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Nomenclature

g(c) Reaction term
B Spatial domain of the brain
ν The outward normal vector on the boundary
φ Initial cell density
D(x) Diffusion coefficient
c Cell density at position x and time t
div Divergence operator

∇ Gradient operator
∂B Boundary of B
h Mesh step in x direction
τ Time step in t direction

T Final time
ε Noise level
clim Carrying capacity

ρ Proliferation parameter
dw Diffusion coefficient for white matter
dg Diffusion coefficient for gray matter
k(x, t) Treatment term
α Spatial component of the treatment profile
β Temporal component of the treatment profile
Aα ×Aφ Set of admissible solutions

J(α,φ) Objective functional
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ζkα Step size for α
ζkφ Step size for φ

Sk
α Search direction for α

Sk
φ Search direction for φ

ε̄ Tolerance parameter
ωi Weight functions

1. Introduction

In this paper, we consider an inverse problem for the following problem:
∂tc− div(D(x)∇c) + k(x, t) c− g(c) = 0 (x, t) ∈ B × (0, T ),

D(x) ∂νc = 0 (x, t) ∈ B × (0, T ),

c(x, 0) = φ(x) x ∈ B,
(1)

where B ⊂ Rd (d = 1,2,. . . ) be an open bounded domain with a sufficiently smooth
boundary ∂B , T > 0 is a final time, c(x, t) is the tumor cell density at the time t and the
spatial location x within the brain region B, k(x, t) c(x, t) is the treatment term describing
the death of cells due to chemotherapy or radiation therapy, D(x) is the diffusion coeffi-
cient of cells in the brain tissue modeling a random tumor cell movement as a diffusive
flux proportional to the cell density gradient, div(D(x)∇c) captures random tumor cell
movement, g(c) is the reaction term that describes the growth dynamics of the tumor and
ν is the outward unit normal. The boundary condition D(x) ∂νc = 0 ensures tumor cells
do not diffuse beyond the brain region. Additionally, the function φ(x) ∈ L2(B) represents
the initial tumor cell density at t = 0. The problem (1) is a well-known model related to
the growth of brain tumors under treatment

The model (1) serves as a fundamental tool for understanding brain tumor dynamics
and optimizing treatment strategies through comprehensive mathematical analysis. For
instance, the authors work the problem (1) with a source term such that the model has
logistic growth and accomplish full 3-dimensional simulations of the tumor in time on two
types of imaging data, the 3d Shepp-Logan head phantom image and an MRI T1-weighted
brain scan from the Internet Brain Segmentation Repository in [15]. In [1], the authors
study a treatment parameter identification problem in (1). They derive a nonlinear con-
jugate gradient method for the inverse problem and reconstruct the unknown parameter
from additional information about the tumor taken at a fixed instance of time. In [26],
the authors analyze the behavior of gliomas mechanistically, deriving their behavior from
two fundamental properties, the net proliferation rate and the diffusion coefficient. They
conclude that although these clearly determine the tumor’s growth as an expansion of
its traveling wave front, other factors (such as age and Karnofsky performance score)
combine to determine the patient’s prognosis, the survival time. The authors extend a
mathematical model of gliomas based on proliferation and diffusion rates to incorporate
the effects of augmented cell motility in white matter as compared to grey matter and
they simulate model tumors on an anatomically accurate brain domain by using a de-
tailed mapping of the white and grey matter in the brain developed for a MRI simulator,
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in [24]. A simple spatio-temporal mathematical model, based on proliferation and diffu-
sion, that incorporates the effects of radiotherapeutic and chemotherapeutic treatments
has been studied in [19]. Moreover, they study the effects of different schedules of radiation
therapy, including fractionated and hyperfractionated external beam radiotherapy, using
a generalized linear quadratic model. In [23], the authors present a novel explicit triscale
reaction-diffusion numerical model of glioblastoma multiforme tumor growth, they adopt
a finite-difference time-domain method for the numerical solution and then a clinical sce-
nario is addressed to demonstrate the workflow of a possible clinical validation procedure.
Other researchers [20] present an extension of Swanson’s reaction-diffusion model in order
to include the effects of radiation therapy using the classic linear-quadratic radiobiological
model for radiation efficacy, along with an investigation of response to various therapy
schedules and dose distributions on a virtual tumor. Some of the recent developments
in mathematical modeling are reviewed in [25]. A model of untreated gliomas is repre-
sented first followed by models of polyclonal gliomas that follows a chemotherapy or a
surgical resection. Such reviewed models illustrate the evolution of mathematical models
for glioma growth and invasion beginning in simple homogeneous tissue, with or without
gross anatomical boundaries (skull and ventricles), extending to complex heterogeneous
tissue, with varying proportions of grey and white matter in cerebral cortex (including
the sulcal pattern), deep cerebral nuclei, brainstem and cerebellum. A patient-specific,
biologically based mathematical model for glioma growth that quantifies response to XRT
in individual patients in vivo is presented in [21]. This mathematical model uses net rates
of proliferation and migration of malignant tumor cells to characterize the tumor’s growth
and invasion along with the linear-quadratic model for the response to radiation therapy.

In this paper, we study an inverse problem for the nonlinear parabolic problem (1).
Inverse problems of finding coefficients, the initial distribution, sources or parameters are
physically and practically very important. Recently, there has been a growing interest
in inverse problems for nonlinear parabolic equations. For instance, the simultaneous
reconstruction of the initial temperature and heat radiative coefficient in a heat conduc-
tive system is studied in [28]. They prove the stability of the inverse problem and then
the reconstruction process is done by Tikhonov regularization. In [3], the identification
of the space-dependent reaction coefficient, the initial temperature and the source term
from measured temperatures at two instants t1, t2 and at the final time T are investi-
gated. In [4], an inverse problem of simultaneously identifying and reconstructing the
space-dependent reaction coefficient and source term component from time-integral tem-
perature measurements is investigated. After they prove the existence and uniqueness
of the solution, the conjugate gradient method to find the numerical solution is devel-
oped, and its convergence is proved from the Lipschitz continuity of these gradients. A
novel inverse problem of reconstructing the unknown time-dependent source term enter-
ing the fourth-order parabolic equation of thermal grooving by surface diffusion from a
given integral observation is formulated in [5]. The author studies the determination of
an unknown time-dependent source term in a Kuramoto-Sivashinsky equation from given
additional integral-type measurement in [2]. In [22], some methods are developed for find-
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ing the thermophysical parameters of a two-layer soil and a rational method of choosing
the damping coefficient is also proposed, which provides an indicative rate of convergence
of the approximate value of the functional to zero. Our paper can be considered as an
addition to these studies.

