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1. Introduction and preliminaries

The most important tools in fixed point theory is Banach contraction principle. A lot of
authors have extended or generalized this contraction and proved the existence of fixed and
common fixed point theorems for single valued and multi-valued mappings and some applica-
tion (see [3–6, 11, 14–18, 21–23]). The concept of the b-metric space was introduced by Czerwik
[12] and he also obtained some fixed-point theorems of contractive mappings in b-metric space.
Since then, this notion has been used by many authors to obtain various fixed point theorems.
Roshan et al. in [18] used the notion of almost generalized contractive mappings in ordered
complete b-metric spaces and established some fixed and common fixed point results.

The main goal of this section is to present some definitions and properties of b-metric spaces:

Definition 1.1. ([12]) Let 𭟋 be a nonempty set. A mapping Λb : 𭟋×𭟋 → [0,+∞) is said to
be a b-metric if the following three conditions hold for all u, v ∈ 𭟋 :
(Λ1) Λ(u, v) = 0 ⇒ u = v;
(Λ2) Λ(u, v) = Λ(v, u);
(Λ3) Λ(u, v) ≤ s[Λ(u,w) + Λ(w, v)].
In this case, the pair (𭟋,Λb) is called a b-metric space.

Example 1.2. Let (𭟋,Λb) be a metric space and let β > 1, ϱ ≥ 0 and µ > 0. For u, v ∈ 𭟋, set
Λb(u, v) = ϱΛb(u, v)+µΛb(u, v)

β. Then (𭟋,Λb) is a b-metric space with the parameter s = 2β−1
and not a metric space on 𭟋.
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Example 1.3. Let 𭟋 be the set of Lebesgue measurable functions on [0,1] such that
∫ 1
0 | p(u) |2<

+∞. Define

Λb(u, v) =

∫ 1

0
| p(u)− q(u) |2 d(u).

Then Λb satisfies the following properties:

(i) Λb(u, v) = 0 ⇔ u = v

(ii) Λb(u, v) = Λb(v, u), for all u, v ∈ 𭟋

(iii) Λb(u, v) ≤ 2[Λb(u,w) + Λb(w, v)], for all u,w, v ∈ 𭟋.

Definition 1.4. ([20]) Let (𭟋,Λb) be a b-metric space. Then a sequence {un} in 𭟋 is called:
(i) b-convergent if and only if there exists v ∈ 𭟋 such that Λb(un, u) → 0, as n → +∞. In this
case, we write limn→+∞ un = u.
(2) b-Cauchy if and only if Λb(un, um) = 0 as n,m→ ∞.

Proposition 1.5. ([11]) In b-metric space (𭟋,Λb) the following assertions holds:
(1) A b-convergent sequence has a unique limit,
(2) Each b-convergent is b-Cauchy,
(3) In general, a b-metric is not continuous.

Proposition 1.6. ([11]) The b-metric space (𭟋,Λb) is complete if every Cauchy sequence in 𭟋
b-converges.

Qawagneh et al. [19] introduced the notion of triangular α-admissible with respect to η for
p and q on a set 𭟋 as the following:

Definition 1.7. ([20])Let p, q : 𭟋 → 𭟋 be two mappings and α, η : 𭟋×𭟋 → R be two functions
such that the following assertions hold:

(i) if α(u, v) ≥ η(u, v), then α(pu, qv) ≥ η(pu, qv), and α(pqu, qpv) ≥ η(pqu, qpv),

(ii) if α(u, h) ≥ η(u, h), and α(h, v) ≥ η(h, v), then α(u, v) ≥ η(u, v),

Lemma 1.8. ([22]) Let p, q : 𭟋 → 𭟋 be two mappings and α, η : 𭟋×𭟋 → R be two functions
such that the pair (p, q) is triangular α-admissible with respect to η. Assume that there exist
u0 ∈ 𭟋 such that α(u0, pu0) ≥ η(u0, pu0). Define a sequence {un} in 𭟋 by pu2n = u2n+1 and
qu2n+1 = u2n+2. Then α(un, um) ≥ η(un, um) for all m,n ∈ N with n < m.

