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Abstract. Optimal flow allocation in directed networks is often analyzed through two types of
equilibria. The first, called user equilibrium, occurs when the travel times on all utilized routes are
the same and shorter than every unused route. The second, called system optimum, minimizes the
average travel time across all routes. These two concepts represent the optimality for individual
users and for the network as a whole, respectively, and generally do not coincide. Our main
objective in this paper is to introduce and examine the properties of networks where the user
equilibrium and the system optimum are identical, termed Wardrop optimal networks. We achieve
this by providing a set of necessary and sufficient conditions for Wardrop optimal flows and using
this characterization we investigate the main properties of Wardrop optimal networks. Moreover,
we illustrate that these flows remain consistent under several important transformations as well as
under uniform changes in their latency functions.

2020 Mathematics Subject Classifications: 05C20,05C21,49Q22

Key Words and Phrases: Optimal flow allocation, Resource management, Wardrop equilibrium,
user and system optimum

1. Introduction

The efficient distribution of flow in directed networks is often examined through two
different key concepts, known as Wardrop’s Principles: user equilibrium and system opti-
mum [30]. Wardrop’s principles are fundamental concepts in transportation and network
theory, providing a basis for understanding traffic flow and congestion management. Ac-
cording to Wardrop’s first principle, user equilibrium is reached when travel times on all
routes in use are the same, and no traveler can reduce their travel time by switching
routes; this state is also referred to as a Wardrop equilibrium [7, 19]. The second principle
asserts that the network flow configuration minimizes the total travel time for all users,
representing an optimal state from the perspective of the network as a whole.

In practice, user equilibrium and system optimum typically differ, leading to inefficien-
cies in network usage. Achieving the system optimum typically requires a form of central
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control or coordination because individual users acting in their self-interest do not natu-
rally lead to system optimal flows. To achieve the system optimum, traffic may need to be
redistributed by encouraging or forcing users to follow less congested routes, even if their
travel time increases. This redistribution reduces the overall congestion and minimizes the
total travel time or cost for all users combined. At user equilibrium, the total travel time
is generally higher than at system optimum because individuals are not incentivized to
consider the overall system performance. In many networks, user equilibrium represents a
”selfish” solution, whereas the system optimum represents a ”cooperative” solution. The
ratio of the total travel time at user equilibrium to that at system optimum is known as
the price of anarchy. A flow that is both system optimum and user equilibrium is called
Wardrop optimal flow and networks that admit such flows are termed Wardrop optimal
networks [4, 13] (see also [2, 3, 5] where Wardrop optimal networks with dynamic flow
assignment are examined and [14] presenting, without proofs, some of the main properties
of Wardrop optimal networks we establish in this paper). By construction, the price of
anarchy of such networks is optimal, i.e., equal to 1, a desirable property in network theory
with applications in fields such as economics [26, 28], transportation [6, 23, 25, 29, 30],
and communications [18, 20, 21, 24], and can be also applied to areas like multiprocessor
task scheduling [8] and media flow with double diffusion [12]. For a comprehensive review
of the literature in approaches bridging user equilibrium and system optimum see [22].

This paper focuses on analyzing these flows and their corresponding networks. A flow
travelling from initial to target node is allocated across multiple links, causing congestion,
which in turn increases travel times, captured by link-specific latency functions that are
strictly increasing. We establish a connection between the user equilibrium and system
optimum through the associated Pigovian network and derive conditions for the existence
and uniqueness of optimal flows in convex networks.

The paper is organized in the following way. In Section 2 we outline the basic defini-
tions we use throughout the paper. Section 3 examines in detail the user equilibrium and
introduces the discrete user equilibrium. Section 4 explores the system optimum, present-
ing necessary and sufficient conditions for its characterization. In Section 5 we introduce
Wardrop optimal networks and provide a characterization for differentiable convex net-
works which demonstrates that these flows are maintained under specific transformations.

2. Preliminaries

The networks we will examine have n links In = {1, 2, . . . , n} connecting the origin
with the destination node [1]. Let ϕi ≥ 0 denote the flow via link i, for every i ∈ In. The
total flow is distributed among the links such that

n∑
i=1

ϕi = 1.

The support of a flow ϕ is denoted by supp(ϕ) = {k ∈ In | ϕk ̸= 0}. Additionally, we
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set

Sn−1 = {ϕ ∈ Rn
+ :

n∑
i=1

ϕi = 1}

and

Int(Sn−1) = {ϕ ∈ Sn−1 : supp(ϕ) = In}.

On each link, the flow induces congestion, increasing the traversal delay [30]. This
delay is captured by continuous and strictly increasing latency functions

li(x) : [0, 1] → R, i ∈ In.

Such a network of can thus be characterized by the vector of latency functions Nn =
(l1(x), . . . , ln(x)). If all latency functions li(x) are differentiable, the network is called a
differentiable network ; if they are convex, it is termed a convex network.

