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Abstract. A close similarity and analogy between rough set theory and topology is attributed
to the corresponding behavior of lower and upper rough approximations with interior and closure
topological operators, respectively. This relation motivates joint studies between topology and this
theory. We endeavor by rough set theory to enlarge the knowledge we obtain from the information
systems, for this reason, we apply the abstract concept of ideal structures to build new general-
ized approximation spaces with less vagueness. In the present work, we employ a novel type of
nearly open sets in topology so-called “L-θβλ-open” with an ideal structure to introduce novel
approximation spaces satisfying the desired properties concerning shrinking the boundary region
of uncertainty and expanding the domain of confirmed information. We set up the fundamentals
of the proposed rough paradigms and demonstrate their superiority over the preceding paradigms
induced by some nearly open sets. Two algorithms are furnished to illustrate the way of specifying
the family of L-θβλ-open sets and exploring whether a subset is L-θβλ-definable or L-θβλ-rough.
Then, we put forward the concepts of rough membership relations and functions and uncover their
core characterizations. Finally, we examine the proposed models to model a real situation in the
Chemistry field and clarify how our models improve the outcomes of generalized approximation
spaces over the previous models.
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1. Introduction

Nowadays, one can see a rapid growth of interest in the theory of rough sets and its ap-
plications, evident from the number of international conferences and workshops dedicated
to investigating the progression of rough set theory, as well as the high-quality papers pub-
lished as a result of this attention. This theory was initiated by Pawlak [40, 41] in the early
1980s as a non-statistical technique to analyze data tables acquired from human experts
or measurements. The philosophy of rough set theory in addressing the complex problems
individuals face in practical life is based on dividing a set of data containing uncertainty
into three regions. The first region includes the confirmed information extracted from this
set, terminologically known as the lower approximation. The second region represents
the information for which we cannot determine its belonging or non-belonging to the set,
known as the upper approximation. The third region, known as the boundary region, is
defined as the difference between the upper approximation and the lower approximation.

Rough set theory begins with the concept of an equivalence relationship, which is a
strict term when modeling many realistic problems. This strictness prompted many re-
searchers and authors to search for alternative methods to the equivalence classes, leading
to the development of the neighborhood idea. Initially defined by Yao, he [50, 51] formu-
lated the concepts of right neighborhoods and left neighborhoods as the equivalents of the
equivalence classes derived from Pawlak’s original model. Over time, with the desire to
increase the confirmed information, other models were proposed to improve the approxi-
mation operators and accuracy measures. For instance, rough set paradigms introduced by
using minimal neighborhoods [3], containment neighborhoods [5], maximal neighborhoods
[8, 16], subset neighborhoods [10, 52], adhesion neighborhoods [36], etcetera.

Attention was paid early by [48] to the similarity between the behaviors of lower
and upper rough approximations and interior and closure topological operators. There-
fore, topological structures have been proposed to study information systems and ap-
ply topological operators as alternative tools for these approximations; see, for instance
[4, 17, 22, 34, 43, 46, 49, 53]. Diverse techniques have been introduced to create topolog-
ical spaces utilizing neighborhood systems. For example, one can take the neighborhood
of each point as a subbase of a topology [33] or initiate the topology using the following
formula: ϑλ = {V ⊆ X : ∀y ∈ V,Gλ(y) ⊆ V } [45]. To develop decision-making methods
for information systems from a topological standpoint, several authors have employed ab-
stract topological principles and their generalizations, such as nearly open sets [1, 2, 6, 7],
supra topology [9], minimal structures [18], infra topology [13], and bitopology [44].

The authors of [32, 47] put forward the notion of ideal over a set X as a nonempty
subcollection of the power set of X which is closed under finite union and hereditary
property. In [28], new topologies are derived from an old one using ideals. With a strong
desire to increase the amount of confirmed information, which gives the decision-maker a
greater opportunity to make more accurate decisions, the ideal structure was integrated
into generalized approximation spaces. The concept was first employed by Kandil et al.
[29]. This concept was later exploited by researchers in the study of information systems,
explaining the advantages of this tool in various ways, including topological approaches,
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as illustrated in many published manuscripts [11, 12, 14, 21, 23, 24, 27, 39]. Researchers
have the freedom to choose the tool that is most efficient for addressing the problem and
achieving the greatest possible amount of desired characteristics of Pawlak paradigms.
Michael [38] came up with a brilliant idea to enlarge a family of semi-open sets using
ideals, then some authors [25, 26] followed this technique to aggrandize the classes of
α-open, β-open, and pre-open sets.