Berinde [[6],[7],[8],[9],[10]] presented many interesting fixed-point results for various types of
contraction mappings. In [8] and [9], he defined the almost contraction map as follows.

Definition 1.9. Let (𭟋,Λ) be a metric space. A map p : 𭟋 → 𭟋 is called an almost contraction
if there exist a constant λ ∈ [0, 1) and some L ≥ 0 such that:

Λ(pu, pv) ≤ λΛ(u, v) + LΛ(v, pu)

for all u, v ∈ 𭟋.

Let Φ the set of all increasing and continuous functions φ : [0,+∞) → [0,+∞) and let ∆
be the set of all lower semi-continuous functions ψ : [0,+∞) → [0,+∞) with ψ(b) = b if and
only if b = 0.
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2. An λ(s,φ,ψ,L)- generalized Berinde type contraction mapping

Now, we will present λ(s,φ,ϕ,L)- generalized Berinde type contraction mapping prove our
main result for such class of contractions in the framework of b-metric spaces.

Definition 2.1. Let (𭟋,Λb) be a b-metric space with parameter s ≥ 1 and p, q : 𭟋 → 𭟋 be a two
mappings. Then we consider that the pair (p, q) is λ(s,φ,ϕ,L)-generalized Berinde type contraction
mapping if there exists α, η : 𭟋×𭟋 → R be two mappings, φ ∈ Ω, ϕ ∈ Φ, λ ∈ [0, 1), L ≥ 0 such
that

φ
(
s2Λb(pu, qv)

)
≤ λ [φ (MΛb

(u, v))− ϕ (MΛb
(u, v)) + LNΛb

(u, v)] , (2.1)

holds for all u, v ∈ 𭟋, where

MΛb
(u, v) = max

{
Λb(u, v),Λb(u, pu),Λb(v, qv),

Λb(u, qv) + Λb(pu, v)

2s[1 + Λb(pu, v)]

}
,

and
NΛb

(u, v) = min {Λb(u, v),Λb(u, pu),Λb(v, qv),Λb(v, pu)} .

Now we begin with our first result.

Theorem 2.2. Let (𭟋,Λb) be a complete b-metric space with the constant s ≥ 1, and (p, q) be
two self-mappings on 𭟋. Suppose that α, η : 𭟋 × 𭟋 → R are two functions. Assume that the
following conditions hold:
(i) λ(s,φ,ϕ,L)-Berinde type contraction mapping;
(ii) the pair (p, q) is triangular α-admissible with respect to η;
(iii) there exists u0 ∈ 𭟋 such that α(u0, pu0) ≥ η(u0, pu0),
(iv) p and q are continuous mappings.
Then, p and q have a common fixed point in 𭟋.

Proof. Let u0 ∈ 𭟋 such that α(u0, pu0) ≥ η(u0, pu0). We define a sequence {un} ⊂ 𭟋 such
that u2n+1 = pu2n and u2n+2 = qu2n+1 for all n ∈ N. If ∃ an n∗ such that un∗+1 = un∗ for some
n∗ ∈ N, then it is very easy to show that p and q have a common fixed point, which completes
the proof. Since the pair (p, q) is triangular α-admissible with respect to η, then

α(u1, u2) = α(pu0, qu1) ≥ η(pu0, qu1) = η(u1, u2)

and
α(u2, u1) = α(pu1, qu0) ≥ η(pu1, qu0) = η(u2, u1).

One more time by using triangular α-admissible with respect to η, we get

α(u2, u3) = α(pu1, qu2) ≥ η(pu1, qu2) = η(u2, u3)

and
α(u3, u2) = α(pu2, qu1) ≥ η(pu2, qu1) = η(u3, u2).

