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Abstract. In this paper, we have demonstrated that for a putative symmetric block design D with
parameters (220,73,24) constructed by group G of order 73, there exists only one orbit structure
up to isomorphism. The full automorphism group for this orbit structure is provided.
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1. Introduction and preliminaries

A 2−(v, k, λ) block design (P,B, I) is said to be symmetric if the relation |P| = |B| = v
holds and in that case we often speak of a symmetric design with parameters (v, k, λ). The
integer n = k − λ is called the order of the symmetric block design. The collection of the
parameter sets (v, k, λ) for which a symmetric 2 − (v, k, λ) block design exists is often
called the ”spectrum”. The determination of the spectrum for symmetric block designs is
a widely open problem. For example, a finite projective plane of order n is a symmetric
design with parameters (n2+n+1, n+1, 1) and it is still unknown whether finite projective
planes of non–prime–power order may exist at all.

The existence/non-existence of a symmetric block design has often required ”ad hoc”
treatments even for a single parameter set (v, k, λ). The most famous instance of this
circumstance is perhaps the non-existence of the projective plane of order 10, see [9].

It is worthwhile to investigate symmetric block designs with supplementary character-
istics, frequently entailing the premise that a non-trivial automorphism group acts on the
design under scrutiny. See for instance [5].

Investigating symmetric block designs of order 49 within the realm of symmetric block
designs of square order holds notable significance. Despite the existence of 15 potential
parameters (v, k, λ) for symmetric block designs of order 49, only limited results have been
established thus far (see [4], [6]). Given the large number of points (blocks) in symmetric
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block designs of order 49, investigating sporadic cases can be highly challenging, unless
one assumes the existence of a collineation group.

Several techniques exist for constructing symmetric block designs, each demonstrating
effectiveness in specific situations. In this instance, we opt for the tactical decompositions
method, as employed by Z. Janko in [7], also referenced in [8], assuming the action of a
particular automorphism group on the design under construction. This paper focuses on
analyzing a symmetric block design denoted as D = (P,B, I) with parameters (220, 73, 24).
At present, the existence or non-existence of such a design remains uncertain to the best
of our knowledge. Additionally, we posit that the specified design admits a particular
automorphism group of order 73. We expect that the reader has a grasp of fundamental
concepts in design theory, as outlined in references such as [2], [3] and [10]. If g denotes an
automorphism of a symmetric design D characterized by parameters (v, k, λ), it is observed
that g fixes an equal number of points and blocks, as detailed in [10, Theorem 3.1, p.78].
The sets of these fixed elements we denote by FP(g) and FB(g) each, and their number
simply by |F (g)|. For number of fixed points shall we use the following upper bound, as
delineated in [10, Corollary 3.7, p. 82]:

|F (g)| ≤ k +
√
k − λ. (1)

It’s established that an automorphism group G of a symmetric block design exhibits
an equal number of orbits on both the set of points P and the set of blocks B, as outlined
in [10, Theorem 3.3, p.79]. This number is denoted by t.

We utilize the notation and terminology introduced in Section 1 of [5], recapitulating
certain essential relations for the reader’s convenience. Consider D as a symmetric block
design characterized by parameters (v, k, λ), with G representing a subgroup of the auto-
morphism group Aut(D). The point orbits of G on P are denoted as P1,P2, . . .Pt, and
the line orbits of G on B as B1,B2, . . .Bt. Let |Pr| = ωr and |Bi| = Ωi. Clearly,

t∑
r=1

ωr =
t∑

i=1

Ωi = v. (2)

Consider γir as the number of points from Pr situated on a block from Bi; evidently,
this number remains invariant regardless of the chosen block. Similarly, let Γjs be the
number of blocks from Bj intersecting a point from Ps. It is evident that,

t∑
r=1

γir = k and

t∑
j=1

Γjs = k. (3)

By [3, Lemma 5.3.1. p.221], the division of both the point set P and the block set B
constitutes a tactical decomposition of design D as defined in [3, p.210]. Consequently,
the ensuing equations are valid:

Ωi · γir = ωr · Γir, (4)
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t∑
r=1

γirΓjr = λΩj + δij(k − λ), (5)

t∑
i=1

Γirγis = λωs + δrs(k − λ), (6)

where δij , δrs are the Kronecker symbols.
For verification of these equations, readers are encouraged to consult [3] and [5]. Com-

bining Equation (5) with (4) results in

t∑
r=1

Ωj

ωr
γirγjr = λΩj + δij(k − λ). (7)

Definition 1. We denote

[Li, Lj ] =
t∑

r=1

Ωj

ωr
γirγjr, 1 ≤ i, j ≤ t

and term these expressions as the orbit products. The (t× t)-matrix (γir) is called the
orbit structure of the block design D.

An automorphism of an orbit structure entails a permutation of rows followed by a
permutation of columns, maintaining the matrix unchanged. It’s evident that the collec-
tion of all such automorphisms forms a group, referred to as the automorphism group of
that orbit structure.