This article is organized as follows: In the next section, we formulate and analyze the
direct and the inverse problems. In Section 3 , we present an iterative procedure based
on the conjugate gradient method to solve the minimization problem. Some numerical
examples with noise-free and noisy data are given to show the efficiency of the method in
Section 4. The conclusions and possible directions on the problem are given in Section 5.

2. Formulations and analyses of the direct and the inverse problems

In this section, we define the direct and the inverse problems. Throughout this paper,
we define Q := B×(0, T ) and BT := ∂B×(0, T ). The diffusion coefficient D(x) is assumed
to encompass two regions, white and grey matter, as in the papers [10, 24, 25], reflecting
the spatial heterogeneity of brain tissue. Specifically, we define D(x) as:

D(x) =

{
dw, if x ∈ white matter,

dg, if x ∈ grey matter,

where dg and dw denote the diffusion coefficients for grey and white matter, respectively,
satisfying 0 < dg ≪ dw. For the growth function g(c), we adopt a logistic growth model
to ensure that the growth rate diminishes as the cell density approaches its maximum
capacity. Thus, g(c) is defined as:

g(c) = ρ c

(
1− c

clim

)
,

where ρ is the net proliferation rate and clim represents the carrying capacity. This for-
mulation provides a more realistic representation of tumor growth dynamics compared to
simple exponential models [7, 9, 24, 26, 27], which may result in unbounded growth over
time.

Definition 1. The weak solution c ∈ L2
(
0, T ;H1(B)

)
of the problem (1) is defined as the

solution of the following problem:∫ T

0

∫
B

(
∂tc(x, t)ψ+D(x)∇c(x, t) ·∇ψ+k(x, t) c(x, t)ψ

)
dx dt =

∫ T

0

∫
B
g(c)ψ dx dt, (2)

for all ψ ∈ L2
(
0, T ;H1(B)

)
.

For given inputs D(x), k(x, t), φ(x) and T > 0, the problem (1) is called the direct
problem. Like most direct problems of the mathematical physics, the problem (1) is well
posed, see [1, 16] for details.
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Here the inverse problem consists of simultaneously determining the treatment profile
k(x, t) and the initial tumor cell density φ, by means of the time-integral measurements
of tumor cell density (measured data) defined as follows:

ϕ1 :=

∫ T

0
ω1(t) c(x, t) dt and ϕ2 :=

∫ T

0
ω2(t) c(x, t) dt, x ∈ B, (3)

where ω1(t) and ω2(t) denote two distinct weight functions. We note that since time-
integral measurements of tumor cell density do not typically reveal time-dependent profiles,
we consider the function k(x, t) ∈ L∞(Q) in the following separable form:

k(x, t) = α(x)β(t), (4)

where α(x) ∈ L∞(B) represents the spatial component of the treatment profile k(x, t)
and describes how the treatment efficacy varies across different spatial locations within
the brain region. On the other hand, β(t) ∈ L∞(0, T ) is the temporal component of the
treatment profile and captures how the treatment effectiveness evolves over time. In the
inverse problem considered here, our focus shifts to scenarios where the spatial component
α(x) is unknown, while the temporal component β(t) is known. By taking (4) into account
in the problem (1), we have

∂tu− div(D(x)∇u) +α⋆(x)β(t)u− g(u) = 0 in Q,

D(x) ∂νu = 0 on BT ,

u(x, 0) = φ⋆(x) in B.
(5)

The focus of our investigation in this article revolves around the simultaneous determi-
nation of the response treatment parameter α⋆(x) and the initial cell density φ⋆(x) from
two time-integral measurements of u defined by (3).

We first define the sets of admissible solutions to analyze the direct problem (5). A
set Aα ×Aφ defined by

Aα := {α(x) : α ∈ L∞(Ω), 0 < α ⩽ α(x) ⩽ α, a.e x ∈ Ω},
Aφ := {φ(x) : φ ∈ L∞(Ω), |φ(x)| ⩽ φ, a.e x ∈ Ω},

is called the set of admissible solutions where α, α, and φ are predetermined positive
constants. For each pair (α,φ) belonging to Aα×Aφ, we denote the solution to problem
(5) by c(α,φ). In real-world scenarios, observed data ϕ1 and ϕ2 are given with some error
including measurement errors, biological variability, spatial heterogeneity and temporal
dynamics inherent in tumor growth and treatment response. To overcome these effects,
we introduce perturbed measurements ϕε1 and ϕε2 as follows:

∥ϕεi − ϕi∥L∞(Ω) ⩽ ε, for i = 1, 2, (6)
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where ε > 0 represents the magnitude of noise in the data. Consequently, the quasi-
solution, see [14], of the inverse problem under consideration is obtained by minimizing
the following least-squares objective functional:

J(α,φ) :=
1

2

∥∥∥∫ T

0
ω1(t) c(α,φ) dt− ϕε1

∥∥∥2
L2(Ω)

+
1

2

∥∥∥∫ T

0
ω2(t) c(α,φ) dt− ϕε2

∥∥∥2
L2(Ω)

. (7)

Therefore, the inverse problem addressed in this article can be reformulated and modeled
by the following minimization problem:

Find (α⋆,φ⋆) ∈ Aα ×Aφ such that

J(α⋆,φ⋆) ⩽ J(α,φ), ∀(α,φ) ∈ Aα ×Aφ.
(8)

It is worth noting that in this paper, we adopt the regularization before discretization
strategy, as opposed to the alternative approach of discretization before regularization
discussed in [3, 11].

Theorem 1. There exists at least one minimizer for the optimization problem (8).

