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Abstract. Let A be a x-algebra with unit I and P; and P, = I — P; includes a non-trivial
projections, and let A € C\ {0,—1}. In this paper, we aim to study the characterization of
nonlinear mixed A-Jordan triple derivation on *-algebras. As an application, we can also apply our
results on prime *-algebras, factor von-Neumann algebras and standard operator algebras.
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1. Introduction

Consider an x-algebra A defined over the complex field C. Introducing the A-Jordan
product UV = UV + AVU and the skew Lie product [U, V], = UV — VU* for nonzero
scalar A, these algebraic structures have gained significant attention in various research do-
mains, as evidenced by studies such as [1-5, 7, 8, 12]. In the context of additive mappings,
an additive derivation is characterized by I(UV) = II(U)V + UIL(V) for all U,V € A. If
the additional condition II(U*) = II(U)* holds for all U € A, then II is termed an additive
x-derivation. Now, let IT: A — A be a map without assuming additivity. The concept of
a nonlinear skew Lie derivation is introduced, defined by the relation

([0, V]s) = [I(U), V]« + [U, TL(V)].

for all U,V € A. Notably, Kong and Zhang [3] established the result that every nonlinear
skew Lie derivation is, in fact, an additive *-derivation.
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Similarly, a map II : A — A is termed a nonlinear skew Lie triple derivation if it
satisfies the equation

([0, V1, W) = [[I(U), Vs, Wi + [[U, TH(V) s, Wl + [[U, Vs, TV

for all U, V,W € A.

Several recent studies have delved into the exploration of derivations and isomorphisms
associated with innovative products resulting from the combination of Lie and skew Lie
products, as evidenced by works such as [6, 9, 11]. Notably, Zhou et al. [13] established
the result that every nonlinear mixed Lie triple derivation on a prime *-algebra is, in fact,
an additive x-derivation. Additionally, Pang et al. [10] demonstrated that every second
nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras also an
additive x-derivation.

Motivated by these previous works, our paper introduces the A-Jordan product defined
as UO\V = UV +AVU. We specifically focus on the derivation corresponding to the novel
product obtained by combining the skew Lie product and the A-Jordan product. In this
context, we define a map II : A — A as a mixed A\-Jordan triple derivation if it satisfies
the equation

I([U, V], 0 W) = [ILU), V]s on W + [U, (V)] O W + [U, V] OAII(W)

for all U,V,W € A. Our main result establishes that II is a nonlinear mixed A-Jordan
triple derivation on x-algebras if and only if II is an additive *-derivation.

2. Main Result

Theorem 2.1. Let A be a unital x-algebra with unity I containing a non-trivial projection
P satisfies

XAP=0 = X =0 ()

and
XAI-P)=0 = X =0. (v)

Define a map 11 : A — A such that
I([U, V] OAW) = [IL(U), V] OaW) + [U, (V). OaAW + [U, V] OAIL(W).
Then 11 is an additive x-derivation.

Consider a non-trivial projection P = P, in the algebra A, and let P, = I — P;, where
I is the unity element of the algebra. Utilizing the Peirce decomposition of A, we express
A as the direct sum A = PLAP, & PLAP, & P, AP, ® P, AP,. Denoting the corresponding
subspaces as ./411 = Pl.Apl, .A12 = Pl.APQ, A21 = Pg.APl, and ./422 = PQ.APQ, we can
represent any element U € A as the sum U = Uy + Uiz + Uzi + Usz, where U;; € A;;
and U;; € Aji for i,j = 1,2. Before proving Theorem 2.1, we need several lemmas and
remarks.
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Lemma 2.1. II(0) = 0.

Proof. Tt is obvious that

T1(0) = I1([0, 0].$20) = [T1(0), 0,20 + [0, TI(0)] <320 + [0, 0].&ATI(0) = 0.