By repeating the above steps for n−times, we obtain the following α(un, un+1) ≥ η(un, un+1)
and α(un+1, un) ≥ η(un+1, un). By Lemma 1.8, we have α(u2n, u2n+1) ≥ η(u2n, u2n+1) for all
n ∈ N and since (p, q) is λ(s,φ,ψ,L)-generalized Berinde type contraction mapping, we get

φ(Λb(u2n+1, u2n+2)) ≤ φ(s2Λb(pu2n, qu2n+1)

≤ λ[φ(MΛb
(u2n, u2n+1))− ϕ(MΛb

(u2n, u2n+1)) + LNΛb
(u2n, u2n+1)](2.2)
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for all n ∈ N, where

MΛb
(u2n, u2n+1) = max {Λb(u2n, u2n+1),Λb(u2n, pu2n),Λb(u2n+1, qu2n+1),

Λb(u2n, qu2n+1) + Λb(pu2n, u2n+1)

2s(1 + Λb(pu2n, u2n+1))

}
= max {Λb(u2n, u2n+1),Λb(u2n, u2n+1),Λb(u2n+1, u2n+2),

Λb(u2n, u2n+2) + Λb(u2n+1, u2n+1)

2s(1 + Λb(u2n+1, u2n+1))

}
= max

{
Λb(u2n, u2n+1),Λb(u2n+1, u2n+2),

Λb(u2n, u2n+2)

2s

}
and

NΛb
(u2n, u2n+1) = min{Λb(u2n, u2n+1),Λb(u2n, pu2n),Λb(u2n+1, qu2n+1),Λb(u2n+1, pu2n)}

i.e.,
NΛb

(u2n, u2n+1) = 0 (2.3)

Since

Λb(u2n, u2n+2)

2s
≤ s[Λb(u2n, u2n+1) + Λb(u2n+1, u2n+2)]

2s

≤ Λb(u2n, u2n+1) + Λb(u2n+1, u2n+2)

2
≤ max{Λb(u2n, u2n+1),Λb(u2n+1, u2n+2)},

we get
MΛb

(u2n, u2n+1)) ≤ max{Λb(u2n, u2n+1),Λb(u2n+1, u2n+2)}. (2.4)

Taking (2.3) and (2.4) into account,(2.2) yields

φ(Λb(u2n+1, u2n+2)) ≤ λ [φ (max{Λb(u2n, u2n+1),Λb(u2n+1, u2n+2)})
−λϕ (max{Λb(u2n, u2n+1),Λb(u2n+1, u2n+2)})]

< φ (max{Λb(u2n, u2n+1),Λb(u2n+1, u2n+2)})
− ϕ (max{Λb(u2n, u2n+1),Λb(u2n+1, u2n+2)}) .

Now, we will show that Λb(u2n+1, u2n+2) ≤ Λb(u2n, u2n+1). Arguing by contradiction, we
assume Λb(u2n+1, u2n+2) > Λb(u2n, u2n+1). Therefore, we have two cases.
Case 1: MΛb

(u2n, u2n+1) = Λb(u2n, u2n+1). Then

φ(Λb(u2n+1, u2n+2) < φ(Λb(u2n, u2n+1))− ϕ(Λb(u2n, u2n+1)) < φ(Λb(u2n, u2n+1))

Since φ is increasing, we have Λb(u2n+1, u2n+2) < Λb(u2n, u2n+1). which is a contradiction.
Case 2: MΛb

(u2n, u2n+1) = Λb(u2n+1, u2n+2). Then

φ(Λb(u2n+1, u2n+2) < φ(Λb(u2n+1, u2n+2))− ϕ(Λb(u2n+1, u2n+2)) < φ(Λb(u2n+1, u2n+2))

Since φ is increasing, we have Λb(u2n+1, u2n+2) < Λb(u2n+1, u2n+2). Which is a impossible.
Hence from the above we have Λb(u2n+1, u2n+2) ≤ Λb(u2n, u2n+1)
By similar way, we can prove that Λb(u2n, u2n+1) ≤ Λb(u2n−1, u2n). So, we conclude that
Λb(un, un+1) ≤ Λb(un−1, un). that is, the sequence Λb(un+1, un+1) is a decreasing sequence
and bounded below for all n ∈ N. Therefore there ∃ ω ≥ 0 such that

lim
n→∞

Λb(un, un+1) = ω.
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We want to prove that ω = 0. Now, we have