This work deals with generalized approximation spaces using a topological approach
and enhances the prominence of using ideals via rough set theory studies, as a tool to de-
mystify the data. We suggest a broader general framework of topological approximation
spaces via ideals, satisfying the desirable characteristics of original models and enhanc-
ing decision reliability. The presentation of this article is organized as follows: Section
2 covers the fundamentals required to make the paper self-contained. Then, in Section
3, we define a new class of nearly open sets, namely, L-θβλ-open sets, which is strictly
stronger than the class of L-βλ-open sets. We draw the main properties of this class and
articulate its relationships with the preceding ones with the aid of examples. Section 4 is
devoted to constructing rough set models utilizing the class of L-θβλ-open sets. We com-
pare the approximation operators, boundary regions, and accuracy values of the proposed
paradigms with those presented in other studies. In Section 5, we display a new type
of rough membership functions and apply to describe the main concepts of the proposed
rough set models. We provide a practical example in Section 6 to illustrate the superiority
of the current models over the former models and their applicability in addressing realistic
problems. Lastly, we draw conclusions from the present study and summarize its most
important findings in Section 7. The presentation of this article is organized as follows:
Section 2 covers the fundamentals required to make the paper self-contained. Then, in
Section 3, we define a new class of nearly open sets, namely, L-θβλ-open sets, which is
strictly stronger than the class of L-βλ-open sets. We draw the main properties of this class
and articulate its relationships with the preceding ones with the aid of examples. Section
4 focuses on developing rough set models using the L-θβλ-open sets. We compare the
approximation operators, boundary regions, and accuracy values of the proposed models
with those in existing studies. In Section 5, we introduce a new type of rough member-
ship functions and apply them to explain the central concepts of the proposed rough set
models. Section 6 provides a practical example that demonstrates the advantages of the
current models over previous ones and their effectiveness in solving real-world problems.
Finally, in Section 7, we conclude the study by summarizing its key findings.

2. Preliminaries

In this segment, we cover the main contributions via topological (generalized) approx-
imation spaces that are required to understand the main contributions and significance of
this manuscript.

Definition 1. [32, 47] An ideal L over the universe X ̸= ∅ is a subfamily of the power
set of X satisfying the below terms.



M. Hosny, T.M. Al-shami / Eur. J. Pure Appl. Math, 17 (4) (2024), 3436-3463 3439

(i) V ∈ L and Z ∈ L ⇒ V ∪ Z ∈ L.

(ii) V ∈ L and Z ⊆ V ⇒ Z ∈ L.

Through this content, X indicates for a finite nonempty set.

Definition 2. [9] Let R be a binary relation on X. Then, the λ-neighborhood of an
element y in X, symbolized by Gλ(y), λ ∈ {a,b, â, b̂, i,u, î, û}, is given by:

(i) Ga(y) = {x ∈ X : yRx}.

(ii) Gb(y) = {x ∈ X : xRy}.

(iii) Gâ(y) = ∩y∈Ga(x)Ga(x), or Gâ(y) = ∅ when there does not exists Ga(x) containing y.

(iv) Gb̂(y) = ∩y∈Gb(x)Gb(x), or Gb̂(y) = ∅ when there does not exists Gb(x) containing
y.

(v) Gi(y) = Ga(y) ∩Gb(y).

(vi) Gu(y) = Ga(y) ∪Gb(y).

(vii) Gî(y) = Gâ(y) ∩Gb̂(y).

(viii) Gû(y) = Gâ(y) ∪Gb̂(y).

Moving forward, we utilize this symbol λ throughout this manuscript to refer to the
types of neighbourhoods of {a,b, â, b̂, i,u, î, û}.

Definition 3. [45] If Ξλ : X → P (X) is a mapping that assigns for each y in X a Gλ in
P (X), then we called a 3-tuple (X,R,Ξλ) a Gλ-space.

Theorem 1. [30, 31, 45] It may generate a topology ϑλ on X using Gλ-neighbourhoods
by the next formula

ϑλ = {V ⊆ X : ∀y ∈ V,Gλ(y) ⊆ V }

Every member of ϑλ is named a λ-open set and we call a subset a λ-closed set if its
complement is a λ-open set.

The class of Γλ is given by Γλ = {F ⊆ X : F
′ ∈ ϑλ}, where F

′
is the complement of

F .

Definition 4. [45] The λ-lower and λ-upper approximations, λ-boundary region and λ-
accuracy of V ⊆ X, inspired by the topological space (X,ϑλ) given in above theorem, are
respectively formulated by the subsequent formulas:

Rλ(V ) is the union of all λ-open sets which are contained in V ; that is V = intλ(V ),
where intλ is the topological λ-interior operator.