Lemma 2.2. Let Ujp € .,412 and Usy € .,421. Then H(U12 + U21) = H(Uw) + H(Ugl).
Proof. Let T' = II(Uy2 + Us1) — II(Ui2) — II(Ua1). Since [Ujg, P1]+OxP2 = 0 and by

using Lemma 2.1, we have

([Ur2 + Va1, P« OaP2) = II([Urz, P1]xOaPe) + I([Va1, Pi]+OaPe)
[[L(U12), P1]«OaP2 + [Ur2, II(P1)]«OA P2 + [Ur2, P1OA(P2)
HII(Va1), Pl OaPo 4 [Var, H(P1) [« OA P2 + [Var, Pl OAIL(P).

On the other hand, we find

I([U12 + Va1, Pl OaP2 = [[1(Ui2 + Va1), PiliOaPe + [Ur2 + Va1, II(P1) s Oa P2
+[Ur2 + Va1, Pi] OaIL(P).

From the above two equations, we get [T, P1].{xP> = 0. That means —P\T* Po+AP,TP; =
0. Multiplying by P» from the left and since A # 0, we get P,TP; = 0. Similarly, one can
show that PiT Py, = 0.

Now, for every Xo1 € Aoy, it follows from [Xo1, U2+ OxP1 = 0 and using Lemma 2.1 that

II([X21, Uiz + Va1]«OxP1) = ([ Xo1, U2 OaPr) + ([ X21, Va1]«OrP1)
= [II(X21), Ur2]«OaP1 + [Xo1, ILI(U12) ]+ Oa P2
+[Xo1, Ur2]« OAII(P1) + [II(X21), Va1 ]« Oa P2
+[Xo1, IH(V21) ]« OaP1 + [Xo1, Var ]« OAII(P).
On the other hand, we have

([ X21, U2 + Va1 [« OaP1) = [II(Xa1), Uiz + Vo1 ]« Oa Py + [Xo1, (U2 + Vo1)]+ O Pr
+[Xo1, Utz + Vo1 [« OAIL(Py).
From the above expressions, we find that [Xo21,T],OAP1 = 0. That means Xo1 TP, —
AP TX;, = 0. Multiplying both sides by P; from right, we get Xo;7TP; = 0. By using (A)
and (V¥), we have PyTP; = 0. Similarly, we can show that P,TPy = 0. Hence, T' =0 i.e.,
I(Uy2 4 Ua1) = (Uy2) + (Uay).

Lemma 2.3. For any U;j; € A;j,1 <, <2, we have

(> Uy) = T(Uy).

1,7=1 1,j=1
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Proof. Let T = II(U11 + U2 + Ua1 + Us2) — II(U11) — (Ur2) — II(Ua1) — II(Us2).
For every X192 € Aja, also [P1,U11]+0xX12 = [P1, Us2]+$aX12 = 0 and using Lemmas 2.1
and 2.2, we get

([P, Uiy + Uiz + Uzt + UaluOaX12) = H([P1, Ur1]x OaXa2) + I([P1, Ur2]« O X12)
HIL([Pr, U2}« OaX12) + H([P1, U22]+ OrX12)

= [I(P1), Ur1]+OaX12 + [P, I(U11) ][+ OaX12
+[Pr, U]« Oall(X12) + [H(P1), Ura]« Oa X2
+[Pr, H(U12) ]« OaXa2 + [Pr, Ur2]« OA(X12)
+II(P1), Ug1 ]+ Oa X2 + [Pr, IH(U21) [+ Oa X 12
+[Pr, U1 ]« Oall(X12) + [H(P1), Uz]s OaX12
+[Pr, I(Uz2) ]« OrX12 + [Pr, Uag)u Oa (X 12).

On the other hand, we have
([P, Ur1 + Uiz 4+ Uai + Ui O X12) = [H(P1),Unr + Uiz + Uar + U]« O X2

+[P1, (U1 + Uiz + Ut + Uz2) [+ OaX12
+[P1,Ur1 + Uiz + Uz + U] Oa(X2).
By comparing the above two equations, we get [Py, M],{$xX12 = 0 from which we obtain

PTX5 —TX15 — AX12T P = 0. Multiplying P» from left and right, we get P,T X5 = 0.
By using (A) and (V), we have P,TP; = 0. Similarly, we can show that Py/T P, = 0.