φ(ω) ≤ λ[φ(ω)− ϕ(ω)] < φ(ω)− ϕ(ω) < φ(ω)

which is a contradiction. Hence

lim
n→∞

Λb(un, un+1) = 0. (2.5)

Now, we want to prove that {un} is a Cauchy sequence by Lemma 1.8, ∃ ε > 0 and two
subsequences {umi} and {uni} of {un} with mi > ni > i such that

Λb(uni , umi) ≥ ε

Λb(uni−1, umi) < ε.

By using the triangular inequality, we have

ε ≤ Λb(uni , umi) ≤ Λb(uni , uni−1) + sΛb(uni−1, umi)

< s[Λb(uni , uni−1) + ε] (2.6)

Letting i→ +∞ on both sides of (2.6) and using (2.5), we obtain

ε ≤ lim
n→+∞

Λb(uni , umi) < sε. (2.7)

From triangular inequality, we have

Λb(uni , umi) ≤ s[Λb(uni , uni+1) + Λb(uni+1, umi)], (2.8)

and
Λb(uni+1, umi) ≤ s[Λb(uni+1, uni) + Λb(uni , umi)]. (2.9)

By taking upper limit as i→ +∞ in (2.8) and applying (2.5) , (2.7) , we get

ε ≤ lim sup
i→+∞

Λb(uni , umi) ≤ s

(
lim sup
+i→+∞

Λb(uni+1, umi)

)
.

Again, by letting the upper limit as i→ +∞ in (2.9), we have

lim sup
i→+∞

Λb(uni+1, umi) ≤ s

(
lim sup
i→+∞

Λb(uni , umi)

)
≤ s.sε = s2ε.

Thus
ε

s
≤ lim sup

i→+∞
Λb(uni+1, umi) ≤ s2ε. (2.10)

Similarly,
ε

s
≤ lim sup

i→+∞
Λb(uni , umi+1) ≤ s2ε. (2.11)

By using the triangular inequality, we get

Λb(uni+1, umi) ≤ s[Λb(uni+1, umi+1) + Λb(umi+1, umi)]. (2.12)

On letting i→ +∞ in (2.12) and using the inequalities (2.5) , (2.10) , we get

ε

s2
≤ lim sup

i→+∞
Λb(uni+1, umi+1). (2.13)



H. Alsamir et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 2492-2504 2497

By following the above methods, we find

lim sup
i→+∞

Λb(uni+1, umi+1) ≤ s3ε. (2.14)

From (2.13) and (2.14), we obtain

ε

s
≤ lim sup

i→+∞
Λb(uni+1, umi+1) ≤ s3ε. (2.15)

By Lemma 1.8, we have
α(uni+1, umi+1) ≥ η(uni+1, umi+1).

Thus, we have

φ(Λb(uni+1, umi+1)) ≤ φ(s2Λb(uni+1, umi+1))

≤ λ [φ (MΛb
(uni , umi))− ϕ (MΛb

(uni , umi)) + L (NΛb
(uni , umi))]

= [λφ (MΛb
(uni , umi))− λϕ (MΛb

(uni , umi)) + λL (NΛb
(uni , umi))] ,

where

MΛb
(uni , umi) = max{Λb(uni , umi),Λb(uni , puni),Λb(umi , qumi),

Λb(uni , qumi) + Λb(puni , umi)

2s(1 + Λb(puni , umi))
}.