Rλ(V ) is the intersection of all λ-closed sets containing V ; that is, V = clλ(V ), where
clλ is the topological λ-closure operator.

BNDλ(V ) = Rλ(V )−Rλ(V ).

ACCλ(V ) =
|Rλ(V )|
|Rλ(V )| , for each subset V ̸= ∅.
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Remember that a subset V is named λ-exact if Rλ(V ) = Rλ(V ). Otherwise, V is
λ-rough.

In what follows, we recall some definitions of λ-nearly open sets.

Definition 5. [15, 20] Let (X,R,Ξλ) be a Gλ-space. V ⊆ X is said to be

(i) λ-preopen (Pλ-open), if intλ(clλ(V )) ⊇ V .

(ii) λ-semiopen (Sλ-open), if clλ(intλ(V )) ⊇ V .

(iii) αλ-open, if V ⊆ intλ[clλ(intλ(V ))].

(iv) βλ-open (semi preopen), if V ⊆ clλ[intλ(clλ(V ))].

(v) δβλ-open, if V ⊆ clλ[intλ(cl
δ
λ(V ))], where clδλ(V ) = {y ∈ X : V ∩ intλ(clλ(G)) ̸=

∅, G ∈ ϑλ and y ∈ G}.

(vi)
∧
βλ

-set if V =
∧
βλ

(V ), where
∧
βλ

(V ) = ∩{G : V ⊆ G,G ∈ βλO(X)}.

The families of λ-nearly open subsets of X are assigned by ηλO(X), where η ∈ {α, P, S, β, δβ,
∧
β}.

The complements of the λ-nearly open sets are known as λ-nearly closed sets and denoted
by ηλC(X).

Henceforth, we mean by η the elements of the set {P, S, α, β, δβ,
∧
β}, unless otherwise

stated.

Definition 6. [15, 20] Let (X,R,Ξλ) be a Gλ-space and V ⊆ X. The ηλ-lower and
ηλ-upper approximations, ηλ-boundary regions and ηλ-accuracy of V are respectively given
by:

Rη
λ(V ) = ∪{G ∈ ηλO(X) : G ⊆ V } = ηλ-interior of V .

Rη
λ(V ) ∩ {H ∈ ηλC(X) : V ⊆ H} = ηλ-closure of V .

BNDη
λ(V ) = Rη

λ(V )−Rη
λ(V ).

ACCηλ(V ) =
|Rη

λ(V )|
|Rη

λ(V )| , where |Rη
λ(V )| ≠ 0, |Rη

λ(V )| denotes the cardinality of Rη
λ(V ).

Definition 7. [20] A subset V of a Gλ-space (X,R,Ξλ) is called:

(i) δβλ-definable (δβλ-exact) if Rδβ
λ (V ) = Rδβ

λ (V ) or BNDδβ
λ (V ) = ∅.

(ii) δβλ-rough if Rδβ
λ (V ) ̸= Rδβ

λ (V ) or BNDδβ
λ (V ) ̸= ∅.

(iii)
∧
βλ

-definable (
∧
βλ

-exact) if R
∧

β

λ (V ) = R
∧

β

λ (V ) or BND
∧

β

λ (V ) = ∅.

(iv)
∧
βλ

-rough if R
∧

β

λ (V ) ̸= R
∧

β

λ (V ) or BND
∧

β

λ (V ) ̸= ∅.

Definition 8. [22, 23] Let L be an ideal on X. We call a subset V of a Gλ-space
(X,R,Ξλ):
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(i) L-αλ-open providing that there exists G ∈ ϑλ s.t. (V −intλ(clλ((G)) ∈ L and (G−V ) ∈
L.

(ii) L-Pλ-open providing that there exists G ∈ ϑλ s.t. (V −G) ∈ L and (G− clλ(V )) ∈ L.

(iii) L-Sλ-open providing that there exists G ∈ ϑλ s.t. (V −clλ(G)) ∈ L and (G−V ) ∈ L.

(iv) L-βλ-open providing that there exists G ∈ ϑλ s.t. (V −clλ(G)) ∈ L and (G−clλ(V )) ∈
L.

(v) L-δβλ-open providing that there exists G ∈ ϑλ s.t. (V −clλ(G)) ∈ L and (G−clδλ(V )) ∈
L.