Proof. Since J(α,φ) is nonnegative, we know that inf J(α,φ) is finite over Aα ×Aφ.
Thus, there exists a minimizing sequence {αn,φn}n⩾0 from Aα ×Aφ such that

lim
n→∞

J(αn,φn) = inf
α∈Aα
φ∈Aφ

J(α,φ).

This implies the boundedness of {αn,φn}n⩾0 in L∞(B) × L2(B) and therefore there
is a subsequence (still denoted as {αn,φn}n⩾0) such that both {αn}n⩾0 and {φn}n⩾0

converge weakly to α⋆ ∈ L∞(B) and φ⋆ ∈ L2(B), respectively, since the sets Aα and Aφ

are closed and convex. We shall prove first that (α⋆,φ⋆) is indeed a minimizer of (8).
Since each pair (αn,φn) corresponds to a solution cn := c (αn,φn) to (5) with α = αn

and φ = φn, by letting ψ = cn in (2) and using 1
2∂tc

2 = ctc, it follows immediately that
the sequence {cn := c (αn,φn)} is also bounded in L2(0, T ;H1(B)). This indicates the
existence of some c⋆ ∈ L2(0, T ;H1(B)) and a subsequence of {cn}, still denoted by {cn},
such that

cn := c (αn,φn)⇀ c⋆ in L2(0, T ;H1(B)). (9)

We claim c⋆ = c (α⋆,φ⋆). The continuity of g(c) with respect to c together with (9)
imply

∂tc (α
n,φn)⇀ ∂tc

⋆, ∇c (αn,φn)⇀ ∇c⋆ in L2(Q).

Letting n→ ∞ in (2) with α = αn and φ = φn yields∫ T

0

∫
B
(∂tc

⋆ ψ +D(x)∇c⋆ · ∇ψ +α⋆(x)β(t) c⋆ ψ) dx dt =

∫ T

0

∫
B
g(c⋆)ψ dx dt, (10)
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for all ψ ∈ L2
(
0, T ;H1(B)

)
.

Next, we shall prove c⋆(·, 0) = φ⋆, which with (10) implies c⋆ = c(α⋆,φ⋆). In doing
so, we take ϑ in C1[0, T ], with ϑ(0) ̸= 0 and ϑ(T ) = 0 and ζ ∈ L2(B). We employ the
classical integration by parts formula to get∫ T

0

∫
B
∂tc (α

n,φn) ψ ζ dx dt = −
∫
B
φn ψ(0) ζ dx−

∫ T

0

∫
B
c (αn,φn) ∂tψ ζ dx dt. (11)

Letting n→ ∞ in (11), we conclude that∫ T

0

∫
B
∂tc

⋆ ψ ζ dx dt = −
∫
B
φ⋆ ψ(0) ζ dx−

∫ T

0

∫
B
c⋆ ∂tψ ζ dx dt. (12)

On the other hand, we have:∫ T

0

∫
B
∂tc

⋆ ψ ζ dx dt = −
∫
B
c⋆(·, 0)ψ(0) ζ dx−

∫ T

0

∫
B
c⋆ ∂tψ ζ dx dt, (13)

which, together with (12), implies that c⋆(·, 0) = φ⋆. Therefore, c⋆ := c(α⋆,φ⋆).
By αn ⇀ α⋆ and φn ⇀ φ⋆ in L∞(B) ⊂ L2(B) and L2(B), respectively, we use the

lower semi-continuity of the L2-norm to conclude that

J (α⋆,φ⋆) =
1

2

∥∥∥∫ T

0
ω1(t) c(α

⋆,φ⋆) dt− ϕε1

∥∥∥2
L2(B)

+
1

2

∥∥∥∫ T

0
ω2(t) c(α

⋆,φ⋆) dt− ϕε2

∥∥∥2
L2(B)

≤ lim inf
n→∞

1

2

∥∥∥∫ T

0
ω1(t) c(α

n,φn) dt− ϕε1

∥∥∥2
L2(B)

+
1

2

∥∥∥∫ T

0
ω2(t) c(α

n,φn) dt− ϕε2

∥∥∥2
L2(B)

≤ lim inf
n→∞

J (αn,φn) = inf
α∈Aα
φ∈Aφ

J(α,φ).

Hence, the proof is complete.

After that, we prove the stability of (8) in the sense that the minimization problem (8)
effectively stabilizes the considered inverse problem against perturbations in the measured
data. For this purpose, let {ϕε1,ℓ, ϕε2,ℓ}∞ℓ=0 denote a sequence of measurements of {ϕε1, ϕε2}
in L2(B)×L2(B). For each ℓ ∈ N, we denote the solution of the minimization problem by
(αℓ,φℓ). Then, we have the following minimization problem:

min
α∈Aα
φ∈Aφ

Jℓ(α,φ), Jℓ(α,φ) :=
1

2

2∑
k=1

∥∥∥∫ T

0
ωk(t) c(α,φ) dt− ϕεk,ℓ

∥∥∥2
L2(B)

, ℓ = 0, 1, . . . (14)

The following theorem states the convergence of the sequence {αℓ,φℓ}ℓ⩾0 when

ϕεk,ℓ −→ ϕεk in L2(B) as ℓ −→ ∞, for k = 1, 2. (15)
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Theorem 2. If (15) holds, then the sequence {αℓ,φℓ}ℓ⩾0 of minimizers of the problems
(14) converges weakly in L∞(B)×L2(B) to a minimizer, associated with the measured data
{ϕε1, ϕε2}, of the optimization problem (8).

Proof. The existence of each pair (αℓ,φℓ) is guaranteed by Theorem 1. By definition,
we have:

Jℓ (αℓ,φℓ) ≤ Jℓ(α,φ), ∀(α,φ) ∈ Aα ×Aφ,

that implies the uniform boundedness of (αℓ,φℓ) in L
∞(B)×L2(B). Consequently, there

exist α⋆ ∈ L∞(B), φ⋆ ∈ L2(B), and a subsequence (still denoted as {αℓ,φℓ}ℓ⩾0), such
that:

(αℓ,φℓ)⇀ (α⋆,φ⋆) in L∞(B)× L2(B) as ℓ→ ∞.