NΛb
(uni , umi) = min {Λb(uni , umi),Λb(uni , puni),Λb(umi , qumi),Λb(umi , puni)}

= min {Λb(uni , umi),Λb(uni , uni+1),Λb(umi , umi+1),Λb(umi , uni+1)}(2.16)

Taking the limit as i → +∞ in the above two expressions and using (2.5),(2.7) ,(2.10) and
(2.11), we obtain

ε = max{ε,
ε
s +

ε
s

2s
} ≤ lim sup

i→+∞
Λb(uni , umi) ≤ max{sε, s

2ε+ s2ε

2s
} = sε.

lim sup
i→+∞

NΛb
(uni , umi) = 0.

From (2.13), we obtain

φ(sε) ≤ φ(s2
ε

s2
) ≤ φ(s2 lim sup

i→+∞
φ(Λb(uni+1, umi+1))

≤ λ[φ(lim sup
i→+∞

MΛb
(uni , umi)− ϕ(lim inf

i→+∞
MΛb

(uni , umi)

≤ λ[φ(sε)− ϕ(sε)]

≤ λ(φ(sε))− λ(ϕ(sε))

< λφ(sε)

which leads to a contradiction. Thus {un} is a Cauchy sequence. Since 𭟋 is an complete b-
metric space and α(uni+1, umi+1) ≥ η(uni+1, umi+1) for all n ∈ N0, there exists θ such that
limn→+∞ un = θ. If p is continuous, we have pθ = limn→+∞ pu2n = limn→+∞ u2n+1 = θ. From
Condition (2.2), we have:

φ(Λb(θ, qθ)) ≤ φ(s2Λb(θ, θ))

≤ λ[(φ(MΛb
(θ, θ))− ϕ(MΛb

(θ, θ)) + LNΛb
(θ, θ)]
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for all n ∈ N, where

MΛb
(θ, θ) = max{Λb(θ, θ),Λb(θ, pθ),Λb(θ, qθ),

Λb(θ, qθ) + Λb(pθ, θ)

2s(1 + Λb(pθ, θ))
}

= Λb(θ, qθ)

and

NΛb
(θ, θ) = min{Λb(θ, θ),Λb(θ, pθ),Λb(θ, qθ),Λb(θ, qθ)} = 0.

By using the properties of φ and ϕ, we have

φ(Λb(θ, qθ)) = φ(s2Λb(pθ, qθ))

≤ λ[(φ(MΛb
(θ, qθ))− ϕ(MΛb

(θ, θ))]

= λ[(φ(Λb(θ, qθ))− ϕ(Λb(θ, qθ))]

< λ(φ(Λb(θ, qθ))).

Hence, θ = qθ is θ is the common fixed of p and q. If q is continuous, then, by a similar way of
the above, we can prove that p and q have a common fixed point.

Theorem 2.3. Let (𭟋,Λb) be a complete b-metric space with the constant s ≥ 1, and (p, q) be
two self-mappings on 𭟋. Suppose that α, η : 𭟋 × 𭟋 → R are two functions. Assume that the
following conditions hold:
(i) λ(s,φ,ϕ,L)-Berinde type contraction mapping;
(ii) the pair (p, q) is triangular α-admissible with respect to η;
(iii) If ∃ u0 ∈ 𭟋 such that α(u0, pu0) ≥ η(u0, pu0),
(iv) if {un} is a sequence in 𭟋 such that α(un, un+1) ≥ η(un, un+1), for all n ∈ N and un → θ
as n→ ∞, then ∃ a subsequence {uni} of {un} such that α(uni , u∗) ≥ η(uni , u∗), for all i ∈ N.
Then, p and q have a common fixed point in 𭟋.

Proof. Following similar arguments as in the proof of Theorem 2.2, we obtain a sequence
{un} is defined by u2n+1 = pu2n and u2n+2 = pu2n+1 for all n ∈ N converging to u∗ ∈ 𭟋 such
that α(u2n, u2n+1) ≥ η(u2n, u2n+1) for all n ∈ N. By (iv), there exist a subsequence {uni} of
{un} such that α(uni , u∗) ≥ η(uni , u∗), for all i ∈ N. Therefore

φ(Λb(u2ni+1, qu∗)) ≤ φ(s2Λb(pu2ni , qu∗)