(vi) L-
∧
βλ

-set, if V = L −
∧
βλ

(V ), where L-
∧
βλ

(V ) = ∩{G : V ⊆ G,G ∈ L-βλO(X)}.

These sets are called L-λ-nearly open sets, the complement of the L-λ-nearly open
sets is called L-λ-nearly closed sets, the families of L-λ-nearly open sets of X denoted by
L-ηλO(X) and the families of L-λ-nearly closed sets of X denoted by L-ηλC(X).

Proposition 1. [23]

(i) Every δβλ-open is L-δβλ-open.

(ii) Every
∧
βλ

-set is L-
∧
βλ

-set.

Proposition 2. [23] The next implications hold true:

ϑλ(Γλ) ⇒ L-αλO(L-αλC) L-PλO(L-PλC)
⇓ ⇓

L-SλO(L-SλC) ⇒ L-βλO(L-βλC) ⇒ L-δβλO(L-δβλC).

ϑλ(Γλ) ⇒ L-αλO(L-αλC) L-PλO(L-PλC)
⇓ ⇓

L-SλO(L-SλC) ⇒ L-βλO(L-βλC) ⇒ L-
∧
βλO

(L-
∧
βλC

).

ϑλ(Γλ) ⇒ αλO(αλC) PλO(PλC)
⇓ ⇓
SλO(SλC) ⇒ βλO(βλC) ⇒ δβλO(δβλC).

ϑλ(Γλ) ⇒ αλO(αλC) PλO(PλC)
⇓ ⇓
SλO(SλC) ⇒ βλO(βλC) ⇒

∧
βλO

(
∧
βλC

).

Definition 9. [22, 23] The L-ηλ-lower and L-ηλ-upper approximations, L-ηλ-boundary
regions and L-ηλ-accuracy of V are respectively given by:

RL−η
λ (V ) = ∪{G ∈ L-ηλO(X) : G ⊆ V } = L-ηλ-interior of V .

RL−η
λ (V ) = ∩{H ∈ L-ηλC(X) : V ⊆ H} = L-ηλ-closure of V .

BNDL−η
λ (V ) = RL−η

λ (V )−RL−η
λ (V ).

ACCL−η
λ (V ) =

|RL−η
λ (V )|

|RL−η
λ (V )|

, where |RL−η
λ (V )| ≠ 0.
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Remember that a subset V is called an L-ηλ-definable (L-ηλ-exact) set if R
L−η
λ (V ) =

RL−η
λ (V ). Otherwise, V is an L-ηλ-rough set.

Theorem 2. [23] For a subset V of a Gλ-space (X,R,Ξλ), we have:

(i) Rα
λ(V ) ⊆ Rp

λ(V ) ⊆ Rγ
λ(V ) ⊆ Rβ

λ(V ) ⊆ Rδβ
λ (V ) ⊆ RL−αβ

λ (V ).

(ii) Rα
λ(V ) ⊆ Rs

λ(V ) ⊆ Rγ
λ(V ) ⊆ Rβ

λ(V ) ⊆ Rδβ
λ (V ) ⊆ RL−αβ

λ (V ).

(iii) Rλ(V ) ⊆ Rδβ
λ(V ) ⊆ RL−αβ

λ (V ).

(iv) Rα
λ(V ) ⊆ Rp

λ(V ) ⊆ Rγ
λ(V ) ⊆ Rβ

λ(V ) ⊆ R
∧

β

λ (V ) ⊆ RL−
∧

βλ (V ).

(v) Rα
λ(V ) ⊆ Rs

λ(V ) ⊆ Rγ
λ(V ) ⊆ Rβ

λ(V ) ⊆ R
∧

β

λ (V ) ⊆ RL−
∧

βλ (V ).

(vi) Rλ(V ) ⊆ R
∧

β

λ (V ) ⊆ RL−
∧

βλ (V ).

(vii) RL−δβ
λ (V ) ⊆ Rδβ

λ (V ) ⊆ Rβ
λ(V ) ⊆ Rγ

λ(V ) ⊆ Rp
λ(V ) ⊆ Rα

λ(V ).

(viii) RL−δβ
λ (V ) ⊆ Rδβ

λ (V ) ⊆ Rβ
λ(V ) ⊆ Rγ

λ(V ) ⊆ Rs
λ(V ) ⊆ Rα

λ(V ).

(ix) RL−δβ
λ (V ) ⊆ Rδβ

λ(V ) ⊆ Rλ(V ).

(x) RL−
∧

β

λ (V ) ⊆ R
∧

β

λ (V ) ⊆ Rβ
λ(V ) ⊆ Rγ

λ(V ) ⊆ Rp
λ(V ) ⊆ Rα

λ(V ).