It suffices to show that (α⋆,φ⋆) is indeed a minimizer of (8). Repeating the same argument
as that in the proof of Theorem 1, we derive:

c (αℓ,φℓ)⇀ c (α⋆,φ⋆) in L2
(
0, T ;H1(B)

)
as ℓ→ ∞,

up to taking a further subsequence. Combining this convergence with (15), we obtain:∫ T

0
ωk(t) c (αℓ,φℓ)−ϕεk,ℓ dt ⇀

∫ T

0
ωk(t) c (α

⋆,φ⋆)−ϕεk dt in L2(B) as ℓ→ ∞, for k = 1, 2.

Therefore, for k = 1, 2, we have:∥∥∥∫ T

0
ωk(t) c(α

⋆,φ⋆) dt− ϕεk

∥∥∥2
L2(B)

≤ lim inf
ℓ→∞

∥∥∥∫ T

0
ωk(t) c(αℓ,φℓ) dt− ϕεk,ℓ

∥∥∥2
L2(B)

.

By using the lower semi-continuity of the L2-norm, we deduce that:

J (α⋆,φ⋆) =
1

2

2∑
k=1

∥∥∥∫ T

0
ωk(t) c(α

⋆,φ⋆) dt− ϕεk

∥∥∥2
L2(B)

≤ 1

2
lim inf
ℓ→∞

2∑
k=1

∥∥∥∫ T

0
ωk(t) c(αℓ,φℓ) dt− ϕεk,ℓ

∥∥∥2
L2(B)

≤ 1

2
lim
ℓ→∞

2∑
k=1

∥∥∥∫ T

0
ωk(t) c(α,φ) dt− ϕεk,ℓ

∥∥∥2
L2(B)

=
1

2

2∑
k=1

∥∥∥∫ T

0
ωk(t) c(α,φ) dt− ϕεk

∥∥∥2
L2(B)

= J(α,φ), ∀(α,φ) ∈ Aα ×Aφ.

Thus, the proof is complete.
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3. Conjugate gradient method

In this section, we develop an efficient iterative procedure based on the conjugate
gradient method to solve the minimization problem (8). Like all effective iterative methods
for optimization problems, our approach requires information about the derivatives of the
objective function. We start by deriving the Fréchet derivatives J ′

α(α,φ) and J
′
φ(α,φ) of

the objective functional J(α,φ) with respect to the unknown terms α and φ, respectively.
Subsequently, we establish the conjugate gradient method, which utilizes these gradients
to reconstruct the unknown coefficients simultaneously. We refer the readers to [13] for
convergence of this algorithm.

3.1. Fréchet Derivatives

Following the methodology in [3, 4, 17], we can reduce the computational costs for the
Fréchet derivatives by introducing the adjoint system of (5), which represents a backward
time diffusion equation:
−∂tv − div(D(x)∇v) + (α(x)β(t)− g′c(α,φ)) v =

2∑
k=1

ωk(t)

(∫ T

0
ωk(τ) c(α,φ) dτ − ϕεk

)
in Q,

D(x) ∂νv = 0 on BT ,

v(x, T ) = 0 in B,
(16)

where g′c(α,φ) represents the Fréchet derivative of g at c(α,φ). The system (16) is linear

and it is a well-posed problem, see [6]. For simplicity, we denote c(α,φ) by c.

Theorem 3. The objective functional J(α,φ) is Fréchet differentiable and the derivatives
J ′
α(α,φ) and J

′
φ(α,φ) at (α,φ) ∈ Aα ×Aφ are given by:J

′
α(α,φ) = −

∫ T

0
β(t) c(x, t) v(x, t) dt,

J ′
φ(α,φ) = v(x, 0),

(17)

where v is the solution to the adjoint problem (16).

We need the following two sensitivity problems to prove theorem 3.

Sensitivity problem associated with the treatment parameter. Assume c(x, t) is
perturbed by ϵ ηα(x, t) and the therapy parameter α(x) is perturbed by ϵα0(x), where ϵ >
0 is a small number and α0 ∈ Aα. Substituting the perturbed cell density c(x, t)+ϵ ηα(x, t)
and the perturbed therapy parameter α(x) + ϵα0(x) into the original problem (5) yields
a perturbed problem. The resulting sensitivity problem is given by

∂tηα − div(D(x)∇ηα) +α(x)β(t) ηα − g′c ηα = −β(t)α0(x) c in Q,

D ∂νηα = 0 on BT ,

ηα(x, 0) = 0 in Ω.

(18)
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Sensitivity problem associated with initial activation of the tissue. Similarly,
assume c(x, t) is perturbed by ϵ ηφ(x, t) and the initial activation of the tissue, denoted as
φ(x), is perturbed by ϵφ0(x), where ϵ > 0 is a small number and φ0 ∈ Aφ. Substituting
the perturbed cell density c(x, t) + ϵ ηφ(x, t) and perturbed initial activation of the tissue
φ(x) + ϵφ0(x) into the original problem (5) yields a perturbed problem. The resulting
sensitivity problem is given by

∂tηφ − div(D(x)∇ηφ) +α(x)β(t) ηφ − g′c ηφ = 0 in Q,

D ∂νηφ = 0 on BT ,

ηφ(x, 0) = φ0(x) in Ω.

(19)

Note that the problems (18) and (19) are linear, and their well-posedness is classical, see
[6]. These sensitivity problems are important to determine the step sizes in the descent
direction in the conjugate gradient method.

Proof of theorem 3. Let ϵ > 0 and α0 ∈ Aα be given, then direct calculations yield

J(α+ ϵα0,φ)− J(α,φ) = ϵ
{ 2∑

k=1

∫
Q
ηα(x, t)ωk(t)

(∫ T

0
ωk(τ) c(x, τ) dτ − ϕεk

)
dx dt

}
+
ϵ2

2

{ 2∑
k=1

(∥∥∥∫ T

0
ωk(t) ηα dt

∥∥∥2
2

)}
.