A user equilibrium or Wardrop equilibrium of a network Nn = (l1(x), . . . , ln(x)) is a
flow ϕ = (ϕ1, . . . , ϕn) ∈ Sn−1 such that

lk(ϕk) = min
i∈In

{li(ϕi)}, ∀k ∈ In with ϕk > 0,

i.e., the delay is equal among all used links and less than that of any unused link [6].
The overall delay of a network Nn = (l1(x), . . . , ln(x)) for ϕ = (ϕ1, . . . , ϕn) ∈ Sn−1 is

given by

n∑
i=1

ϕili(ϕi).

A system optimum of a network Nn = (l1(x), . . . , ln(x)) is a flow (ϕ1, . . . , ϕn) ∈ Sn−1

that minimizes this average delay [6].

3. User Equilibrium

In what follows, we explore several properties that will be essential throughout. The
next lemma demonstrates that user equilibrium remains unchanged under mappings which
are strictly increasing. This is because the minimum value in a set is preserved when a
strictly increasing function is applied.

Lemma 1. Consider a network Nn = (l1(x), . . . , ln(x)) and a strictly increasing and
continuous function f(x) : R → R, if a flow (ϕ1, . . . , ϕn) ∈ Sn−1 is user equilibrium of Nn

then it is also user equilibrium of f(Nn) = (f(l1(x)), . . . , f(ln(x))).

On the other hand, the above property doesn’t hold for system optimums as it is
illustrated in the following example.
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l1(x) = x2/3

l2(x) = 2x/3

Figure 1: A network N with two parallel links

Example 1. We examine the network N = {x2

3 ,
2x
3 } presented in Fig. 1 which was utilized

in [1] to highlight the inefficiency due to congestion externalities. The system optimum
that minimizes the average delay of the network is ϕSO = (23 ,

1
3) and the user equilibrium

that equates delay on the two links is ϕWE ≈ (0.73, 0.27).
The network obtained by taking the image of N via the continuous and strictly increas-

ing function f(x) = x2 is

f(N) = {x4

9 ,
4x2

9 }.

It is straightforward to see that the user equilibrium of f(N) is the same but the new
system optimum is ϕSO′ ≈ {0.69, 0.31}.

The example demonstrates that, the system optimum unlike the user equilibrium is not
generally maintained by the type of latency function we consider i.e., continuous, convex
and strictly increasing. This raises the following question: do Wardrop optimal flows
remain consistent under such transformations? We will address this question in Section 5.

The below property will be very useful in our subsequent constructions. It can be easily
proved by a simple geometric inspection of the curves of the strictly increasing latency
functions on the same coordinate system. Below we provide a more detailed algebraic
proof (similar constructions exist in the literature for the user equilibrium, see e.g. [27]).

Proposition 1. There exists a unique user equilibrium for any network Nn.

Proof. Let Nn = (l1(x), · · · , ln(x)). For each i ∈ In, we set ai = li(0), bi = li(1) and
consider the inverse (again continuous, strictly increasing) function l−1

i : [ai, bi] → [0, 1] of
each latency function li : [0, 1] → [ai, bi].

We define a continuous and increasing function l−1
i : R → [0, 1] by

l−1
i (y) :=


0, if y < ai

l−1
i (y), if ai ≤ y ≤ bi

1, if y > bi

as well as a function L−1 : R → [0, n] by

L−1(y) :=
∑
i∈In

l−1
i (y).
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Then L−1 : R → [0, n] is also a continuous and increasing function such that L−1(y) = 0
for any 0 ≤ y ≤ min

i∈In
{ai} and L−1(y) = n for any y ≥ max

i∈In
{bi}.

Since
l−1
j : [aj , bj ] → [0, 1]

is the strictly increasing function on the interval [aj , bj ] where

aj = min
i∈In

{ai},

therefore the function L−1 : [aj , bj ] → [0, n] is also strictly increasing on the same interval
[aj , bj ] where aj = min

i∈In
{ai}. It can be easily seen that L−1(aj) = 0 and L−1(bj) ≥

l−1
j (bj) = 1.

Let L−1(bj) = 1. Then the unique user equilibrium is

ϕ = (0, 0 · · · , 0, 1︸︷︷︸
j

, 0, · · · 0)

with supp(ϕ) = {j}. Indeed, since

L−1(bj) =
∑
i∈In

l−1
i (bj) = 1,

it is easy to see that l−1
j (bj) = l−1

j (bj) = 1 or equivalently lj(1) = bj and meanwhile

l−1
i (bj) = 0 for every i ∈ In with i ̸= j or equivalently bj ≤ ai for every i ∈ In with i ̸= j.
The last inequality means that li(0) = ai ≥ bj = lj(1) for every i ∈ In with i ̸= j.