Again for X9 € Ay, it follows from [X12, U1+ OaP2 = [X12, Ur2]«OxPe = [X12, U] OaPo =

0 that

H([X12, U1 + Uiz + Uy + U] OaPe) = ([ X12, Un1]+OaPe) + I([X12, Ur2]«OaP2)
HI([X12, Ua1 |« OaPe) + II([X12, Usa]« OA P2)

= [[(X12), U1+ Oa P2 + [Xi2, [I(U11) [+ G2 P2
+[X12, Uni ]« OAIL(P2) + [TI(X12), Ui2]« OaPo
+[X12, IH(U12)]+ Oa P2 + [X12, Ur2)« OAII(P2)
II(X12), Ua1]«OaPo 4 [X12, TT(U21) [« O Po
Xi2, U1 [+ OAIL(P) 4 [11(X12), Usa]« OaPo
+[X12, IH(U22)]+Oa P2 4 [X12, Uag|« OALL(P2).

On the other hand, we get

([ X312, U1 + Uiz + U2y + Uz OaP2) = [II(X12),Ur1 + Ura + Uag + Usa]uOr P
+[ X412, II(U11 + Uya + Uay + Uz [+ O P
+[X12,Ui1 + Uiz + Uai + Uaa] OAII(P).

By the above two equations, we get [Xi2,T]+{xP> = 0. That means that X127 P, —
AR,TXTy = 0. When we multiply both sides by P; on the left, the result is X127 P, = 0.
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By using (A) and (V), we have P,TP, = 0. Similarly, P,TP, = 0. Hence, T' = 0 i.e.,
H(U11 + Ujs + Uy + ng) = H(Uu) + H(Ulz) + H(Ugl) + H(Uzg).

Lemma 2.4. For any U;;, Vij € Ai; with (1 <1 # j < 2), we have
I(Uij + Vij) = I(Us) + II(Vij).

Proof. Initially, we establish the result for i = 1 and j = 2. Let T' = II(Uy2 + Vi2) —
II(Uy2) — II(Vi2). Since [Xi2,Ui2].OxP2 = 0, and using Lemma 2.1, we get

([ X12, Utz + Vol OaP2) = TI([X12, Ur2]« OaPe) 4+ ([ X12, Vig]«OaP2)
= [[I(X12), Ur2]«OaPo + [X12, I(U12) ][+ Or P2

+[X12, Ur2]« OAI(Pe) + [II(X12), Vio]+ Oa P

+[X12, I(V12) [« Oa P2 + [X12, Vio[« OAIL(P2).

On the other hand, we have

O([X12, Utz + Vio]sOaP2) = [M(X12), Uiz + Vials OaPe + [X12, Il(Ur2 + Vi2) [« Oa P
+[X12, Utz + Vo]« OAIL( ).
By comparing the last two expressions, we get [Xi2, T]+ 2Py = 0. That means X127 Ps —
P,T X7, = 0. By left-multiplying both sides of the preceding equation by P; and utilizing
(A) and (V), we obtain TP, = 0. Similarly, we can show that P;TP; = 0.
Now, again for any X1 € Ajo. Since [Py, Ui2]OaX12 = 0 and using Lemma 2.1, we have

II([P1, Uiz + V12« OaXi2) = I([P1, Ui2)«OaXi2) + I([P1, Vig)«OaXi2)
= [II(P1), Ur2]+OaX12 + [P1, IL(U12) ]+ Oa X12
+[P1, Ur2]: OaIL(X12) + [TI(P1), Vig)«Oa X2
+[P1, ITI(V12) ]« Oa X2 + [P1, Ur2]« OaIL(X12).
On the other hand, we find

II([P1, Uiz + V12| OxX12) = [II(P1), Uiz + Via]sOa X2 + [P1, II(Ur2 + V12)]+Oa X2
+[P1, Uiz + Vigl OaIl(X12).