(20)

Therefore, the directional derivative of J(α,φ) with respect to α in the direction α0(x)
is given by

J ′
α(α,φ) ·α0 = lim

ϵ→0

J(α+ ϵα0,φ)− J(α,φ)

ϵ

=

2∑
k=1

∫
Q
ηα(x, t)ωk(t)

(∫ T

0
ωk(τ) c(x, τ) dτ − ϕεk

)
dx dt.

Multiplying both sides of the first equation in (16) by ηα, integrating over Q, using the
Green formula and the fact that D(x) ∂νv = 0 on BT , we obtain

−
∫
Q
∂tv ηα dx dt+

∫
Q
D(x)∇v∇ηα dx dt+

∫
Q
(α(x)β(t)− g′c) v ηα dx dt

=

2∑
k=1

∫
Q
ωk(t) ηα

(∫ T

0
ωk(τ) c(x, τ) dτ − ϕεk

)
dx dt.

Applying the Green’s and the integration by parts formulas in the above identity and
taking into account that ηα(x, 0) = 0 and v(x, T ) = 0 for all x ∈ Ω, we get
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∫
Q

(
∂tηα − div(D(x)∇ηα) +α(x)β(t) ηα − g′c ηα

)
v dx dt

=
3∑

k=1

∫
Q
ωk(t) ηα

(∫ T

0
ωk(τ) c(x, τ) dτ − ϕεk

)
dx dt.

The first equation in (18) leads to

2∑
k=1

∫
Q
ωk(t) ηα

(∫ T

0
ωk(τ) c(x, τ) dτ − ϕεk

)
dx dt = −

∫
Q
β(t)α0(x) c(x, t) v(x, t) dx dt.

Therefore, the directional derivative of J(α,φ) with respect to α in the direction α0(x)
is given by

J ′
α(α,φ) ·α0 = −

∫
Q
β(t)α0(x) c(x, t) v(x, t) dx dt. (21)

Similarly, by using the weak formulations of the adjoint problem (16) and the sensitivity
problem (19), we can derive

J ′
φ(α,φ) ·φ0 =

∫
Ω
φ0(x) v(x, 0) dx.

The proof is complete.

3.2. Iterative algorithm

In this subsection, we employ a conjugate gradient method to approximate the mini-
mizer of the functional J(α,φ) defined by (7). Let (αk,φk) be the kth approximation of
the solution (α,φ). The iterations are given by the following equations:

αk+1 = αk + ζkαS
k
α and φk+1 = φk + ζkφS

k
φ, k = 0, 1, 2, · · · . (22)

In (22), the index k denotes the number of iterations, α0(x) and φ0(x) are the initial
guesses for α(x) and φ(x), respectively. The terms ζkα and ζkφ are the step sizes, and Sk

α

and Sk
φ represent the search directions which are determined by the following equations:

Sk
α =

{
−J ′0

α , k = 0,
−J ′k

α + ϑkα S
k−1
α , k ≥ 1,

and Sk
φ =

{
−J ′0

φ , k = 0,

−J ′k
φ + ϑkφ S

k−1
φ , k ≥ 1,

(23)

where J ′k
α = J ′

α(α
k,φk) and J ′k

φ = J ′
φ(α

k,φk) denote the derivatives of J(α,φ) with

respect to α and φ, respectively, at point (αk,φk). The terms ϑkα and ϑkφ are the conjugate
coefficients obtained using the Fletcher-Reeves formula [12]

ϑkα =

∥∥J ′k
α

∥∥
2∥∥∥J ′k−1

α

∥∥∥
2

and ϑkφ =

∥∥J ′k
φ

∥∥
2∥∥∥J ′k−1

φ

∥∥∥
2

, k = 1, 2, · · · . (24)



S. Tatar, M. BenSalah, M. Alamil / Eur. J. Pure Appl. Math, 17 (4) (2024), 2651-2675 2662

Building upon the preceding discussions, it is noteworthy that all parameters are explicitly
expressed, except the search step sizes ζkα and ζkφ. The determination of these parameters
is accomplished through the utilization of the line search method. Specifically, the values
for ζkα and ζkφ are obtained by minimizing the following functional:

J(αk+1,φk+1) :=
1

2

2∑
i=1

(∥∥∥∫ T

0
ωi(t)u(α

k+1,φk+1) dt− ϕεi

∥∥∥2
2

)
.

Since the search step sizes ζkα and ζkφ are implicit in the expression of J(αk+1, φk+1), we
adopt a similar approach to [3, 4] and linearize it such that these parameters become
explicit in the new formulation. Hence c(αk+1,φk+1) becomes as follows:

c(αk+1,φk+1) :≈ c(αk,φk) + ζkαη
k
α + ζkφη

k
φ, (25)

where ηkα and ηkφ are obtained by solving the sensitivity problems (18) and (19) with

(α,φ) = (αk,φk) and (α0,φ0) = (Sk
α, S

k
φ). We now define

cki =

∫ T

0
ωi c

k dt, ηkα,i =

∫ T

0
ωi η

k
α dt and ηkφ,i =

∫ T

0
ωi η

k
φ dt, for i = 1, 2,

with ck = c(αk,φk). Then, from (7) and (25), we have

J(αk+1,φk+1) =
1

2

2∑
i=1

∫
Ω

(
cki + ζkα η

k
α,i + ζkφ η

k
φ,i − ϕεi

)2
dx. (26)

It follows

∂J(αk+1,φk+1)

∂ζkα
:= R1ζ

k
α +R2ζ

k
φ − Y1 and

∂J(αk+1,φk+1)

∂ζkγ
:= R2ζ

k
α +R3ζ

k
φ − Y2

, where

R1 =
2∑

i=1

∥ηkα,i∥22, R2 =
2∑

i=1

∫
B
ηkα,i η

k
φ,i dx, R3 =

2∑
i=1

∥ηkφ,i∥22,

Y1 =
2∑

i=1

∫
B
ηkα,i(ϕ

ε
i − cki ) dx, and Y2 =

2∑
i=1

∫
B
ηkφ,i(ϕ

ε
i − cki ) dx.