Let L−1(bj) > 1. Since L−1([0, aj ]) = 0, the function L−1 is strictly increasing on the
interval [aj , bj ], and L−1(bj) > 1. Then there always exists a unique c ∈ (aj , bj) such that
L−1(c) = 1.

Let us define the following sets

α := {k ∈ In : c ∈ (ak, bk)} and β := {s ∈ In : c ̸∈ (as, bs)}.

Obviously, due to the construction, we have that j ∈ α ̸= ∅, α ∪ β = In, and α ∩ β = ∅.
Let us define ϕk := l−1

k (c) for every k ∈ α. It is obvious that

0 = l−1
k (ak) < ϕk = l−1

k (c) < l−1
k (bk) = 1, ∀ k ∈ α.

We then obtain that

1 = L−1(c) =
∑
i∈In

l−1
i (c) =

∑
k∈α

l−1
k (c) +

∑
s∈β

l−1
s (c)

=
∑
k∈α

l−1
k (c)︸ ︷︷ ︸

positive term

+
∑
s∈β

l−1
s (c) >

∑
s∈β

l−1
s (c). (1)
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Consequently, we derive that l−1
s (c) < 1 for any s ∈ β. Since c ̸∈ (as, bs) for any s ∈ β

and l−1
s (c) < 1, due to the definition of the function l−1

s (y), we must have that l−1
s (c) = 0

for any s ∈ β. Equivalently, this means that

lk(ϕk) = c ≤ as = ls(0), ∀ k ∈ α and ∀ s ∈ β.

Moreover, since ∑
s∈β

l−1
s (c) = 0,

it follows from (1) that

L−1(c) =
∑
i∈In

l−1
i (c) =

∑
k∈α

l−1
k (c) +

∑
s∈β

l−1
s (c)︸ ︷︷ ︸

zero terms

=
∑
k∈α

l−1
k (c) =

∑
k∈α

ϕk = 1.

Hence, the flow ϕ = (ϕ1, ϕ2, · · · , ϕn) which is defined as follows ϕk := l−1
k (c) for every

k ∈ α and ϕk := 0 for every k ∈ β = In \ α is user equilibrium and it is unique due to the
uniqueness of the point c. This completes the proof.

3.1. Discrete User Equilibrium

The definition of user equilibrium, as it was introduced [6, 7, 30] and studied in the
literature since then, assumes that the traffic flow can be represented as a positive real
number. The advantage of this representation is that it can be infinitely divided into
smaller flows and thus we can always obtain the exact value of flow distribution that
creates the user optimum.

On the other hand this is just an approximation of the situation in real life scenarios,
where for transportation networks individual vehicles can not be split and more over
they can have varying sizes. The same can be said for information networks and parallel
processing in relation respectively to the packages and the processes that run in parallel.

To address these situations, in what follows, we will introduce a notion of user equilib-
rium for Discrete Multi-type flow. An additional advantage of this representation is that
the resulting discrete structures could be algebraically recognized in a manner similar to
[10] for crisp graphs and [17], [16] for fuzzy structures. We will consider again a network
with n parallel links, In = {1, 2, . . . , n}, where constants c1, . . . , cn, represent the cost of
using the link i, for i = 1, . . . , n, for a transportation network this can be for example, the
transit time of a unit traffic through the link i.

The flow is given by a flow-vector ϕ = (ϕ1, ϕ2, . . . , ϕN ), ϕi > 0, N ≥ n, where ϕi is the
size of the packet or vehicle i. We assume that all flow is distributed among all n links
and denote the total flow size by

X =

N∑
i=1

ϕi.
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The elementary flow of each type is unsplittable in the sense that a vehicle or a packet ϕk

is routed in whole along one and only one link i = 1, 2, . . . , n. Hence it holds

n∑
k=1

N∑
i=1

δikϕ
(k)
i = X ,

where

δik =

{
1, if ϕi is routed along the link k

0, otherwise.

In order to introduce the user equilibrium from the discrete case we will consider
the particular case of two links, I2 = {1, 2}. Let X = {ϕ1, ϕ2, . . . , ϕN} be a flow-set,
ϕi ∈ R+. Let PX

2 be a partition of X into two subsets X ′ and X ′′, where X ′ ̸= ∅, X ′′ ̸= ∅,
X ′ ∪X ′′ = X, X ′ ∩X ′′ = ∅, and X ′′ = X \X ′. To further simplify, we assume that the
latency functions

lk(x) : [0, T ] → R, k ∈ In, T =
∑N

i=1 ϕi

of the two links, are given by
lk(x) = cix, k = 1, 2.

