Nonlinear Mixed $\lambda$-Jordan Triple Derivation on $\ast$-algebras

Authors

  • Amal S. Alali Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University
  • junaid Nisar Aligarh Muslim University
  • Nadeem Rehman Aligarh Muslim University
  • Hafedh M. Alnoghashi Aligarh Muslim University

DOI:

https://doi.org/10.29020/nybg.ejpam.v17i4.5390

Keywords:

$\lambda$-Mixed Jordan triple derivation, $\ast$-derivation, $\ast$- algebra

Abstract

Let $\mathcal{A}$ be a $\ast$-algebra with unit $I$ and $P_1$ and $P_2 = I - P_1$ includes a non-trivial projections, and let $\lambda \in \mathbb{C}\setminus\{0,-1\}$. In this paper, We aim to study the characterization of nonlinear mixed $\lambda$-Jordan triple derivation on $\ast$-algebras. As an application, we can also apply our results on prime $\ast$-algebras, factor von-Neumann algebras and standard operator algebras.

Downloads

Published

2024-10-31

Issue

Section

Nonlinear Analysis

How to Cite

Nonlinear Mixed $\lambda$-Jordan Triple Derivation on $\ast$-algebras. (2024). European Journal of Pure and Applied Mathematics, 17(4), 3399-3414. https://doi.org/10.29020/nybg.ejpam.v17i4.5390