By setting
∂J(αk+1,φk+1)

∂ζkα
=
∂J(αk+1,φk+1)

∂ζkφ
= 0,

one can deduce that the search step sizes ζkα and ζkφ satisfy the following linear system{
R1ζ

k
α +R2ζ

k
φ = Y1,

R2ζ
k
α +R3ζ

k
φ = Y2.
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Therefore, direct calculations yield

ζkα =
R3Y1 −R2Y2

R3R1 −R2
2

and ζkα =
R1Y2 −R2Y1

R3R1 −R2
2

. (27)

In the context of iterative algorithms, it is widely recognized that determining a suitable
stopping criterion is crucial. Addressing this concern, the present study employs the
discrepancy principle to conclude the iteration process. According to this principle, the
iteration procedure if the following condition is fulfilled:

J
(
αk,φk

)
≤ ε̄, (28)

where ε̄ is a small positive value, such as ε̄ = 10−6 for exact measurements. In cases where
the measurements exhibit noise,

ε̄ =
1

2

2∑
i=1

∥ϕεi − ϕi∥22 .

Building upon (6), it is established that ε̄ ⩽ ε2. Consequently, the primary steps of our
reconstruction approach are summarized in the following algorithm:

Algorithm 1 (H).Step 1. Set k = 0 and choose initial guesses α0 and φ0 for the unknown
coefficients α and φ, respectively.

Step 2. Solve the direct problem (5) with (α,φ) = (αk,φk) to get ck = c(αk,φk).

Step 3. Solve the adjoint problem (16) and evaluate the gradients J ′,k
α = J ′

α(α
k,φk) and

J ′,k
φ = J ′

φ(α
k,φk) given in theorem 3.

Step 4. Calculate the conjugate coefficients ϑkα and ϑkφ by (24) and the directions Sk
α and

Sk
φ by (23).

Step 5. Calculate the step sizes ζkα and ζkφ by (27).

Step 6. Update αk+1 and φk+1 by (22).

Step 7 If the condition (28) is satisfied, then go to Step 8. Otherwise set k = k+1 and go
to Step 2.

Step 8 End.
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4. Numerical experiments

We set T = 1 and B = (0, 1) in all numerical examples. We rely on the finite difference
method as our primary tool to deal with not only the direct problem but also its associated
sensitive and adjoint variants. Setting a structured approach, we designate h = 0.02 as
the step size and τ = 0.005 as the time increment, ensuring a balanced exploration of the
problem domain both spatially and temporally. Moreover, to handle integrals within our
computations, we employ the trapezoidal rule, a widely recognized numerical technique
that provides reliable approximations. All numerical experiments are carried out in MAT-
LAB (version R2017a).

In the context of noisy observations, we enhance the fidelity of our simulations by
incorporating Gaussian additive noise to ϕε1 and ϕε2, as detailed in (6). This noise, with
amplitude σ, is dynamically adjusted based on a specified percentage p representing the
noise level in the data. Utilizing the term ”random(1)”, we introduce variability represen-
tative of real-world conditions by generating random values from a Gaussian distribution
with a mean of zero and a standard deviation of unity. Specifically, the noisy observations
ϕεi are generated according to:

ϕεi = ϕi + σ × random(1), i = 1, 2,

where σ is calculated as σ = p
100 × maxx∈Ω{|ϕ1(x)|, |ϕ2(x)|}. This approach ensures

that our computational model captures the inherent uncertainties present in real-world
measurements, enhancing the robustness of our simulations. The accuracy errors Eα(k)
and Eφ(k), as functions of the iteration number k, for the treatment parameter α(x) and
the initial cell density φ(x), respectively, are defined as

Eα(k) := ∥αk −α∥2, (29)

Eφ(k) := ∥φk −φ∥2, (30)

where αk and φk are the CGM iterates, and α and φ are the analytical expressions of
the treatment parameter and the initial cell density.

Throughout this section, we maintain a consistent temporal component β(t) within the
treatment profile, specified as exp (−t). Furthermore, our initial guesses for the treatment
parameter α0 and initial cell density φ0 are both set to 1, establishing a standardized
starting point for our analysis. Expanding upon our problem configuration, the parameters
governing the logistic reaction function g(c) and the diffusion term are listed in Table 1.

Parameter Value References

Growth rate ρ 0.0012 Cock et al. [8]

Diffusion coefficient dg 0.0013 Tracqui et al. [27]

Diffusion coefficient dω 0.0065 Swanson et al. [24]

Carrying capacity clim 0.625 Noviantri et al. [18]

Table 1: Numerical values of physical coefficients.
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Example 1. In this example, we aim to evaluate the performance of our algorithm
in identifying the treatment parameter α and initial cell density φ within a controlled
setting. These two functions are assumed to exhibit smooth behavior, reflecting typical
characteristics observed in many practical applications. By selecting smooth functions
for α and φ, we aim to establish a baseline assessment of the algorithm’s capability
to accurately reconstruct these essential parameters under ideal conditions. This test
serves as a crucial step in validating the effectiveness and reliability of our computational
approach before extending it to more complex scenarios. In doing so, we choose the weight
functions as ω1(t) = 1 and ω2(t) = e−t, tailoring our algorithm to specific characteristics
of the problem domain. With these choices, we proceed to test our algorithm’s ability to
reconstruct a treatment parameter α and initial cell density φ defined as

α(x) = 2x+ sin(πx) + 1 and φ(x) =
cos(4πx) + 1

2
.

In Figure 1, we show the behavior of the objective functional J(αk,φk), as defined in (7),
with respect to the iteration number k. This functional characterizes the simultaneous
recovery of the two unknown parameters α(x) and φ(x) in the noise free case (p = 0),
as well as with noise levels p = 1 and p = 2. From this figure, it can be seen that the
objective functional (7) is monotonic decreasing and convergent. Additionally, we observe
rapid convergence of the functional to a small positive value, underscoring the algorithm’s
efficiency in minimizing the objective and thereby refining the parameter estimates.

Figure 1: The objective functional J(αk,φk), for different noise levels p ∈ {0, 1, 2}, in
Example 1.