From the last two expressions, we find [Py, T],{»X12 = 0. That means P\T X2 — T X2 —
AX 12T P, = 0. Multiplying both sides by P; from right and since A # 0, we have X 12T P =
0. Thus, P, T'P; = 0 follows from (A) and (V). Similarly, we can show that P,/TP, = 0.
Hence, T'=0 i.e.,

(U2 + Vi) = I(Ur2) + H(Vi2).
By using the same technique as above, one can show that

II(Ua1 + Va1) = II(Ua1) + II(Va1).
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Lemma 2.5. For any Ui1, Vi1 € A11 and Uss, Vag € Agg, we have
(i) II(U11 + Vi1) = I(Uy1) + I(VAq).
(ii) TL(Uaz + Vaz) = I(Uaz2) + I1(Va).
Proof. Let T =11(U11 + Vi1) — II(U11) — I1(V41). On the one hand, we have

([P, U+ VileOaP1) = [I(P2), Uni + Vi [« OaPr + [P, T(Uny + Vi) [ Oa Py
+[Pa, Ut + Vi)« OAIL(Py).

On the other hand, it follows from [P, U11]. )P = 0 that

([P, Ury + Vi1 ]:OaP1) = ([P, U1}« OaPr) + H([P, Vi1]+OaP1)
HI(P2), U1« OaP1 + [Po, IL(U11)]«OxP1 + [P, Un1 ] OAIL(P1)
HIL(P), Vi1 ]« OaP1 + [Po, I(V11) [« OaP1 + [P, Vit ]« OAII(Pr).

By comparing the last two equations, we find [P, T].{aPy = 0. This gives P,T P, —
AP, TP, =0 and hence, TP, = P\TP, = 0.
Again for any Xi9 € Ajo and since [X12, U1} OxP2 = 0, we find

([ X12, Ut + Vi1[sOa ) = ([ X12, U1]«OaPe) + H([X12, V1]« OAP2)
= [[I(X12), Un1]«OaPo + [X12, II(U11) [+ Or P2

+[X12, Un1 ]« OAII(P2) + [IT(X12), V1]« OaPe

+[X12, H(V11) [+ OA P2 + [X12, Vi1 [« OAIL( ).

From the other side, we get

([ X2, U1 + V11]:0aP2) = [I(X12), U1 + V1]« OaPe + [ X2, IL(U11 + Vi1) [+ OA P
+[X12, U1 + Vi1« OAII(Pa).

From the last two equations, we get [X12, 7], x P2 = 0. That means X127 Py — AP T Xy =
0. Thus, X127 P, = 0. By using (A) and (V), we get P, TP, = 0. Similarly, we can show
that P,TP; = 0. Hence, T'= 0 i,e.

I(Ur1 + Vir) = I(Un1) + O(V11).
(ii). By using the same argument as in (i), one can show that

I(Uzp + Vag) = H(Us2) + I1(Vaz).

Lemma 2.6. II is an additive map.
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PT’OOf. For any U,V € A, we write U = Uy1 + U1g + Uy + U and V = Vi1 + Vig +

Va1 + Vaa. By

U +V) =

Lemma 2.7.

using Lemmas 2.3 - 2.5, we get

I(U1y + Uiz + Uzt + Uz + Vi + Vig + Var + Vao)

(U + Vi) + (Ui + Vi) + IL(U21 + Var) + I1(Uag + Va2)

II(Un) + II(Vi1) + I(Ur2) + II(Vig) + I(Ua1) + I1(Var) + H(Ua2) + I1(Vaz)
(U1 + U2 + Ua1 + Usz) + I1(Viy + Vig + Var + Vao)

I(U) +IL(V).

(i) II(Py)* = 11(P), I(P2)* = TI(P).

(ii) PUIL(P)Py = —PiII(Py) Py.

(iii) PyII(Py) Py = —PII(Py)Py.

Proof. (i) In the view of [Py, Pi]+{aI = 0 and using Lemma 2.1, we have

Since A # —1,

0 = II([P1, P« OAT)
= [(P), PleOaL + [P, H(P)]ON + [Py, Pr]OATI(T)
= (1+N(PI(P)" = ATL(Py)).

we have PII(P;)* = PII(P;). That means
PP Py = PII(P)P,. (2.1)
PIL(P)* Py = PII(P,) Py (2.2)
RII(P)* Py = PII(Py) Py (2.3)

Also, [Py, P5]« a1 = 0 and I1(0) = 0, we have

That is,

0 = I[P, P)«OxI =0)
[TI(P1), Polu Al + [Pr, ()]« OAl + [Pr, Po]« OAII(T)
= 1+ N (PINP)P, — BII(P)"P,).

