min{αFG

(x), αFG
(y)}.

Case 2: Suppose x /∈ G or y /∈ G. Then αFG
(x) = 0 or αFG

(y) = 0. Thus, αFG
(x ·y) ≥

0 = min{αFG
(x), αFG

(y)}.
Case 1’: Suppose x, y ∈ G. Then βFG

(x) = 0 and βFG
(y) = 0. Since G is an IUP-

subalgebra of X, we have x · y ∈ G. Thus, βFG
(x · y) = 0 ≤ 0 = max{βFG

(x), βFG
(y)}.

Case 2’ : Suppose x /∈ G or y /∈ G. Then βFG
(x) = 1 or βFG

(y) = 1. Thus,
βFG

(x · y) ≤ 1 = max{βFG
(x), βFG

(y)}.
Hence, the characteristic FFS FG is an FFIUP-subalgebra of X.
Conversely, assume that the characteristic FFS FG is an FFIUP-subalgebra of X.

Let x, y ∈ G. Then αFG
(x) = 1 and αFG

(y) = 1. By (3.2), we have αFG
(x · y) ≥

min{αFG
(x), αFG

(y)} = min{1, 1} = 1. Thus, αFG
(x · y) = 1, that is, x · y ∈ G. Hence, G

is an IUP-subalgebra of X.

Theorem 9. A non-empty subset G of X is an IUP-ideal of X if and only if the charac-
teristic FFS FG is an FFIUP-ideal of X.

Proof. Assume that G is an IUP-ideal of X. Since 0 ∈ G, it follows from Lemma 2
that αFG

and βFG
satisfy (3.4) and (3.5), respectively. Next, let x, y, z ∈ X.

Case 1: Suppose x · (y · z) ∈ G and y ∈ G. Since G is an IUP-ideal of X, we have
x · z ∈ G. Thus, αFG

(x · z) = 1 ≥ 1 = min{1, 1} = min{αFG
(x · (y · z)), αFG

(y)}.
Case 2: Suppose x · (y · z) /∈ G or y /∈ G. Then αFG

(x · (y · z)) = 0 or αFG
(y) = 0.

Thus, αFG
(x · z) ≥ 0 = min{αFG

(x · (y · z)), αFG
(y)}.

Case 1’: Suppose x · (y · z) ∈ G and y ∈ G. Since G is an IUP-ideal of X, we have
x · z ∈ G. Thus, βFG

(x · z) = 0 ≤ 0 = max{0, 0} = max{βFG
(x · (y · z)), βFG

(y)}.
Case 2’: Suppose x · (y · z) /∈ G or y /∈ G. Then βFG

(x · (y · z)) = 1 or βFG
(y) = 1.

Thus, βFG
(x · z) ≤ 1 = max{βFG

(x · (y · z)), βFG
(y)}.

Hence, FG is an FFIUP-ideal of X.
Conversely, assume that the characteristic FFS FG is an FFIUP-ideal of X. Since αFG

satisfies (3.4), it follows from Lemma 2 that 0 ∈ G. Next, let x, y, z ∈ X be such that
x · (y · z) ∈ G and y ∈ G. Then αFG

(x · (y · z)) = 1 and αFG
(y) = 1. Thus, min{αFG

(x ·
(y · z)), αFG

(y)} = 1. By (3.6), we have αFG
(x · z) ≥ min{αFG

(x · (y · z)), αFG
(y)} = 1,

that is, αFG
(x · z) = 1. Hence, x · z ∈ G, so G is an IUP-ideal of X.

Theorem 10. A non-empty subset G of X is an IUP-filter of X if and only if the char-
acteristic FFS FG is an FFIUP-filter of X.

Proof. Assume that G is an IUP-filter of X. Since 0 ∈ G, it follows from Lemma 2
that αFG

and βFG
satisfy (3.4) and (3.5), respectively. Next, let x, y ∈ X.