The initial step in constructing a design is to identify all potential orbit structures.
The subsequent step, typically referred to as indexing, involves specifying which γir points
of the orbit Pr lie on the blocks of the block orbit Bi for each coefficient γir of the orbit
matrix. Naturally, this process only needs to be performed for a representative of each
block orbit, since the other blocks in that orbit can be generated by producing all G-images
of the selected representative.

2. Main results

Let D represent the symmetric block design with parameters (220, 73, 24). Given that
v = 1 + 3 · 73, to construct the symmetric block design D, we employ the cyclic group
G = ⟨ρ|ρ73 = 1⟩ of order 73 as a collineation group.

Lemma 1. Let ρ be an element of G with o(ρ) = 73. Then ⟨ρ⟩ fixes exactly one point and
one block.

Proof. According to [10, Theorem 3.1], the group ⟨ρ⟩ fixes the same number of points
and blocks. Let this number be denoted by f . Clearly, f ≡ 220(mod 73), which means
f ≡ 1(mod 73). The upper bound (1) for the number of fixed points gives f ∈ {1, 74}.
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Since o(ρ) > λ, applying a result from M. Aschbacher [1, Lemma 2.6, p.274] necessitates
the fixed structure being a subdesign of D. However, there is no symmetric block design
with v = 74 and λ = 24 (no k ∈ IN satisfies 24 · (v − 1) = k · (k − 1)). Therefore, f must
be equal to 1.

We set PI = {I0, I1, · · · , I72}, I = 1, 2, 3, for the non-trivial point orbits of the group
G. Consecuently, G uniquely acts as a permutation group on these point orbits. Therefore,
the generator of G can be defined as follows.

ρ = (∞)(I0, I1, · · · , I72), I = 1, 2, 3,

where ∞ is the fixed point of the collineation, the non-trivial ⟨ρ⟩-orbits are the numbers
1, 2, 3, and ∞, 10, 11, · · · , 372 represent all points of the symmetric block design D.

In the following steps, we will construct a representative block for each block orbit.
The ⟨ρ⟩−fixed block can be expressed as:

L1 = (1011 · · · 172)

or
L1 = 173.

Let L2, L3, and L4 be the representative blocks for the three non-trivial block orbits.
The second ρ–orbit block, L2, of block design D, constructed by the collineation ρ, can be
expressed as

L2 = ∞1a12a23a3 ,

where ai, i = 1, 2, 3, represent the multiplicities of the occurrence of orbit numbers 1, 2,
and 3 in the orbit block L2. The multiplicities of these orbit numbers must satisfy the
following conditions:

a1 + a2 + a3 = 72.

Because |L1 ∩ L2| = 24, we have a1 = 24. From (7) we have
[L2, L2] = 73/1 · 1 · 1+73/73 ·a21+73/73 ·a22+73/73 ·a23 = 24 · 73+73− 24 = 1801, i.e.

a21 + a22 + a23 = 1728

or
a22 + a23 = 1152,

whence it follows that the multiplicities of appearances in block L2 yield the constraints
0 ≤ ai ≤ 33, i = 2, 3.

To minimize isomorphic cases in the orbit structures at the final stage, we can assume
without loss of generality that a2 ≥ a3 for block L2.

Using computational methods, we have demonstrated that there exists exactly one
orbit type for block L2 that meets the aforementioned conditions:

a1 a2 a3
1. 24 24 24
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The form of the third orbit block L3, created using the collineation ρ, is as follows:

L3 = 1b12b23b3 .

Here, bi, where i = 1, 2, 3 represent the frequencies of orbit numbers 1, 2, and 3 appearing
in orbit block L3.

The occurrences of orbit numbers must adhere to the following criteria:

b1 + b2 + b3 = 73.

[L1 ∩ L3] = 24 implies b1 = 24. From (7) we have
[L3, L3] = b21 + b22 + b23 = 24 · 73 + 73− 24 = 1801
or
b22 + b23 = 1225.
Based on the previous relation, we deduce the constraints 0 ≤ bi ≤ 35, where i = 2, 3.
[L2, L3] = a1b1 + a2b2 + a3b3 = 24 · 73 = 1752.
Through computational analysis, we have confirmed the existence of precisely two orbit

types for block L3 that meet the aforementioned criteria:

b1 b2 b3
1. 24 28 21
2. 24 21 28

It is evident that among the contenders for block L3 are also blocks L4. Conse-
quently, we examine pairs of blocks {L3, l4} that are mutually compatible. Through this
approach, we have determined that, up to isomorphism, there exists precisely one orbit
structure for the symmetric block design with parameters (220, 73, 24) under the action of
the collineation ρ of order 73:

Orbit structure:

SO 1 73 73 73

0 73 0 0
1 24 24 24
0 24 28 21
0 24 21 28

Full automporphism group of the orbit stucture is:

Aut(SO) = {1, (3 4)(3̄ 4̄)}
Thus we have

Theorem 1. There exists precisely one orbit structure, up to isomorphism, for the sym-
metric block design D characterized by parameters (220, 73, 24) and accommodating the
group G of order 73.

Remark 1. The specific indexing of this orbit structure to generate an example remains
an unresolved issue.
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[4] D. Crnković. Some new menon designs with parameters (196,91,42). Mathematical
Communications, 10(2):169–175, 2005.
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