PoII(Py)* Py = PoII(Py) P (2.4)

From equations (2.1)-(2.4), we conclude II(P;)* = II(P).
Similarly, by using the same technique as above, we get II(Py)* = II( ).
(ii) Again [P1, PQ]*<>)\P2 =0 and H(O) = O, we find

0 = ([P, P]«Oal2)
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= [I(P1), P« OrPo + [P, II(P) [« Oa P + [Pr, Po] OAII(P2)
— TI(P)Ps — PII(P) Py + APSII(PL) Py — ARII(P)* + PuII(Py) Py — APSII(P3) P

Multiplying above equation by P; from left, we get PiII(Py) Py = —PII(P) Ps.
(iii) By using the same technique as in (ii), we can show that Poll(Py) Py = —PII(P) P .

Lemma 2.8. For every U;; € A;j(1 <i# j <2), we have
PII(AU;) P, = 0.

Proof. To begin, we establish the result for i = 1 and j = 2. For any Uys € Aj2, we
get

H(AU12) = TI([P1, AUr2]«OaP2)

[HI(P1), AUr2]+OaPe + [Pr, II(AU12)]+ OA P2 + [P1, AUp2]+ OAII( )

= MNI(P)Uyg — ANUpIL(P )P + )\QPQH(Pl)UIQ + P II(AU12) P2
“APRII(AU12) Py + AU1oTI(P) + N*TI(Py)Uya.

By left-multiplying the above equation with P» and right-multiplying with P, we obtain
(1 + N)PII(AU2) Py = 0. (2.5)

Since A # —1, we find PII(AU12)P1 = 0. Similarly, by using the same technique for
i =2,7 =1, one can show that P II(A\Us;)P> = 0.

Lemma 2.9. (Z) P1H(P2)P1 = PQH(Pl)PQ =0.
(ii) PII(P)P, = PII(P)Py = 0.
Proof. (i) For every X9 € Ajo, it follows from [Xi2, P1|.{xP1 = 0 that

0 = I([X12, Pl+ONPY)
= [[I(X12), P« OaP1 + [X12, H(P1) [ OaP1 + [X12, P« OAI(Pr)
= I(X12)P — PI(X12)* P + APII(X12) Py — APII(X12)*
FX1oTI(P) Py — TI(P) Xy + AX1II(P) — AP II(P) X

By left-multiplying the preceding equation by P; and right-multiplying by P,, and con-
sidering the fact that A # 0, we obtain

X12II(Py) Py = PII(X42)" Ps. (2.6)
That means,

PII(P) XS, = PyII(X 1) Py
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Also, [P1, X12]+0xX12 = 0 and using Lemma 2.1, we get

0 = I[P, X12)+OaX12)
= [II(P1), X12]+ OaX12 + [Pr, II(X12)]+ OaX12 + [P, X12)+ Oall(X12)
= —XpII(P1)" X12 + AX12II(P) X2 + PII(X12) X2 — II(X12) X12 — AX121I(X12) Py
+X1211(X12) + AX12I1(X12).

Multiplying the above equation by P; from left and right, we find X12II(X12)P; = 0. By
using (A) and (V), we get PoII(X12)P; = 0. That means

PII(X12)* Py = 0

From Equation (2.6),(A) and (V), we have PII(P;)P; = 0.
Similarly, we can show that P II(P2)P; = 0.
(ii) For any X9; € A9 and using Lemma 2.6, we have

([ Xo1, i OaP1) = T1(X21) — TI(AX3).
On the other hand, we have

([ Xo1, P1OaP1) = [I(X21), Pi]«OaPr + [Xo1, I(P) ][« Oa Py + [Xo1, Pl OAIL(Py)
H(Xgl)Pl — P1H(X21)*P1 + )\Plﬂ(Xgl)Pl — )\Plﬂ(XQl)*
+X21H(P1)P1 — )\Plﬂ(Pl)X;l + X21H(P1) + )\H(Pl)Xgl