Case 1: Suppose x · y ∈ G and x ∈ G. Since G is an IUP-filter of X, we have y ∈ G.
Thus, αFG

(y) = 1 ≥ 1 = min{1, 1} = min{αFG
(x · y), αFG

(x)}.
Case 2: Suppose x · y /∈ G or x /∈ G. Then αFG

(x · y) = 0 or αFG
(x) = 0. Thus,

αFG
(y) ≥ 0 = min{αFG

(x · y), αFG
(x)}.
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Case 1’: Suppose x · y ∈ G and x ∈ G. Since G is an IUP-filter of X, we have y ∈ G.
Thus, βFG

(y) = 0 ≤ 0 = max{0, 0} = max{βFG
(x · y), βFG

(x)}.
Case 2’: Suppose x · y /∈ G or x /∈ G. Then βFG

(x · y) = 1 or βFG
(x) = 1. Thus,

βFG
(y) ≤ 1 = max{βFG

(x · y), βFG
(x)}.

Hence, FG is an FFIUP-filter of X.
Conversely, assume that the characteristic FFS FG is an FFIUP-filter of X. Since αFG

satisfies (3.4), it follows from Lemma 2 that 0 ∈ G. Next, let x, y ∈ G be such that x·y ∈ G
and x ∈ G. Then αFG

(x · y) = 1 and αFG
(x) = 1. Thus, min{αFG

(x · y), αFG
(x)} = 1. By

(3.8), we have αFG
(y) = min{αFG

(x · y), αFG
(x)} = 1, that is, αFG

(y) = 1. Hence, y ∈ G,
so G is an IUP-filter of X.

The following theorem is a direct consequence of Theorem 2.

Theorem 11. A non-empty subset G of X is a strong IUP-ideal of X if and only if the
characteristic FFS FG is an FFSIUP-ideal of X.

Lemma 3. [13] Let f be an FS in a non-empty set X. Then the following statements
hold:

(∀x, y ∈ X)(1−max{f(x), f(y)} = min{1− f(x), 1− f(y)}) (3.13)

(∀x, y ∈ X)(1−min{f(x), f(y)} = max{1− f(x), 1− f(y)}) (3.14)

Lemma 4. [13] Let f be an FS in a non-empty set X. Then the following statements
hold:

(∀x, y, z ∈ X)(f(z) ≥ min{f(x), f(y)} ⇔ f(z) ≤ max{f(x), f(y)}) (3.15)

(∀x, y, z ∈ X)(f(z) ≤ max{f(x), f(y)} ⇔ f(z) ≥ min{f(x), f(y)}) (3.16)

Before presenting theorems on the relationship between FSSs and their complements,
it’s crucial to grasp their basic concept. FSSs extend traditional FSs by incorporating
hesitation degrees. The following theorem highlights the key relationship between these
sets and their complements.

Theorem 12. An FFS F is an FFIUP-subalgebra of X if and only if the FSs αF and βF
satisfy (3.2), and the FSs αF and βF satisfy (3.3).

Proof. Assume that F is an FFIUP-subalgebra of X. Then

αF (x · y) ≥ min{αF (x), αF (y)},
βF (x · y) ≤ max{βF (x), βF (y)}.

Thus,

αF (x · y) ≤ max{αF (x), αF (y)}, (by (3.15))

βF (x · y) ≥ min{βF (x), βF (y)}, . (by (3.16))
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Hence, the FSs αF and βF satisfy (3.2), and the FSs αF and βF satisfy (3.3).
Conversely, assume that the FSs αF and βF satisfy (3.2), and the FSs αF and βF satisfy

(3.3). Then αF satisfies (3.2), and βF satisfies (3.3). Hence, F is an FFIUP-subalgebra
of X.

Theorem 13. An FFS F is an FFIUP-ideal of X if and only if the FSs αF and βF
satisfy (3.4) and (3.6), and the FSs αF and βF satisfy (3.5) and (3.7).

Proof. Assume that F is an FFIUP-ideal of X. Then

αF (0) ≥ αF (x),

βF (0) ≤ βF (x),

αF (x · z) ≥ min{αF (x · (y · z)), αF (y)},
βF (x · z) ≤ max{βF (x · (y · z)), βF (y)}.