Hence, according to this setup, the user equilibrium can be described as the partition PX
2

that minimizes the difference between the time needed for each of the two flow subsets X ′

and X ′′ to travel across the two links. In other words, to find the user equilibrium one
must solve the optimization problem

min
PX
2


∣∣∣∣∣ck ∑

ϕi∈X′

δikϕi − ck
∑

ϕi∈X′′

δikϕi

∣∣∣∣∣
 , k = 1, 2

with ϕi > 0.
Consequently, the discrete user equilibrium does not equalize the link delays as in the

continuous case, rather than minimize the absolute difference between them. This can be
further generalized for more than two parallel links by minimizing the sum of absolute
differences between all pairs of links delays.

Moreover, the link latency function can be further enhanced by adding a maximum
capacity and a constant toll price. Hence, if we denote by Ri, i ∈ In, the capacity of the
link i, it can be assumed that the flow on the link i cannot exceed Ri, that is

N∑
i=1

δikϕ
(k)
i ≤ Ri, k = 1, 2, . . . , n.

If we additionally assume that the price of sending the flow through a link i = 1, 2, . . . , n
is increased by a constant toll price pi, i = 1, 2, . . . , n. Then the delay on each link is given
by

ck

N∑
i=1

δikϕi + pk, k = 1, 2, . . . , n.
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4. System Optimum

Our next step is to investigate the properties of the system optimum. The networks
we will examine from now on are assumed to be differentiable. We start with the following
important result.

Proposition 2. Consider a network Nn = (l1(x), . . . , ln(x)), then for every i, j ∈ In we
have

li(ϕi) + ϕil
′
i(ϕi) = lj(ϕj) + ϕjl

′
j(ϕj).

provided that ϕ = (ϕ1, . . . , ϕn) ∈ Int(Sn−1) is system optimum of the network.

Proof. Let (ϕ1, · · · , ϕi, · · · , ϕj , · · ·ϕn) ∈ intSn−1. The total delay of the network at
this flow is

T = ϕ1l1(ϕ1) + · · ·+ ϕili(ϕi) + · · ·+ ϕjlj(ϕj) + ϕnln(ϕn).

For 0 < ϵ < 1, the total delay of the network at the flow

x+ϵ,−ϵ
{i,j} = (ϕ1, · · · , ϕi + ϵ, · · · , ϕj − ϵ, · · ·ϕn) ∈ intSn−1

is
T+ϵ = ϕ1l1(ϕ1) + · · ·+ (ϕi + ϵ)li(ϕi + ϵ) + · · ·+ (ϕj − ϵ)lj(ϕj − ϵ) + · · ·+ ϕnln(ϕn).

The delay T+ϵ is less than the delay T if the difference

T+ϵ − T = (ϕi + ϵ)li(ϕi + ϵ)− ϕili(ϕi) + (ϕj − ϵ)lj(ϕj − ϵ)− ϕjlj(ϕj)

= (ϕi + ϵ)li(ϕi + ϵ)− (ϕi + ϵ)li(ϕi) + ϵli(ϕi)

+ (ϕj − ϵ)lj(ϕj − ϵ)− (ϕj − ϵ)lj(ϕj)− ϵlj(ϕj)

= (ϕi + ϵ)[li(ϕi + ϵ)− li(ϕi)] + ϵli(ϕi)

− (ϕj − ϵ) [lj(ϕj)− lj(ϕj − ϵ)]− ϵlj(ϕj)

is negative. By dividing with ϵ and taking the limit with ϵ → 0, the above quantity
becomes

li(ϕi) + ϕil
′
i(ϕi)− lj(ϕj)− ϕjl

′
j(ϕj).

If this is negative, the marginal difference T+ϵ−T is negative, and therefore we will obtain
a better total latency by removing flow from ϕj and adding it to ϕi. Hence, at any given
flow as above, if we reduce the flow ϕj by ϵ while at the same time increase the flow ϕi by
the same amount we will obtain a better total delay if

li(ϕi) + ϕil
′
i(ϕi) < lj(ϕj) + ϕjl

′
j(ϕj). (2)

Similarly we can consider the total delay of the flow

x−ϵ = (ϕi − ϵ, ϕj + ϵ) ∈ S1
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as follows
T−ϵ = (ϕi − ϵ)li(ϕi − ϵ) + (ϕj + ϵ)lj(ϕj + ϵ).

In this case for the new delay T−ϵ to be less than T , the difference T−ϵ − T must be
negative and using the same syllogism it turns out that the new total delay T−ϵ − T is
lower than T if the quantity

−li(ϕi)− ϕil
′
i(ϕi) + lj(ϕj) + ϕjl

′
j(ϕj)

is negative. Therefore, if we reduce the flow ϕi by ϵ while at the same time increase the
flow ϕj by the same amount we will obtain a better total delay if

li(ϕi) + ϕil
′
i(ϕi) > lj(ϕj) + ϕjl

′
j(ϕj). (3)

By consider both Equations 2 and 3 we deduce that an optimal flow (ϕi, ϕj) ∈ IntS1

implies

li(ϕi) + ϕil
′
i(ϕi) = lj(ϕj) + ϕjl

′
j(ϕj), (4)

which completes the proof.