By comparing the aforementioned two equations and subsequently left-multiplying by P>
and right-multiplying by P;, we obtain

2X21H(P1)P1 + )\PQH(Pl)Xﬂ + PQH()‘Xgl)Pl =0

Now, by using Lemma 2.8 and Lemma 2.9(i), we get Xo11I(P;)P; = 0. Hence, P II(P) P, =
0. Similarly, we can show that PII(Py)P; = 0.

Now, let M = PII(P)P, — PII(P1)P;. Then M = —M*. We define a mapping
A A= Aas A(U) =1I(U)— (UM —MU) for all U € A. It can be easily verified that for
all U, VW € A, A([U, V] 0aAW) = [AU), V] OAW) + [U, AV QAW + [U, V] OAA(W).

Remark 2.1. The mapping A possesses the following properties:
(i) A is additive.
(ii) A(Py) = A(Py) = 0.
(i) A(I) =0
() For every U;; € Aij(1 <i# j <2), we have

P,ANU;)P; =0
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(v) A is a *-derivation if and only if 11 is an * -derivation.

Proof. (i) Since [U, M] is additive and also using Lemma 2.6, it is clear that A is
additve.
(ii) By using Lemma 2.9, we have
A(P) = TI(P) — PII(P) Py — BII(P) Py
P1H(P1)P2 + PQH(Pl)Pl — P1H(P1)P2 — PQH(Pl)Pl
= 0.

Similarly, we can show that A(FP2) = 0.
(iii) By using additivity of A, we have

A(I) = A(Py + P) = A(Py) + A(Py) = 0.

(iv) For ¢ =1 and j = 2, it can be inferred from Lemma 2.8 that

P, ANU12) Py = Po(II(AU12) — AU M + MAU12) Py
= 0.
In the same way, one can show for i = 2,j =1, i.e., PLA(AUs1) P = 0.

(v) Since [U,M] = UM — MU is an additive *-derivation. Therefore, A qualifies as a
x-derivation if and only if II is a *-derivation.

Lemma 2.10. A(Uw) - Uij,i,j = 1,2.

Proof. First, we prove for ¢ = 1,5 = 1. For every U1 € A1, it follows from Remark
2.1 that

0 = A([P1,Unl]«OxP1)
[P, A(U1)]«OxPs
= PlA(UH)Pl — A(UH)Pl + )\PlA(UH) — )\PlA(UH)Pl.

Left multiplying the above equation by P», we find
PQA(UH)Pl =0. (27)
Similarly, again by using Remark 2.1, we have

0 = A([P, Ui1]«OxPr)
= [P, A(Un)]«OnP1
= PQA(U]_]_)P]_ — )\PlA(Ull)PQ.

Multiplying P> on the right and since A # 0, we get
PlA(UH)PQ =0 (28)
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Now, for every Xi5 € Ay and A(P,) = 0, it follows that
0 = A([Xi2,Un1]+OrP)
= [A(X12), U]+ OaPe + [ X2, A(U11)]+ 00 P2

= —UnAX12)"Py + AP A(X12)Unt + X12A(Ur1) P2
— APy A(Upp) X75.

Multiplying P; from left and P, from right and using Lemma 2.8, we get
XpAUn) P = UnA(Xi2) P = Un(PA(X12)P1)* = 0.
Thus, X12A(U11)P2 = 0. By using (A) and (V), we have
P, A(Up1) P, = 0. (2.9)
From Equations (2.7)-(2.9), we have A(U;1) C Uj;. Similarly, we can show that A(Usyy) C
1[\]T2eit, we establish the result for ¢ = 1,5 = 2. Additionally, for any U2 € A2 and
A(Py) =0, we have

A(U2) = A([P1, U2} OaP)
[P, A(U12)]+OaPe
= PlA(Ulg)PQ — )\PQA(Ulg)Pl.