Thus,

αF (0) ≤ αF (x),

βF (0) ≥ βF (x),

αF (x · z) ≤ max{αF (x · (y · z)), αF (y)},
βF (x · z) ≥ min{βF (x · (y · z)), βF (y)}.

Hence, the FSs αF and βF satisfy (3.4) and (3.6), and the FSs αF and βF satisfy (3.5)
and (3.7).

Conversely, assume that the FSs αF and βF satisfy (3.4) and (3.6), and the FSs αF
and βF satisfy (3.5) and (3.7). Then αF satisfies (3.4) and (3.6), and βF satisfies (3.5)
and (3.7). Hence, F is an FFIUP-ideal of X.

Theorem 14. An FFS F is an FFIUP-filter of X if and only if the FSs αF and βF
satisfy (3.4) and (3.8), and the FSs αF and βF satisfy (3.5) and (3.9).

Proof. Assume that F is an FFIUP-ideal of X. Then

αF (0) ≥ αF (x),

βF (0) ≤ βF (x),

αF (y) ≥ min{αF (x · y), αF (x)},
βF (y) ≤ max{βF (x · y), βF (x)}.

Thus,

αF (0) ≤ αF (x),

βF (0) ≥ βF (x),

αF (y) ≤ max{αF (x · y), αF (x)},
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βF (y) ≥ min{βF (x · y), βF (x)}.

Hence, the FSs αF and βF satisfy (3.4) and (3.8), and the FSs αF and βF satisfy (3.5)
and (3.9).

Conversely, assume that the FSs αF and βF satisfy (3.4) and (3.8), and the FSs αF
and βF satisfy (3.5) and (3.9). Then αF satisfies (3.4) and (3.8), and βF satisfies (3.5)
and (3.9). Hence, F is an FFIUP-filter of X.

The following theorem is a direct consequence of Theorem 2.

Theorem 15. An FFS F is an FFSIUP-ideal of X if and only if the FSs αF and βF
satisfy (3.10), and the FSs αF and βF satisfy (3.11).

Theorem 16. An FFS F is an FFIUP-subalgebra of X if and only if FFS ∗F = (αF , αF )
and △F = (βF , βF ) are FFIUP-subalgebras of X.

Proof. It is straightforward by Theorem 12.

Theorem 17. An FFS F is an FFIUP-ideal of X if and only if FFS ∗F = (αF , αF ) and
△F = (βFβF ) are FFIUP-ideals of X.

Proof. It is straightforward by Theorem 13.

Theorem 18. An FFS F is an FFIUP-filter of X if and only if FFS ∗F = (αF , αF ) and
△F = (βFβF ) are FFIUP-filters of X.

Proof. It is straightforward by Theorem 14.

Theorem 19. An FFS F is an FFSIUP-ideal of X if and only if FFS ∗F = (αF , αF )
and △F = (βFβF ) are FFSIUP-ideals of X.

Proof. It is straightforward by Theorem 15.

Definition 10. [12] Let f be an FS in a non-empty set X. For any t ∈ [0, 1], the sets

U(f ; t) = {x ∈ X | f(x) ≥ t}, (3.17)

L(f ; t) = {x ∈ X | f(x) ≤ t} (3.18)

are called an upper t-level subset and a lower t-level subset of f , respectively. The sets

U
+
(f ; t) = {x ∈ X | f(x) > t}, (3.19)

L
−
(f ; t) = {x ∈ X | f(x) < t} (3.20)

are called an upper t-strong level subset and a lower t-strong level subset of f , respectively.
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Before presenting theorems on the relationship between level subsets and their corre-
sponding FFSs, it’s essential to grasp the key concepts. Level subsets characterize FFSs
by detailing the distribution of membership degrees. The following theorem formalizes
this relationship, providing insights into the structure of FFSs.

Theorem 20. An FFS F is an FFIUP-subalgebra of X if and only if for all t, s ∈ [0, 1],
the sets U(αF ; t) and L(βF ; s) are either empty or IUP-subalgebras of X.