We can generalize the above as follows.

Theorem 1. Consider a network Nn = (l1(x), . . . , ln(x)), then it holds

li(ϕi) + ϕil
′
i(ϕi) = lj(ϕj) + ϕjl

′
j(ϕj), for every i, j ∈ In with ϕi, ϕj > 0

and
li(0) ≥ lj(ϕj) + ϕjl

′
j(ϕj), for every i, j ∈ In with ϕi = 0, ϕj > 0,

provided that ϕ = (ϕ1, . . . , ϕn) ∈ Sn−1 is system optimum of the network.

Proof. We only have to consider the case of a system optimum

ϕ = (ϕ1, . . . , ϕn) ∈ Sn−1

on Nn such that there exists an i ∈ In with ϕi = 0. Using a similar argument as in the
previous proposition we get that if there exists any j ∈ In such that

li(ϕi) + ϕil
′
i(ϕi) < lj(ϕj) + ϕjl

′
j(ϕj), (5)

then we will achieve lower total delay by ϵ-reducing ϕj while at the same time ϵ-increasing
ϕi. Since x ∈ Sn−1 is system optimum this is not possible. Thus, taking also into account
that ϕi = 0, it must hold

li(0) ≥ lj(ϕj) + ϕjl
′
j(ϕj), for every i, j ∈ In with ϕi = 0 and ϕj > 0.

Now, for differentiable latency functions li(x), we construct the following functions

pi(x) = li(x) + xl′i(x).

In this way, for every network Nn = (l1(x), . . . , ln(x)), we construct a corresponding
(Pigovian) network PNn = (p1(x), . . . , pn(x)). Theorem 1 is then reformulated to describe
the relationship between the two networks.
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Theorem 2. Consider a network Nn = (l1(x), . . . , ln(x)) and a flow ϕ = (ϕ1, . . . , ϕn) ∈
Sn−1, then if ϕ is system optimum of Nn it is also user equilibrium of

PNn = (p1(x), . . . , pn(x)).

Proposition 1 allows us now the achieve the following uniqueness result.

Proposition 3. A convex network Nn = (l1(x), . . . , ln(x)) has a unique system optimum.

Proof. All the latency functions are differentiable in [0, 1], hence the total delay

n∑
i=1

ϕili(ϕi)

has at least one minimum.
Therefore, there is at least one system optimum of Nn. Moreover, we know that the

latency functions are differentiable and convex and so pi(x) will be strictly increasing
and continuous. Thus, according to Proposition 1 there is a unique user equilibrium of
PNn = (p1(x), . . . , pn(x)). Ther result follows by applying Theorem 2.

The following characterization of system optimums is achieved by combining the pre-
vious results.

Theorem 3. Given a convex network Nn = (l1(x), . . . , ln(x)) and a flow ϕ = (ϕ1, . . . , ϕn) ∈
Sn−1 the following conditions are equivalent.

i) The flow ϕ is the system optimum of Nn.

ii) The flow ϕ is the user equilibrium of

PNn = (p1(x), . . . , pn(x)).

iii) It holds

li(ϕi) + ϕil
′
i(ϕi) = lj(ϕj) + ϕjl

′
j(ϕj), for every i, j ∈ In with ϕi, ϕj > 0

and

li(0) ≥ lj(ϕj) + ϕjl
′
j(ϕj), for every i, j ∈ In, with ϕi = 0, and ϕj > 0.

iv) It holds

lk(ϕk) + ϕkl
′(ϕk) = min

i∈In
{li(ϕi) + ϕil

′
i(ϕi)}, for every ϕk > 0.
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5. Wardrop Optimal Networks

Flows that are at the same time system optimum and user equilibrium are called
Wardrop optimal flows (WOFs). In this section we will investigate networks admitting
such flows i.e., Wardrop optimal networks (WONs). First we need to identify some nec-
essary conditions for system optimums. By applying Theorem 3 we get the following two
propositions.

Proposition 4. If the flow ϕ = (ϕ1, . . . , ϕn) ∈ Sn−1 is WOF of the network Nn =
(l1(x), . . . , ln(x)) then it holds

i) ϕil
′
i(ϕi) = ϕjl

′
j(ϕj), for every i, j ∈ In, with ϕi, ϕj > 0,

ii) li(0) ≥ lj(ϕj) + ϕjl
′
j(ϕj), for every i, j ∈ In, with ϕi = 0 and ϕj > 0.

Proposition 5. If the flow ϕ = (ϕ1, . . . , ϕn) ∈ Sn−1 is user equilibrium of the convex
network Nn = (l1(x), . . . , ln(x)) and the following conditions hold

i) ϕil
′
i(ϕi) = ϕjl

′
j(ϕj), for every i, j ∈ In, with ϕi, ϕj > 0,

ii) li(0) ≥ lj(ϕj) + ϕjl
′
j(ϕj), for every i, j ∈ In, with ϕi = 0 and ϕj > 0,

then the flow ϕ is also system optimum.