≤ λ[(φ(MΛb
(u2ni , u∗))− ϕ(MΛb

(u2ni , u∗)) + LNΛb
(u2ni , u∗)]

(2.17)

for all n ∈ N, where

MΛb
(u2ni , u∗)) = max{Λb(u2ni , u∗),Λb(u2ni , pu2ni),Λb(u∗, qu∗),

Λb(u2ni , qu∗) + Λb(pu2ni , u∗)

2s(1 + Λb(pu2ni , u∗))
}

= max{Λb(u2n, u∗),Λb(u2n, u2ni+1),Λb(u∗, qu∗),
Λb(u2ni , qu∗) + Λb(u2ni+1, u∗)

2s(1 + Λb(u2ni+1, u∗))
}

and

NΛb
(u2ni , u∗) = min{Λb(u2ni , u∗),Λb(u2ni , pu2ni),Λb(u∗, qu∗),Λb(u∗, pu2ni)}

= min{Λb(u2ni , u∗),Λb(u2ni , u2ni+1),Λb(u∗, qu∗),Λb(u∗, u2ni+1)}.

Since

lim sup
i→∞

Λb(u2ni , qu∗) + Λb(u2ni+1, u∗)

2s(1 + Λb(u2ni+1, u∗))
≤ Λb(u∗, qu∗)

2
.
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By taking i→ ∞ in (2.18) and (2.18) using (2.5), we deduce that

lim sup
i→∞

MΛb
(u2ni , u∗)) = Λb(u∗, qu∗)

and
lim sup
i→∞

NΛb
(u2ni , u∗)) = 0.

From (2.17)and taking in account () and (), we have

φ(Λb(u∗, qu∗)) ≤ λ[φ(Λb(u∗, qu∗))− ϕ(Λb(u∗, qu∗)))] (2.18)

< λφ(Λb(u∗, qu∗))− λϕ(Λb(u∗, qu∗)). (2.19)

By definition of φ and ϕ, we have a contradiction. Hence Λb(u∗, qu∗) = 0, i.e.,

qu∗ = u∗.

By the same way we can prove that pu∗ = u∗.

Definition 2.4. Let (𭟋,Λb) be a b-metric space with parameter s ≥ 1, p, q : 𭟋 → 𭟋 and
α, η : 𭟋 × 𭟋 → R be two functions. Let φ ∈ Ω, ϕ ∈ Φ and λ ∈ [0, 1). Then the pair (p, q) is
called λ(s, φ, ϕ)-contraction mapping of type (B) if α(u, v) ≥ η(u, v), then

φ
(
s2Λb(pu, qv)

)
≤ λ [φ (MΛb

(u, v))− ϕ (MΛb
(u, v))] , (2.20)

where λ ∈ [0, 1) φ ∈ Ω, ϕ ∈ Φ and

MΛb
(u, v) = max

{
Λb(u, v),Λb(u, pu),Λb(v, qv),

Λb(u, qv) + Λb(pu, v)

2s[1 + Λb(pu, v)]

}
.

.

The proof of the followings two theorems follows from Theorem 2.2 and Theorem 2.3 by
putting L = 0.

Theorem 2.5. Let (𭟋,Λb) be a complete b-metric space with the constant s ≥ 1, and (p, q) be
two self-mappings on 𭟋. Suppose that α, η : 𭟋 × 𭟋 → R are two functions. Assume that the
following conditions hold:
(i) λ(s, φ, ϕ)- contraction type (B) mapping;
(ii) the pair (p, q) is triangular α-admissible with respect to η;
(iii) There exists u0 ∈ 𭟋 such that α(u0, pu0) ≥ η(u0, pu0),
(iv) p and q are continuous mappings.
Then, p and q have a common fixed point in 𭟋.