Proof. Assume that F is an FFIUP-subalgebra of X. Let t ∈ [0, 1] be such that
U(αF ; t) ̸= ∅. Let x, y ∈ U(αF ; t). Then αF (x) ≥ t and αF (y) ≥ t. Thus, min{αF (x), αF (y)} ≥
t. By (3.2), we have αF (x · y) ≥ min{αF (x), αF (y)} ≥ t, that is, αF (x · y) ≥ t. Thus,
x · y ∈ U(αF ; t). Hence, U(αF ; t) is an IUP-subalgebra of X.

Let s ∈ [0, 1] be such that L(βF ; s) ̸= ∅. Let x, y ∈ L(βF ; s). Then βF (x) ≤
s and βF (y) ≤ s. Thus, max{βF (x), βF (y)} ≤ s. By (3.3), we have βF (x · y) ≤
max{βF (x), βF (y)} ≤ s, that is, βF (x · y) ≤ s. Thus, x · y ∈ L(βF ; s). Hence, L(βF ; s) is
an IUP-subalgebra of X.

Conversely, assume that for all t, s ∈ [0, 1], the sets U(αF ; t) and L(βF ; s) are either
empty or IUP-subalgebras of X. Let x, y ∈ X. Let t = min{αF (x), αF (y)}. Then
αF (x) ≥ t and αF (y) ≥ t. Thus, x, y ∈ U(αF ; t) ̸= ∅. By the assumption, we have
U(αF ; t) is an IUP-subalgebra of X. By (2.17), we have x ·y ∈ U(αF ; t). Thus, αF (x ·y) ≥
t = min{αF (x), αF (y)}.

Let x, y ∈ X. Let s = max{βF (x), βF (y)}. Then βF (x) ≤ s and βF (y) ≤ s. Thus,
x, y ∈ L(βF ; s) ̸= ∅. By the assumption, we have L(βF ; s) is an IUP-subalgebra of X. By
(2.17), we have x · y ∈ L(βF ; s). Thus, βF (x · y) ≤ s = max{βF (x), βF (y)}.

Hence, F is an FFIUP-subalgebra of X.

Theorem 21. An FFS F in X is an FFIUP-ideal of X if and only if for all t, s ∈ [0, 1],
the sets U(αF ; t) and L(βF ; s) are either empty or IUP-ideals of X.

Proof. Assume that F is an FFIUP-ideal of X. Let t ∈ [0, 1] be such that U(αF ; t) ̸= ∅.
Let r ∈ U(αF ; t). Then αF (r) ≥ t. By (3.4), we have αF (0) ≥ αF (r) ≥ t. Thus,
0 ∈ U(αF ; t). Let x, y, z ∈ X be such that x · (y · z) ∈ U(αF ; t) and y ∈ U(αF ; t). Then
αF (x · (y · z)) ≥ t and αF (y) ≥ t. Thus, min{αF (x · (y · z)), αF (y)} ≥ t. By (3.6), we have
αF (x · z) ≥ min{αF (x · (y · z)), αF (y)} ≥ t. Thus, x · z ∈ U(αF ; t). Hence, U(αF ; t) is an
IUP-ideal of X.

Let s ∈ [0, 1] be such that L(βF ; s) ̸= ∅. Let β ∈ L(βF ; s). Then βF (l) ≤ s. By
(3.5), we have βF (0) ≤ βF (l) ≤ s. Thus, 0 ∈ L(βF ; s). Let x, y, z ∈ X be such that
x · (y · z) ∈ L(βF ; s) and y ∈ L(βF ; s). Then βF (x · (y · z)) ≤ s and βF (y) ≤ s. Thus,
max{βF (x·(y·z)), βF (y)} ≤ s. By (3.7), we have βF (x·z) ≤ max{βF (x·(y·z)), βF (y)} ≤ s.
Thus, x · z ∈ L(βF ; s). Hence, L(βF ; s) is an IUP-ideal of X.