Based on the discrepancy principle (28), Table 2 presents a comprehensive overview of
key metrics for each chosen noise level p ∈ {0, 1, 2}. Specifically, the table lists the stopping
iteration numbers k⋆, the threshold ε, the errors (29) associated with the unknowns α(x)
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and φ(x), as well as the norms of the Fréchet gradients ∥J ′,k⋆
α ∥2 and ∥J ′,k⋆

φ ∥2.

ε̄ k⋆ Eα(k
⋆) Eφ(k

⋆) ∥J ′,k⋆
α ∥2 ∥J ′,k⋆

φ ∥2
p = 0 1.00e− 06 161 4.41e− 02 3.11e− 02 2.09e− 04 3.34e− 04

p = 1 8.54e− 05 66 1.21e− 01 1.17e− 01 3.04e− 04 3.63e− 04

p = 2 3.41e− 04 43 2.21e− 01 1.56e− 01 1.24e− 03 1.45e− 03

Table 2: Choices of noise levels p and their respective threshold values, the corresponding
stopping iteration numbers k⋆, L2-errors, and norms of the Fréchet gradients in Example
1.

From Table 2, it is evident that the numerical solutions are reasonably accurate for
both α(x) and φ(x). Furthermore, the norms of the Fréchet gradients indicate that the
Conjugate Gradient Method (CGM), with iterations stopped by the discrepancy principle
(28), serves as a semi-convergent regularization method. In Figure 2, we illustrate the
numerical solutions for the treatment parameter α(x) and the initial cell density φ(x) at
the stopping iteration numbers k⋆ determined from Table 2. These solutions are shown
for noise levels p in {0, 1, 2}. From Figure 2, it is evident that for noise-free data (p = 0),
the analytical and numerical solutions overlap, making them indistinguishable graphically.
However, as the level of noise increases, the accuracy of the solutions decreases. Overall,
it can be observed that stable and accurate solutions are obtained for both coefficients
α(x) and φ(x).

(a) The treatment parameter α(x) (b) The initial cell density φ(x)

Figure 2: The numerical results for Example 1 for p ∈ {0, 1, 2}. Left: the treatment
parameter α(x). Right: the initial cell density φ(x).

Example 2. In this example, we test our algorithm to recover a smooth treatment
parameter and a non-smooth initial cell density, driven by considerations in brain tumor
growth dynamics. Typically, treatment parameters in such scenarios exhibit smooth varia-
tions, while initial cell densities may feature sharp changes or irregularities. By addressing
these characteristics, we aim to enhance the applicability of our algorithm in real-world
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medical contexts, where accurate characterization of tumor growth dynamics is crucial
for effective treatment planning and monitoring. Moreover, investigating the algorithm’s
performance in recovering both smooth and non-smooth parameters provides valuable in-
sights into its robustness and versatility across diverse tumor growth patterns.

To demonstrate the effectiveness of our proposed iterative method in this scenario, we
define the exact treatment parameter α(x) and initial cell density φ(x) to be reconstructed
as follows:

α(x) =
1 + sin(4πx)

2
and φ(x) =


0, if x ∈ [0, 0.2] ∪ [0.8, 0.1],

2 sin(πx)− 1, if x ∈ [0.2, 0.5],

−10x
3 + 8

3 , Otherwise.

The measured data ϕεi , for i = 1, 2, are generated using the weight functions ω1(t) =
1+ t2 and ω2(t) = exp(−2t). Figure 3 illustrates the objective functional J(αk,φk) given
by (7) for the simultaneous reconstruction of the unknown coefficients with noise levels
p ∈ {0, 1, 2}. From this figure, it is evident that the objective function rapidly decreases
monotonically and thus it is convergent.

Figure 3: The objective functional J(αk,φk), for different noise levels p ∈ {0, 1, 2}, in
Example 2.

The choices of p in the test and the corresponding numerical performances are listed
in table 3.
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ε̄ k⋆ Eα(k
⋆) Eφ(k

⋆) ∥J ′,k⋆
α ∥2 ∥J ′,k⋆

φ ∥2
p = 0 1.00e− 06 167 1.14e− 02 1.33e− 01 3.43e− 04 2.58e− 05

p = 1 3.18e− 02 17 9.05e− 02 2.16e− 01 1.17e− 01 1.01e− 01

p = 2 1.27e− 01 9 1.06e− 01 3.07e− 01 3.30e− 01 1.22e− 01

Table 3: Choices of noise levels p alongside their respective threshold values, the corre-
sponding stopping iteration numbers k⋆, L2-errors, and norms of the Fréchet gradients in
Example 2.

In comparison with Example 1, Table 3 highlights the impact of the non-smoothness
of the initial cell density on the accuracy of our method. The corresponding numerical
solutions for the treatment parameter α(x) and the initial cell density φ(x) at the stopping
iteration numbers obtained based on the discrepancy principle (28) are illustrated in Figure
4.

(a) The treatment parameter α(x) (b) The initial cell density φ(x)

Figure 4: The numerical results for Example 2 for different noise levels p ∈ {0, 1, 2}.
Left: the treatment parameter α(x). Right: the initial cell density φ(x).

Similar to the previous test, Figure 4 demonstrates that the efficiency of our algorithm
diminishes with increasing noise level p. Specifically, the numerical results exhibit high
accuracy when no noise is present (0% noise added in the measured data ϕi, for i = 1, 2).
It is noteworthy that the reconstruction of smooth functions displays higher accuracy
compared to non-smooth cases. However, stable and accurate solutions are attained for
both coefficients overall.

Example 3. In this example, we test our algorithm to identify a non-smooth treat-
ment parameter and a smooth initial cell density. This experimental setup stems from
insights gained in brain tumor dynamics, where treatments such as radiation therapy
or chemotherapy often induce localized variations in treatment effectiveness, resulting in
non-smooth patterns in the treatment parameter. Conversely, the initial distribution of
healthy and tumor cells within the brain tissue tends to exhibit a more uniform or grad-
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ual pattern, reflecting the inherent composition and structure of the brain. By exploring
this contrast in parameter characteristics, we aim to further enhance the adaptability and
effectiveness of our algorithm in diverse tumor growth scenarios. For this purpose, we set
ω1(t) = log(1+ t2) and ω2(t) = 2, and evaluate the algorithm’s performance in recovering:

α(x) = max(1, 1− (1− x2) cos(5πx)) and φ(x) =
cos(πx)− x2 + 2x

2
.