Theorem 2.6. Let (𭟋,Λb) be a complete b-metric space with the constant s ≥ 1, and (p, q) be
two self-mappings on 𭟋. Suppose that α, η : 𭟋 × 𭟋 → R are two functions. Assume that the
following conditions hold:
(i) λ(s, φ, ϕ)-contraction mapping type (B);
(ii) the pair (p, q) is triangular α-admissible with respect to η;
(iii) If ∃ u0 ∈ 𭟋 such that α(u0, pu0) ≥ η(u0, pu0),
(iv) if {un} is a sequence in 𭟋 such that α(un, un+1) ≥ η(un, un+1), for all n ∈ N and un → θ
as n→ ∞, then there exist a subsequence {uni of {un} such that α(uni , u∗) ≥ η(uni , u∗), for all
i ∈ N.
Then, p and q have a common fixed point in 𭟋.

The following corollaries are consequences of Theorem 2.2 and Theorem 2.3.
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Corollary 2.7. Let (𭟋,Λb) be a complete b-metric space with the constant s ≥ 1, and p be a
self-mapping on 𭟋. Suppose that α, η : 𭟋×𭟋 → R are two functions. Suppose that the following
conditions hold:
(i)

If α(u, v) ≥ η(u, v) ⇒ φ
(
s2Λb(pu, pv)

)
≤ λ [φ (MΛb

(u, v))− ϕ (MΛb
(u, v)) + (NΛb

(u, v))] ,
(2.21)

(ii)p is triangular α-admissible with respect to η;
(iii) If ∃ u0 ∈ 𭟋 such that α(u0, pu0) ≥ η(u0, pu0),
(iv) p is a continuous mappings.
Then, p has a fixed point in 𭟋.

Proof. The conclusion follows from Theorem 2.2 by taking q = p.

Corollary 2.8. Let (𭟋,Λb) be a complete b-metric space with the constant s ≥ 1, and p be a
self-mapping on 𭟋. Suppose that α : 𭟋×𭟋 → R are two functions. Assume that the following
conditions hold:
(i)

If α(u, v) ≥ 1 ⇒ φ
(
s2Λb(pu, pv)

)
≤ λ [φ (MΛb

(u, v))− ϕ (MΛb
(u, v)) + (NΛb

(u, v))] , (2.22)

(ii)p is triangular α-admissible with respect to η;
(iii) There exists u0 ∈ 𭟋 such that α(u0, pu0) ≥ 1,
(iv) p is a continuous mappings.
Then, p has a fixed point in 𭟋.

Proof. The proof follows Corollary 2.7 by defining η : 𭟋×𭟋 → R via η(u, v) = 1.

Remark 2.9. Since a b-metric space is a metric space when s = 1, so our Theorems can be seen
as a generalizations and extensions of several comparable results in metric spaces and b-metric
spaces.

The following example illustrates the above result.

Example 2.10. Let 𭟋 = {1, 2, 3, 4}. Define Λb : 𭟋×𭟋 → [0,+∞) as follows:

Λb(u, v) = Λb(v, u) = 0 if u ̸= v, u = v

Λb(u, v) = Λb(v, u) = 2 if u = 1, v = 2

Λb(u, v) = Λb(v, u) = 1 if u = 1, v = 3

Λb(u, v) = Λb(v, u) = 10 if u, v = 1, 2, 3, v = 4

Define φ(t) = et, ϕ(t) = et

2+et , λ = 1
2 , L = 2 and define the mappings p, q : 𭟋 → 𭟋 by

p1 = p2 = p3 = 1, p4 = 3

q1 = 2, q2 = q3 = q4 = 1.

It is obvious that (𭟋,Λb) is a complete b-metric space with the constant s = 2. We show that
the condition (2.1) is true. We put

φ
(
s2Λb(pu, qv)

)
= A,φ(MΛb

(u, v)) = B,ϕ(MΛb
(u, v)) = C and NΛb

(u, v) = D.