Conversely, assume that for all t, s ∈ [0, 1], the sets U(αF ; t) and L(βF ; s) are either
empty or IUP-ideals of X. Let x ∈ X. Let t = αF (x). Then αF (x) ≥ t. Thus,
x ∈ U(αF ; t) ̸= ∅. By the assumption, we have U(αF ; t) is an IUP-ideal of X. By (2.18),
we have 0 ∈ U(αF ; t). Then αF (0) ≥ t = αF (x). Let x, y, z ∈ X. Let t = min{αF (x · (y ·
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z)), αF (y)}. Then αF (x · (y · z)) ≥ t and αF (y) ≥ t. Thus, x · (y · z), y ∈ U(αF ; t) ̸= ∅. By
the assumption, we have U(αF ; t) is an IUP-ideal of X. By (2.20), we have x·z ∈ U(αF ; t).
Thus, αF (x · z) ≥ t = min{αF (x · (y · z)), αF (y)}.

Let x ∈ X. Let s = βF (x). Then βF (x) ≤ s. Thus, x ∈ L(βF ; s) ̸= ∅. By the
assumption, we have L(βF ; s) is an IUP-ideal of X. By (2.18), we have 0 ∈ L(βF ; s).
Then βF (0) ≤ s = βF (x). Let x, y, z ∈ X. Let s = max{βF (x · (y · z)), βF (y)}. Then
βF (x · (y · z)) ≤ s and βF (y) ≤ s. Thus, x · (y · z), y ∈ L(βF ; s) ̸= ∅. By the assumption,
we have U(βF ; s) is an IUP-ideal of X. By (2.20), we have x · z ∈ L(βF ; s). Thus,
βF (x · z) ≤ s = max{βF (x · (y · z)), βF (y)}.

Hence, F is an FFIUP-ideal of X.

Theorem 22. An FFS F in X is an FFIUP-filter of X if and only if for all t, s ∈ [0, 1],
the sets U(αF ; t) and L(βF ; s) are either empty or IUP-filters of X.

Proof. Assume that F is an FFIUP-filter of X. Let t ∈ [0, 1] be such that U(αF ; t) ̸= ∅.
Let r ∈ U(αF ; t). Then αF (r) ≥ t. By (3.4), we have αF (0) ≥ αF (r) ≥ t. Thus,
0 ∈ U(αF ; t). Let x, y ∈ X be such that x · y ∈ U(αF ; t) and x ∈ U(αF ; t). Then
αF (x · y) ≥ t and αF (x) ≥ t. Thus, min{αF (x · y), αF (x)} ≥ t. By (3.8), we have
αF (y) ≥ min{αF (x · y), αF (x)} ≥ t. Thus, y ∈ U(αF ; t). Hence, U(αF ; t) is an IUP-filter
of X.

Let s ∈ [0, 1] be such that L(βF ; s) ̸= ∅. Let l ∈ L(βF ; s). Then βF (l) ≤ s. By (3.5),
we have βF (0) ≤ βF (l) ≤ s. Thus, 0 ∈ L(βF ; s). Let x, y ∈ X be such that x ·y ∈ L(βF ; s)
and x ∈ L(βF ; s). Then βF (x·y) ≤ s and βF (x) ≤ s. Thus, max{βF (x·y), βF (x)} ≤ s. By
(3.9), we have βF (y) ≤ max{βF (x · y), βF (x)} ≤ s. Thus, y ∈ L(βF ; s). Hence, L(βF ; s)
is an IUP-ideal of X.

Conversely, assume that for all t, s ∈ [0, 1], the sets U(αF ; t) and L(βF ; s) are either
empty or IUP-filters of X. Let x ∈ X. Let t = αF (x). Then αF (x) ≥ t. Thus,
x ∈ U(αF ; t) ̸= ∅. By the assumption, we have U(αF ; t) is an IUP-filter ofX. By (2.18), we
have 0 ∈ U(αF ; t). Then αF (0) ≥ t = αF (x). Let x, y ∈ X. Let t = min{αF (x·y), αF (x)}.
Then αF (x · y) ≥ t and αF (x) ≥ t. Thus, x · y, x ∈ U(αF ; t) ̸= ∅. By the assumption, we
have U(αF ; t) is an IUP-filter of X. By (2.19), we have y ∈ U(αF ; t). Thus, αF (y) ≥ t =
min{αF (x · y), αF (x)}.