Combining the above propositions we arrive at the following result.

Theorem 4. If the flow (ϕ1, . . . , ϕn) ∈ Sn−1 is a user equilibrium of a convex network

Nn = (l1(x), . . . , ln(x)),

then the following conditions are equivalent

i) It holds
ϕil

′
i(ϕi) = ϕjl

′
j(ϕj), for every i, j ∈ In with ϕi, ϕj > 0,

and

li(0) ≥ lj(ϕj) + ϕjl
′
j(ϕj), for every i, j ∈ In with ϕi = 0, and ϕj > 0.

ii) The flow ϕ is a system optimum.

On the other hand, we get the following requirements for a flow that is a system
optimum.

Proposition 6. If the flow ϕ = (ϕ1, . . . , ϕn) ∈ Sn−1 is system optimum of a network
Nn = (l1(x), . . . , ln(x)) and it holds

li(ϕi) = lj(ϕj), for every i, j ∈ In with ϕi, ϕj > 0,

then it is also a user equilibrium.
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Hence we can arrive at the next Theorem.

Theorem 5. Given a flow ϕ = (ϕ1, . . . , ϕn) ∈ Sn−1 of a convex network

Nn = (l1(x), . . . , ln(x)),

the following conditions are equivalent:

i) The flow ϕ Wardrop optimal.

ii) It holds:
li(ϕi) = lj(ϕj), for every i, j ∈ In with ϕi, ϕj > 0,

ϕil
′
i(ϕi) = ϕjl

′
j(ϕj), for every i, j ∈ In with ϕi, ϕj > 0,

li(0) ≥ lj(ϕj) + ϕjl
′
j(ϕj), for every i, j ∈ In with ϕi = 0, and ϕj > 0.

If we only consider internal flows, then we get the following corollary as a particular
case of the above result.

Corollary 1. Given a flow ϕ = (ϕ1, . . . , ϕn) ∈ Int(Sn−1) of a convex network

Nn = (l1(x), . . . , ln(x)),

the following conditions are equivalent:

i) The flow ϕ Wardrop optimal.

ii) It holds:
li(ϕi) = lj(ϕj), for every i, j ∈ In with ϕi, ϕj > 0,

ϕil
′
i(ϕi) = ϕjl

′
j(ϕj), for every i, j ∈ In with ϕi, ϕj > 0.

The next result provides some insight on the effect of appropriate transformations on
the latency functions of our networks.

Theorem 6. If the flow ϕ = (ϕ1, . . . , ϕn) ∈ Sn−1 is the WOF of a convex network

Nn = (l1(x), . . . , ln(x)),

then it is also WOF of the network

f(Nn) = (f(l1(x)), . . . , f(ln(x))),

where f(x) : R → R is a a continuous, strictly increasing and convex function.
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Proof. Since ϕ is WOF of Nn we get

li(ϕi) = lj(ϕj), for every i, j ∈ In with ϕi, ϕj > 0, (6)

from where we can derive the first item of Theorem 5 for the set f(Nn):

f(li(ϕi) = f(lj(ϕj)), for every i, j ∈ In with ϕi, ϕj > 0.

Since ϕ is also optimal flow of Ln, we have

ϕil
′
i(ϕi) = ϕjl

′
j(ϕj), for every i, j ∈ In with ϕi, ϕj > 0, (7)

and
li(0) ≥ lj(ϕj) + ϕjl

′
j(ϕj), for every i, j ∈ In with ϕi = 0, and ϕj > 0. (8)

For ϕi, ϕj > 0, it holds

ϕi(f(li(ϕi)))
′ = ϕif

′(li(ϕi))l
′
i(ϕi)

(6),(7)
= ϕjf

′(lj(ϕj))l
′
j(ϕj) = ϕj(f(lj(ϕj)))

′. (9)

Hence the second condition of Theorem 5 is satisfied by ϕ.
Now let ϕi = 0 and ϕj > 0. Since f is increasing, from Equation 8 we obtain

f(li(0)) ≥ f(lj(ϕj) + ϕjl
′
j(ϕj)).

We need to prove the third condition of Theorem 5 which is

f(li(0)) ≥ f(lj(ϕj)) + ϕj (f(lj(ϕj)))
′ , for every i, j ∈ In with ϕi = 0, and ϕj > 0.

Therefore, it suffices to show that

f(lj(ϕj) + ϕjl
′
j(ϕj)) ≥ f(lj(ϕj)) + ϕj (f(lj(ϕj)))

′ ⇒

f(lj(ϕj) + ϕjl
′
j(ϕj))− f(lj(ϕj)) ≥ ϕjf

′(lj(ϕj)) l
′
j(ϕj) ⇒

f(lj(ϕj) + ϕjl
′
j(ϕj))− f(lj(ϕj))

ϕjl′j(ϕj)
≥ f ′(lj(ϕj)).