By left and right multiplying the above equation by P;, we obtain

P A(Uy2) Py = 0. (2.10)
Additionally, by left and right-multiplying by P», we find

PyA(Up2) Py = 0. (2.11)
Similarly, multiplying P» from left and P; from right and since A # —1, we get

P,A(Ui2) Py =0 (2.12)

From equations (2.10)- (2.12), we get A(Ui2) C Uja.
Similarly, by using the same technique as above, one can prove that A(Us;) C Us;.

Lemma 2.11. For any U;;,V;; € Aij,1 < 1,5 <2, we have
(i) A(UnVi2) = A(U11)Viz2 + U11A(Vig) and  A(Us2Va1) = A(Uze)Var + Uz A(Vay).
(i) A(U12Va1) = A(Ur2)Va1 + U12A(Va1) and  A(U21Vig) = A(U21)Vi2 + U21A(Via).
(ii)) AUV = A(UViL+ UnAVL) and  A(UnsVas) = A(Us)Vag + UssA (Vas).
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() A(U12Va2) = A(Ur2)Vaz + U12A(Vag) and AU Viy) = A(U21)Vin + Ui A(Viy).
Proof. (i) Using Lemma 2.10 and A(P,) = 0, we get

A([Ur1, ViglsOaP2) = [A(U11), Via]« Oa P2 + [Ur1, A(Vi2) [« Oa P
= A(Un)Viz + UniA(Vig).

On the other side, we get
A([Ur1, Vig)«OaP2) = A(U11Vi2).

By comparing the above two equations, we get A(U11Vi2) = A(Up1)Via + Ui A(Vig).
Similarly, we can show that A(UQQVQl) = A(Ugg)VQl + UQQA(VQl).
(ii) For any X2 € Aj2 and by using Lemma 2.11 (1), we have

A([Ur2, Va1]«0aX12) = A(Ui2Va1X21)
= A(Ui2Va1)X12 + Ur2Va1 A(X12).

On the other hand, we have

A([Ui2, Va1]+0aX12) = [A(U12), Va1]«OxXi2 + [Ur2, A(Va1)]+ X2
+[Ui2, Va1 ]+ OaA(X12)
= A(Ui2)Var X1z + Ur2A(Va1) X12 + Ui Va1 A(Xq2).

From the above two expressions, we get
(A(U12Va1) — A(U12) Va1 — Ur2A(Va1)) X12 = 0.

Thus, by (A) and (V), A(Ui2Va1) = A(Uyz) Vo1 + Ui2A(Va1). Similarly, we can show that
AU Vi2) = A(U21)Vig + U1 A(Vi2).
(iii) For any Xi9 € Ajg, it follows from Lemma 2.11(i) that

AU Vi1 X12) = AU Vi) X12 + Unn Vin A(Xa2).
Again using Lemma 2.11 from the other side, we have

AUnVinXi2) = AWUn)ViiXi2 + UniA(ViiXi2)
= AUn)ViiXi2 + UnA(Vi1) X2 + Ui Vit A(Xq2).

By comparing the aforementioned two equations, we obtain (A(U;1Vi1) — A(Ur1)Vi1 —
U11A(V11))X12 = 0. Therefore, utilizing (A) and (V), we conclude that A(Uy1V11) =
A(Ur1)Vi1 + UnnA(Viy).

Similarly, one can show that A(UsaVaz) = A(Uaz)Vag + Uz A(Vag).

(iv) For any Xo; € Ag;. It follows from Lemma 2.11(2) that

A(U12Va2X21) = A(U12Va2) Xo1 + Ur2Vaa A(X91).
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Again on the other side, it follows from Lemma 2.11(i) and Lemma 2.11(ii) that

A(U12Va2X21) = A(Ui2)VaaXo1 + U2 A(Vaa Xo1)
= A(Ui2)VaaXo1 + UraA(Vag) Xo1 + Ur2Vaa A(Xo1).
)

From the above two equations and using (A) and (V¥), we find A(U12Va2) = A(Ui2)Vag +
UlgA(VQQ). Similarly, one can show that A(Uglvll) = A(Ugl)VH + UQlA(VH).