Let x ∈ X. Let s = βF (x). Then βF (x) ≤ s. Thus, x ∈ L(βF ; s) ̸= ∅. By the
assumption, we have L(βF ; s) is an IUP-filter of X. By (2.18), we have 0 ∈ L(βF ; s). Then
βF (0) ≤ s = βF (x). Let x, y ∈ X. Let s = max{βF (x · y), βF (x)}. Then βF (x · y) ≤ s and
βF (x) ≤ s. Thus, x · y, x ∈ L(βF ; s) ̸= ∅. By the assumption, we have L(βF ; s) is an IUP-
filter of X. By (2.19), we have y ∈ L(βF ; s). Thus, βF (y) ≤ s = max{βF (x · y), βF (x)}.

Hence, F is an FFIUP-filter of X.

The following theorem is a direct consequence of Theorem 2.

Theorem 23. An FFS F in X is an FFSIUP-ideal of X if and only if for all t, s ∈ [0, 1],
the sets U(αF ; t) and L(βF ; s) are either empty or strong IUP-ideal of X.

Theorem 24. An FFS F in X is an FFIUP-subalgebra of X if and only if for all t, s ∈
[0, 1], the sets U

+
(αF ; t) and L

−
(βF ; s) are either empty or IUP-subalgebras of X.
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Proof. Assume that F is an FFIUP-subalgebra of X. Let t ∈ [0, 1] be such that
U

+
(αF ; t) ̸= ∅. Let x, y ∈ U

+
(αF ; t). Then αF (x) > t and αF (y) > t. Thus, min{αF (x), αF (y)} >

t. By (3.2), we have αF (x · y) ≥ min{αF (x), αF (y)} > t. Thus, x · y ∈ U
+
(αF ; t). Hence,

U
+
(αF ; t) is an IUP-subalgebra of X.
Let s ∈ [0, 1] be such that L

−
(βF ; s) ̸= ∅. Let x, y ∈ L

−
(βF ; s). Then βF (x) <

s and βF (y) < s. Thus, max{βF (x), βF (y)} < s. By (3.3), we have βF (x · y) ≤
max{βF (x), βF (y)} < s. Thus, x · y ∈ L

−
(βF ; s). Hence, L

−
(βF ; s) is an IUP-subalgebra

of X.
Conversely, assume that for all t, s ∈ [0, 1], the sets U

+
(αF ; t) and L

−
(βF ; s) are either

empty or IUP-subalgebras ofX. Let x, y ∈ X. Assume that αF (x·y) < min{αF (x), αF (y)}.
Let t = αF (x·y). Then αF (x) > t and αF (y) > t. Thus, x, y ∈ U

+
(αF ; t). By the assump-

tion, we have U
+
(αF ; t) is an IUP-subalgebra. By (2.17), we have x · y ∈ U

+
(αF ; t). So

αF (x · y) > t = αF (x · y), which is a contradiction. Thus, αF (x · y) ≥ min{αF (x), αF (y)}.
Let x, y ∈ X. Assume that βF (x · y) > max{βF (x), βF (y)}. Let s = βF (x · y). Then

βF (x) < s and βF (y) < s. Thus, x, y ∈ L
−
(βF ; s). By the assumption, we have L

−
(βF ; s)

is an IUP-subalgebra. By (2.17), we have x · y ∈ L
−
(βF ; s). So βF (x · y) < s = βF (x · y),

which is a contradiction. Thus, βF (x · y) ≤ max{βF (x), βF (y)}.
Hence, F is an FFIUP-subalgebra of X.

Theorem 25. An FFS F in X is an FFIUP-ideal of X if and only if for all t, s ∈ [0, 1],
the sets U

+
(αF ; t) and L

−
(βF ; s) are either empty or IUP-ideals of X.