If we set a = lj(ϕj) and b = ϕjl
′
j(ϕj), the last inequality can be rewritten as

f(a+ b)− f(a)

b
≥ f ′(a).

Since b > 0, the left hand side of the above inequality is the average increase of f(x) at the
interval [a, a+b] and the right hand side is the rate of change of f(x) at a. Therefore, from
the convexity of f(x), we deduce that the inequality holds true. The proof is completed.

The above Theorem shows that WOFs are preserved by continuous, strictly increasing
and convex functions. Nevertheless, this does not hold for a system optimum which is not
user equilibrium. Indeed, as it shown in Example 1 the system optimum of the network of
Figure 1 does not remain the same after taking the image of N via the continuous, strictly
increasing and convex function f(x) = x2.
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Example 2. Let us examine the linear network W1 = {x
2 ,

x
3} shown in Fig. 2a. The

system optimum that minimizes the average delay of the network and the user equilibrium
that equates delay on the two links are identical and equal with ϕ = (0.4, 0.6).

Similarly for the quadratic network W2 = {4x2, x2} of Fig. 2b, it can easily be
verified that the system optimum and the user equilibrium are identical and equal with
ϕ = (1/3, 2/3).

l1(x) = x/2

l2(x) = x/3

(a) W1 : Linear Wardrop optimal network

l1(x) = 4x2

l2(x) = x2

(b) W2 : Quadratic Wardrop optimal network

Figure 2: Two Wardrop optimal networks

The next corollaries illustrate the effect of some fundamental transformations onWOFs.

Corollary 2. If a flow ϕ ∈ Sn−1 is WOF of a convex network Nn = (l1(x), . . . , ln(x))
then it is also a WOF of the following networks.

i) Nn + b = (l1(x) + b, . . . , ln(x) + b), for every b > 0.

ii) aNn = (al1(x), . . . , aln(x)), for every a > 0.

For the particular case of internal flows, we can also state the following.

Corollary 3. If the flow ϕ = (ϕ1, . . . , ϕn) ∈ intSn−1 is the WOF of a convex network
Nn = (l1(x), . . . , ln(x)), then it is also WOF of

f(Nn) = (f(l1(x)), . . . , f(ln(x))),

where f(x) : R → R is a continuous, strictly increasing function.

Next we examine networks with identical latency functions.

Proposition 7. If the latency functions across all links of a network are identical then
the WOF is uniformly distributed.

Proof. It suffices to observe that ϕ = ( 1n , . . . ,
1
n) is the WOF of Nn.

Similarly we have

Proposition 8. Any internal flow p = (p1, · · · , pn) ∈ intSn−1 is the WOF of Nn =
(ϕ1

p1
, . . . , ϕn

pn
).

This result together with Corollary 3, gives the following proposition.
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Proposition 9. An internal flow p = (p1, · · · , pn) ∈ intSn−1 is the WOF of Nn =
(f(ϕ1

p1
), . . . , f(ϕn

pn
)), where f(x) is any continuous, strictly increasing function.

By using Theorem 5 we obtain the next proposition.

Proposition 10. If a flow ϕ = (ϕ1, . . . , ϕn) ∈ Sn−1 is at the same time, WOF of the
convex networks Nn = (l1(x), . . . , ln(x)) and Nn = (l1(x), . . . , ln(x)) then it is also WOF
of NnNn = (l1(x)l1(x), . . . , ln(x)ln(x)).

Proof. Since ϕ is WOF of the networksNn andNn, from the first condition of Theorem
5 for the two networks we have

li(ϕi) = lj(ϕj), for every i, j ∈ In with ϕi, ϕj > 0, (10)

and
li(ϕi) = lj(ϕj), for every i, j ∈ In with ϕi, ϕj > 0. (11)

By multiplication of the two we get the first condition for the network NnNn:

li(ϕi)li(x) = lj(ϕj)lj(x), for every i, j ∈ In with ϕi, ϕj > 0, (12)

which establishes the first condition of Theorem 5 for NnNn. From the second condition
of Theorem 5 for the networks Nn and Nn we have

ϕil
′
i(ϕi) = ϕjl

′
j(ϕj), for every i, j ∈ In with ϕi, ϕj > 0, (13)

and
ϕil

′
i(ϕi) = ϕjl

′
j(ϕj), for every i, j ∈ In with ϕi, ϕj > 0. (14)

To prove the second condition for NnNn we need to prove that for every ϕi, ϕj > 0 it
holds that

ϕi(li(ϕi)li(ϕi))
′ = ϕj(lj(ϕj)lj(ϕj))

′, (15)

or equivalently

ϕil
′
i(ϕi)li(ϕi) + ϕili(ϕi)l

′
i(ϕi) = ϕjl

′
j(ϕj)lj(ϕj) + ϕjlj(ϕj)l

′
j(ϕj). (16)