The objective functional J(αk,φk) defined by (7) is shown in Figure 5. It is clear that
the objective function decreases steadily and monotonically with the iteration numbers k
and thus it is convergent.

Figure 5: The objective functional J(αk,φk), for different noise levels p ∈ {0, 1, 2}, in
Example 3.

Based on the discrepancy principle (28) for each chosen noise level p ∈ {0, 1, 2}, we
present the choices of p in this test along with the corresponding numerical performances
in Table 4.

ε̄ k⋆ Eα(k
⋆) Eφ(k

⋆) ∥J ′,k⋆
α ∥2 ∥J ′,k⋆

φ ∥2
p = 0 1.00e− 06 162 6.75e− 02 2.46e− 02 6.36e− 05 1.01e− 04

p = 1 1.83e− 05 116 7.92e− 02 5.71e− 02 6.62e− 04 6.94e− 04

p = 2 7.35e− 05 88 1.08e− 01 7.27e− 02 1.06e− 03 5.77e− 03

Table 4: Choices of noise levels p and their respective threshold values, the corresponding
stopping iteration numbers k⋆, L2-errors, and norms of the Fréchet gradients in Example
3.

Similar to the previous scenarios, we conclude this test by illustrating the comparisons
of the recovered solutions with the exact ones in Figure 6.
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(a) The treatment parameter α(x) (b) The initial cell density φ(x)

Figure 6: The numerical results for Example 3 for different noise levels p ∈ {0, 1, 2}.
Left: the treatment parameter α(x). Right: the initial cell density φ(x).

As it is expected from the previous test, Figure 6 confirms that the efficiency of our
algorithm is sensitive to both the noise level and the smoothness of the coefficient being
reconstructed.

Example 4. In brain tumor growth, various factors such as genetic mutations, cellular
interactions, and microenvironmental conditions can contribute to the formation of com-
plex spatial patterns in both the treatment response and the distribution of tumor cells.
These patterns may include regions of high and low treatment effectiveness, as well as
areas of dense and sparse tumor cell populations, resulting in non-smooth variations in
these coefficients. According to this observation, in this test, we focus on the identification
of the treatment parameter and the initial cell density in more complex scenarios, where
both coefficients to be reconstructed are represented by non - smooth functions. In doing
so, we choose the weight functions as ω1(t) = 1 + t + t2 and ω2(t) = t3, and we test our
iterative procedure to identify the following two coefficients:

α(x) = 2− |1− 2x| and φ(x) =


0, if x ∈ [0, 0.2] ∪ [0.8, 0.1],
10x
3 − 2

3 , if x ∈ [0.2, 0.5],

−10x
3 + 8

3 , if x ∈ [0.5, 0.8].

Following the same steps as in the previous tests, we start this analysis by illustrating the
evolution of the objective functional J(αk,φk) in Figure 7. This depicts the simultaneous
recovery of the treatment parameter α(x) and the initial cell density φ(x), considering
noise levels p = {0, 1, 2}. Notably, the objective function exhibits a monotonically de-
creasing trend with k, converging rapidly to a small positive value, as expected.



S. Tatar, M. BenSalah, M. Alamil / Eur. J. Pure Appl. Math, 17 (4) (2024), 2651-2675 2671

Figure 7: The objective functional J(αk,φk), for different noise levels p ∈ {0, 1, 2}, in
Example 4.

The choices of noise levels p along with their corresponding numerical performances
are detailed in Table 5.

ε̄ k⋆ Eα(k
⋆) Eφ(k

⋆) ∥J ′,k⋆
α ∥2 ∥J ′,k⋆

φ ∥2
p = 0 1.00e− 06 207 6.23e− 02 1.52e− 02 6.21e− 04 1.61e− 04

p = 1 1.15e− 03 20 1.11e− 01 4.90e− 02 1.01e− 03 7.27e− 03

p = 2 4.60e− 03 11 1.58e− 01 7.38e− 02 1.09e− 03 6.52e− 03

Table 5: Choices of noise levels p alongside their respective threshold values, the corre-
sponding stopping iteration numbers k⋆, L2-errors, and norms of the Fréchet gradients in
Example 4.

Utilizing the stopping iteration numbers k⋆, obtained according to the discrepancy
principle (28), we present the comparisons between the exact solutions and the recovered
ones for each chosen noise level p in Figure 8.
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(a) The treatment parameter α(x) (b) The initial cell density φ(x)

Figure 8: The numerical results for Example 4 for different noise levels p ∈ {0, 1, 2}.
Left: the treatment parameter α(x). Right: the initial cell density φ(x).

In comparison with all previous tests, it is evident from Figure 8 that the accuracy
and efficiency are reduced in this scenario due to the non-smoothness of the functions to
be reconstructed. However, overall, the obtained results are acceptable.

5. Conclusions

In this paper, we addressed an inverse problem involving the simultaneous determina-
tion of the treatment response parameter and the initial tumor cell density in a nonlinear
parabolic problem related to brain tumor dynamics. By reformulating the inverse problem
as a minimization problem, we established the existence and initial stability of the solution.
We proved the Fréchet differentiability of the objective (cost) functional and presented ex-
plicit formulas for the derivatives by using the solution to related adjoint problem. Based
on the Fréchet differentiability of the objective (cost) functional, we developed an effi-
cient iterative procedure using the conjugate gradient method combined with Morozov’s
discrepancy principle to solve the variational problem. Numerical examples, with both
noise-free and noisy data, demonstrated the applicability and accuracy of the proposed
method. On the other hand, several mathematical issues of high interest have not been
discussed in this paper. The stability problem is one of them. The full stability issue is,
however, to the best of our knowledge, still an open problem which deserves further inves-
tigation. Additionally, the uniqueness analysis of the considered inverse problem remains
an area for future research. These aspects will be the focus of forthcoming studies to
enhance the robustness and reliability of the proposed methods in practical applications.
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