Lemma 2.12. A(U*) = A(U)* for allU € A.
Proof. For any X192 € Ajg, it follows from Remark 2.1 and Lemma 2.11(i) that

A([Ur1, PilOrX12) = A(UnXi2) — AU} X12)
= A(Ull)Xu + UllA(Xlg) — A(Uﬁ)Xlg — UiklA(Xlg)

Alternatively, it can be deduced from A(P;) = 0 that

A([Ur1, Pi)«OxX12) = [A(Un), P10 X12 + [Un, P+ OaA(X12)
= A(Un)Xi2 — A(Un) " X12 + UnA(Xi2) — U1 A(Xq2).

From the above two equations, we have (A(U11)* — A(U7;))X12 = 0. Now, by using (A)
and (V), we get

A(Un)" = A(U7). (2.13)
Similarly, by using the same technique, one can show that

A(Un)* = A(Us). (2.14)
Again, it follows from Lemma 2.10 and A(P;) = 0 that

A([Uiz, P]«0xX12) = [A(Ur2), PolxOaXi2 + Uiz, Po]«OaA(X12)
= —A(Ulz)*Xlg — )\XlgA(Ulg)* — Ul*ZA(Xlg) — )\A(Xlg)Ul*Q.

On the other hand, using Lemma 2.11, we have

A([Ur2, Po)«OnaX12) = A(=U{pX12 — AX12U7y)
= AUy X12) — A(X12AU7)
= —AUiy)X12 — U A(X12) — AA(X12) Uy — X12A(AUY,).

By comparing the above two equations, we get
(A(Ulg)* — A(UB))XQ + )\XlQA(UlQ)* — XlgA()\UikQ) =0.
By left-multiplying both sides by P» and utilizing (A) and (V), we obtain

A(Urz)" = A(U}). (2.15)
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Similarly, we can show that
AU )" = A(U3). (2.16)

From equations (2.13)-(2.16) and using additivity of A, we get A(U*) = A(U)*.
Proof of Theorem 2.1 For every U,V € A, we can write U = Uy + Uy + Us1 4+ Uss and
V = Vi1 4+ Vio + Vo1 + Vas. Since, A is additive and using Lemma 2.11, we get

AUV) = AUnVii+ UnVig + Ur2Var + UraVas
+U21 Vi1 + U1 Vig + UaaVar + Uz Vao)
= AUnVi) + A(Ui1Vig) + A(Ui2Var) + A(Ui2Vaz)
+AU21V11) + A(U21Vi2) + A(U22Va1) + A(Uzz Va2)
= AU + Uiz + Uzi + U22) (Vi1 + Vig + Vor + Va2)
+(Ur1 4 Uiz + Uy + Uza) A(Viy + Vig + Var + Vag)
— AUV +UA(V).

So, A is a derivation. By using Lemma 2.12, A is an additive %-derivation. Hence, by
Remark 2.1, IT is an additive *-derivation. This completes the proof of Theorem 2.1.

The corollaries following directly from Theorem 2.1 are as follows:

Corollary 2.1. Let A be a standard operator algebra on an infinite dimensional complex
Hilbert space H containing identity operator I. Suppose that A is closed under adjoint
operation. Define I : A — A such that

T([U, V].O0AW) = [TI(U), VI.OAW) + [U, TV o OAW + [U, V]LOATI(W)
for allU, VW € A . Then Il is an additive x-derivation.

Corollary 2.2. Let A ba a factor von Neumann algebra with dimM > 2. Define 1II :
M — M such that

I([U, VI:0aW) = [II(U), V] 0aW) + [U (V). OAW + [U, V], OAIL(W)
for allU, VW € A . Then Il is an additive x-derivation.

Corollary 2.3. Let A be a prime x-algebra with unit I containing non-trivial projection
P. A mapIl: A— A satisfies

H([Uv V]*Q)\W) = [H(U)v V]*<>)\W) + [Uv H(V)]*OAW + [Uv V]*O)\H(W)

for allU, VW € A . Then Il is an additive x-derivation.
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