Proof. Assume that F is an FFIUP-ideal of X. Let t ∈ [0, 1] be such that U
+
(αF ; t) ̸=

∅. Let a ∈ U
+
(αF ; t). Then αF (a) > t. By (3.4), we have αF (0) ≥ αF (a) > t. Thus,

0 ∈ U
+
(αF ; t). Let x, y, z ∈ U

+
(αF ; t) be such that x · (y · z), y ∈ U

+
(αF ; t). Then

αF (x · (y · z)) > t and αF (y) > t. Thus, min{αF (x · (y · z)), αF (y)} > t. By (3.6). we have
αF (x · z) ≥ min{αF (x · (y · z)), αF (y)} > t. Thus, x · z ∈ U

+
(αF ; t). Hence, U

+
(αF ; t) is

an IUP-ideal of X.
Let s ∈ [0, 1] be such that L

−
(βF ; s) ̸= ∅. Let β ∈ L

−
(βF ; s). Then βF (β) < s.

By (3.5), we have βF (0) ≤ βF (β) < s. Thus, 0 ∈ L
−
(βF ; s). Let x, y, z ∈ L

−
(βF ; s)

be such that x · (y · z), y ∈ L
−
(βF ; s). Then βF (x · (y · z)) < s and βF (y) < s. Thus,

max{βF (x·(y·z)), βF (y)} < s. By (3.7). we have βF (x·z) ≤ max{βF (x·(y·z)), βF (y)} > s.
Thus, x · z ∈ L

−
(βF ; s). Hence, L

−
(βF ; s) is an IUP-ideal of X.

Conversely, assume that for all t, s ∈ [0, 1], the sets U
+
(αF ; t) and L

−
(βF ; s) are either

empty or IUP-ideals of X. Let x ∈ X. Assume that αF (0) < αF (x). Let t = αF (0).
Then x ∈ U

+
(αF ; t) ̸= ∅. By the assumption, we have U

+
(αF ; t) is an IUP-ideal of X.

By (2.18), we have 0 ∈ U
+
(αF ; t). So αF (0) > t = αF (0), which is a contradiction. Thus,

αF (0) ≥ αF (x). Let x, y, z ∈ X. Assume that αF (x · z) < min{αF (x · (y · z)), αF (y)}. Let
t = αF (x · z). Then x · (y · z), y ∈ U

+
(αF ; t) ̸= ∅. By the assumption, we have U

+
(αF ; t)

is an IUP-ideal of X. By (2.20), we have x · z ∈ U
+
(αF ; t). So αF (x · z) > t = αF (x · z),

which is a contradiction. Thus, αF (x · z) ≥ min{αF (x · (y · z)), αF (y)}.
Let x ∈ X. Assume that βF (0) > βF (x). Let s = βF (0). Then x ∈ L

−
(βF ; s) ̸= ∅.

By the assumption, we have L
−
(βF ; s) is an IUP-ideal of X. By (2.18), we have 0 ∈
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L
−
(βF ; s). So βF (0) < s = βF (0), which is a contradiction. Thus, βF (0) ≤ βF (x). Let

x, y, z ∈ X. Assume that βF (x · z) > max{βF (x · (y · z)), βF (y)}. Let s = βF (x · z). Then
x · (y · z), y ∈ L

−
(βF ; s) ̸= ∅. By the assumption, we have L

−
(βF ; s) is an IUP-ideal of X.

By (2.20), we have x ·z ∈ L
−
(βF ; s). So βF (x ·z) < s = βF (x ·z), which is a contradiction.

Thus, βF (x · z) ≤ max{βF (x · (y · z)), βF (y)}.
Hence, F is an FFIUP-ideal of X.

Theorem 26. An FFS A in X is an FFIUP-filter of X if and only if for all t, s ∈ [0, 1],
the sets U

+
(αF ; t) and L

−
(βF ; s) are either empty or IUP-filters of X.