Then we have the following cases:
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Table 1: The possible values of u, v

Λb(u, v) A λ[B − C +D] A ≤ λ[B − C +D] ✓

Λb(1, 1) ≈ 2.72 ≈ 3.30 2.72 < 3.30 ✓
Λb(2, 2) 1 ≈ 3.30 1 < 3.30 ✓
Λb(3, 3) 1 ≈ 1.07 1 < 1.07 ✓
Λb(4, 4) ≈ 54.60 ≈ 11012.73 54.60 < 11012.73 ✓
Λb(1, 2) 1 ≈ 3.30 1 < 3.30 ✓
Λb(1, 3) 1 ≈ 1.07 1 < 1.07 ✓
Λb(1, 4) 1 ≈ 11012.73 1 < 11012.73 ✓
Λb(2, 3) 1 ≈ 3.30 1 < 3.30 ✓
Λb(2, 4) 1 ≈ 11012.73 1 < 11012.73 ✓
Λb(3, 4) 1 ≈ 11012.73 1 < 11012.73 ✓

λ[B − C +D]

A
A = λ[B − C +D]

A ≤ λ[B − C +D]

Λb(1, 1)

Λb(2, 2)Λb(3, 3) Λb(4, 4)

Figure 1. Satisfing the enquality A ≤ λ[B − C +D]

Thus, all the conditions of Theorem 2.1 are satisfied and hence p and q have a common fixed
point. Indeed, 1 is a common fixed point of p and q.

3. Application

Fixed point theorem has numerous applications, such as fractional differential equations ([1],
[2], [13]), the significance of these types of equations is their utilization in modeling in many
subjects. In this section, we utilize our results to demonstrate the existence and uniqueness of
the Fredholm type integral equation.
Now, Consider the set 𭟋 = C([0, 1], (−∞,∞)) and the following Fredholm type integral equa-
tion:

ṕ(t) =

∫ 1

0
S(t, s, ṕ(t)) ds, for t, s ∈ [0, 1], (3.1)

where S(t, s, ṕ(t)) is a continuous function on [0, 1]× [0, 1] → (−∞,∞).
Now, define Λb : 𭟋×𭟋 → C and (p, q) 7→| ṕ(t)− q(t) | .

Note that (𭟋,Λb) is a complete b-metric space, where the parameter s = 2.

Theorem 3.1. Suppose that for all p, q ∈ 𭟋
(1) | S(t, s, ṕ(t))− S(t, s, q(t)) |≤ |ṕ(t)−q(t)|

2 .
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(2) | S(t, s,
∫ 1
0 S(t, s, ṕ(t)) ds) − S(t, s, q

∫ 1
0 S(t, s, q(t)) ds) |≤| S(t, s, ṕ(t)) − S(t, s, q(t)) | for all

t, s.
Then the integral equation 3.1 has a unique solution.

Proof. Let ṕ(t) : 𭟋 → 𭟋 defined by ṕ(t) =
∫ 1
0 S(t, s, ṕ(t)) ds, then

Λb(ṕ, q) =| ṕ(t)− q(t) | . Now we have

Λb(ṕ(t), q(t)) = | ṕ(t)− q(t) |

= | S(t, s,
∫ 1

0
S(t, s, ṕ(t)) ds)− S(t, s, q

∫ 1

0
S(t, s, q(t)) ds) |

≤ | S(t, s, ṕ(t))− S(t, s, q(t)) |

≤ | ṕ(t)− q(t) |
2

≤ 1

2
Λb(ṕ(t), q(t))

= λ [φ (MΛb
(ṕ(t), q(t)))− ϕ (MΛb

(ṕ(t), q(t)))] ,

where φ(t) = t and ϕ(t) = t
2 . Also the parameter s < 3.

Hence, all the hypotheses of Theorem 2.2, are fulfilled and then the equation 3.1 has a unique
solution.

4. Conclusion

We have demonstrated the existence and uniqueness of a fixed point for self-mapping in b-
metric spaces under diverse nonlinear mappings with continuous control functions. Also, we
show an application of our results to Fredholm-type integral equations. Additionally, we would
like to bring the researchers consideration to the following question.

4.1. Question

Under what conditions we will get the same results for self-mapping in partial b-metric
spaces?
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