By multiplying Equations 11 and 13 we get

ϕil
′
i(ϕi)li(ϕi) = ϕjl

′
j(ϕj)lj(ϕj), for every i, j ∈ In with ϕi, ϕj > 0. (17)

By multiplying Equations 10 and 14 we get

ϕili(ϕi)l
′
i(ϕi) = ϕjlj(ϕj)l

′
j(ϕj), for every i, j ∈ In with ϕi, ϕj > 0. (18)

Equation 16 is now obtained by adding Equations 17 and 18.
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Now, for the remaining part of the proof, from the last condition of Theorem 5 for Nn

and Nn, it holds that for every i, j ∈ In, with ϕi = 0 and ϕj > 0

li(0) ≥ lj(ϕj) + ϕj l
′
j(ϕj) and li(0) ≥ lj(ϕj) + ϕj l

′
j(ϕj).

By multiplying the above inequalities we get

li(0)li(0) ≥ lj(ϕj)lj(ϕj) + lj(ϕj)ϕj l
′
j(ϕj) + lj(ϕj)ϕj l

′
j(ϕj) + ϕj l

′
j(ϕj)ϕj l

′
j(ϕj). (19)

From this, we get the third condition of Theorem 5 for the network NnNn, which is:

li(0)li(0) ≥ lj(ϕj)lj(ϕj) + ϕj

(
lj(ϕj)lj(ϕj)

)′
, (20)

or equivalently

li(0)li(0) ≥ lj(ϕj)lj(ϕj) + ϕjl
′
j(ϕj)lj(ϕj) + ϕj lj(ϕj)ϕjl

′
j(ϕj). (21)

In a similar way, we will establish the next proposition.

Proposition 11. If the flow ϕ = (ϕ1, . . . , ϕn) ∈ Sn−1 is WOF of the convex networks

Nn = (l1(x), . . . , ln(x)) and Nn = (l1(x), . . . , ln(x)),

then it is also WOF of Nn +Nn = (l1(x) + l1(x), . . . , ln(x) + ln(x)).

Proof. Since ϕ is WOF of the networksNn andNn, from the first condition of Theorem
5, we have that for the two networks it holds

li(ϕi) = lj(ϕj), for every i, j ∈ In with ϕi, ϕj > 0, (22)

and
li(ϕi) = lj(ϕj), for every i, j ∈ In with ϕi, ϕj > 0. (23)

By adding the two we get the first condition for the network Nn +Nn

li(ϕi) + li(x) = lj(ϕj) + lj(x), for every i, j ∈ In with ϕi, ϕj > 0, (24)

which settles the first condition of Theorem 5 for Nn + Nn. For the next condition of
Theorem 5, assume that for the networks Nn and Nn we have

ϕil
′
i(ϕi) = ϕjl

′
j(ϕj), for every i, j ∈ In with ϕi, ϕj > 0. (25)

and
ϕil

′
i(ϕi) = ϕjl

′
j(ϕj), for every i, j ∈ In with ϕi, ϕj > 0. (26)

By adding Equations 25 and 26 we get

ϕil
′
i(ϕi) + ϕil

′
i(ϕi) = ϕjl

′
j(ϕj) + ϕjl

′
j(ϕj), (27)
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or equivalently

ϕi(li(ϕi) + li(ϕi))
′ = ϕj(lj(ϕj) + lj(ϕj))

′, (28)

as desired.
Now for the remaining part of the proof, if for Nn and Nn it holds

li(0) ≥ lj(ϕj) + ϕj l
′
j(ϕj) and li(0) ≥ lj(ϕj) + ϕj l

′
j(ϕj),

for every i, j ∈ In with ϕi = 0 and ϕj > 0, then by adding the above inequalities we get

li(0) + li(0) ≥ lj(ϕj) + lj(ϕj) + ϕj(l
′
j(ϕj) + l

′
j(ϕj)). (29)

From the above, the last condition of Theorem 5 for the network Nn +Nn follows.

6. Conclusion and Future Work

We have investigated directed, parallel networks with congestion externalities and their
equilibriums. We identified necessary and sufficient conditions for achieving the system
optimum and we introduced Wardrop optimal networks admitting the same user and sys-
tem equilibrium. In addition we establish a characterization of Wardrop optimal networks
which allows us to identify important closure properties of the related class of networks.

Future research directions deriving from the results presented in this paper include the
investigation of Wardrop optimal flows in networks with more general underlying graph
structures by analyzing all potential paths from the origin to the destination, similarly to
the approach introduced in [15]. Additionally, this framework could be utilized for the
algebraic recognition of such networks, thereby enabling the use of graph recognizability
to identify graph properties, such as determining if a graph is Eulerian [9] and k-colorable
[11].
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