Proof. Assume that F is an FFIUP-filter of X. Let t ∈ [0, 1] be such that U
+
(αF ; t) ̸=

∅. Let a ∈ U
+
(αF ; t). Then αF (a) > t. By (3.4), we have αF (0) ≥ αF (a) > t. Thus,

0 ∈ U
+
(αF ; t). Let x, y ∈ U

+
(αF ; t) be such that x · y, x ∈ U

+
(αF ; t). Then αF (x · y) > t

and αF (x) > t. Thus, min{αF (x · y), αF (x)} > t. By (3.8). we have αF (y) ≥ min{αF (x ·
y), αF (x)} > t. Thus, y ∈ U

+
(αF ; t). Hence, U

+
(αF ; t) is an IUP-filter of X.

Let s ∈ [0, 1] be such that L
−
(βF ; s) ̸= ∅. Let β ∈ L

−
(βF ; s). Then βF (β) < s. By

(3.5), we have βF (0) ≤ βF (β) < s. Thus, 0 ∈ L
−
(βF ; s). Let x, y ∈ L

−
(βF ; s) be such that

x · y, x ∈ L
−
(βF ; s). Then βF (x · y) < s and βF (x) < s. Thus, max{βF (x · y), βF (x)} < s.

By (3.9). we have βF (y) ≤ max{βF (x · y), βF (x)} > s. Thus, y ∈ L
−
(βF ; s). Hence,

L
−
(βF ; s) is an IUP-ideal of X.
Conversely, assume that for all t, s ∈ [0, 1], the sets U

+
(αF ; t) and L

−
(βF ; s) are either

empty or IUP-filters of X. Let x ∈ X. Assume that αF (0) < αF (x). Let t = αF (0).
Then x ∈ U

+
(αF ; t) ̸= ∅. By the assumption, we have U

+
(αF ; t) is an IUP-ideal of X.

By (2.18), we have 0 ∈ U
+
(αF ; t). So αF (0) > t = αF (0), which is a contradiction.

Thus, αF (0) ≥ αF (x). Let x, y ∈ X. Assume that αF (y) < min{αF (x · y), αF (x)}. Let
t = αF (y). Then x · y, x ∈ U

+
(αF ; t) ̸= ∅. By the assumption, we have U

+
(αF ; t) is an

IUP-filter of X. By (2.19), we have y ∈ U
+
(αF ; t). So αF (y) > t = αF (y), which is a

contradiction. Thus, αF (y) ≥ min{αF (x · y), αF (x)}.
Let x ∈ X. Assume that βF (0) > βF (x). Let s = βF (0). Then x ∈ L

−
(βF ; s) ̸=

∅. By the assumption, we have L
−
(βF ; s) is an IUP-filter of X. By (2.18), we have

0 ∈ L
−
(βF ; s). So βF (0) < s = βF (0), which is a contradiction. Thus, βF (0) ≤ βF (x).

Let x, y ∈ X. Assume that βF (y) > max{βF (x · y), βF (x)}. Let s = βF (y). Then
x · y, x ∈ L

−
(βF ; s) ̸= ∅. By the assumption, we have L

−
(βF ; s) is an IUP-filter of X. By

(2.19), we have y ∈ L
−
(βF ; s). So βF (y) < s = βF (y), which is a contradiction. Thus,

βF (y) ≤ max{βF (x · y), βF (x)}.
Hence, F is an FFIUP-filter of X.

The following theorem is a direct consequence of Theorem 2.

Theorem 27. An FFS F in X is an FFSIUP-ideal of X if and only if for all t, s ∈ [0, 1],
the sets U

+
(αF ; t) and L

−
(βF ; s) are either empty or strong IUP-ideals of X.
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4. Conclusions and future work

Our paper introduces pioneering concepts like FFIUP-subalgebras, FFIUP-ideals, FFIUP-
filters, and FFSIUP-ideals. We explore their crucial properties, examining their relation-
ships to complements, characteristic functions, and level subsets. These insights reveal
complex structures within FFSs and IUP-algebras, offering new perspectives and practi-
cal applications in mathematical theory.

The study of FFSs represents a dynamic evolution in FS theory, extending beyond
academic curiosity. This expanding research inspires scientists and scholars to explore the
synergy between FFSs and IUP-algebras. This convergence is set to drive innovations,
shaping the future of fuzzy mathematics and its diverse applications.
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