(xi) RL−
∧

β

λ (V ) ⊆ R
∧

β

λ (V ) ⊆ Rβ
λ(V ) ⊆ Rγ

λ(V ) ⊆ Rs
λ(V ) ⊆ Rα

λ(V ).

(xii) RL−
∧

β

λ (V ) ⊆ R
∧

β

λ (V ) ⊆ Rλ(V ).

When we combine an ideal L with a Gλ-space (X,R,Ξλ), we write the quadruple
(X,R,Ξλ,L); this quadruple is symbolized by L −Gλ-space.

Proposition 3. [23] For a subset V of an L −Gλ-space (X,R,Ξλ,L), we have:

(i) RL−P
λ (V ) ⊆ RL−β

λ (V ) ⊆ RL−δβλ(V ).

(ii) RL−α
λ (V ) ⊆ RL−S

λ (V ) ⊆ RL−β
λ (V ) ⊆ RL−δβ

λ (V ).

(iii) RL−δβ
λ (V ) ⊆ RL−β

λ (V ) ⊆ RL−P
λ (V ).

(iv) RL−δβ
λ (V ) ⊆ RL−β

λ (V ) ⊆ RL−S
λ (V ) ⊆ RL−α

λ (V ).

(v) RL−P
λ (V ) ⊆ RL−β

λ (V ) ⊆ RL−
∧

βλ(V ).

(vi) RL−α
λ (V ) ⊆ RL−S

λ (V ) ⊆ RL−β
λ (V ) ⊆ RL−

∧
βλ(V ).

(vii) RL−
∧

βλ(V ) ⊆ RL−β
λ (V ) ⊆ RL−P

λ (V ).
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(viii) RL−
∧

βλ(V ) ⊆ RL−β
λ (V ) ⊆ RL−S

λ (V ) ⊆ RL−α
λ (V ).

Definition 10. Let (X,R,Ξλ) be a Gλ-space and V ⊆ X. The θλ-closure is given by
clθλ(V ) = {y ∈ X : V ∩ clλ(G) ̸= ∅, G ∈ ϑλ and y ∈ G}.

Definition 11. [42] The rough membership function of a subset V of X is defined, under
an equivalence relation R on X, as µV : X → [0, 1], where

µV (y) = |[y]R ∩V |
|[y]R| , y ∈ X.

[y]R denotes to an equivalence classes.

Definition 12. [23] The λ-rough membership functions of a subset V of X is given by
µλV → [0, 1], where

µλV (y) =
|{∩Gλ(y)}∩V |

|∩Gλ(y)| .

Definition 13. [35] The λ-rough nearly membership function of a subset V of X is defined
by µηλV → [0, 1] as follows

µηλV (y) =

{
1 : 1 ∈ ψηλV (y)

min(ψηλV (y)) : otherwise

where ψηλV (y) = { |ηλ(y)∩V |
|ηλ(y)| : y ∈ ηλ(y) and ηλ(y) ∈ ηλO(X)}, η ∈ {α, P, S, β}.

Definition 14. [22, 23] The L − λ-nearly rough membership functions of a subset V of
X is defined by µL−ηλV → [0, 1], as follows

µL−ηλV (y) =

{
1 : 1 ∈ ψL−ηλ

V (y)

min(ψL−ηλ
V (y))) : otherwise

where ψL−ηλ
V (y) = { |L−ηλ(y)∩V |

|L−ηλ(y)| : y ∈ L − ηλ(y) and L − ηλ(y) ∈ L-ηλO(X)}.

Lemma 1. [23] Let V be a subset of an L −Gλ-space (X,R,Ξλ,L). Then

(i) µλV (y) = 1 ⇒ µηλV (y) = 1 ⇒ µL−ηλV (y) = 1, ∀ y ∈ X.

(ii) µλV (y) = 0 ⇒ µηλV (y) = 0 ⇒ µL−ηλV (y) = 0, ∀ y ∈ X.

Definition 15. [45] Let (X,R,Ξλ) be a Gλ-space, y ∈ X and V ⊆ X:

(i) If y ∈ Rλ(V ), then y λ-certainly belongs to V , denoted by y ∈λV .

(ii) If y ∈ Rλ(V ), then y λ-probably belongs to V , denoted by y ∈λV .

(iii) If y ∈ Rη
λ(V ), then y λ-nearly certainly (ηλ-certainly) belongs to V , denoted by

y ∈ηλV, η ∈ {α, P, S, β}.
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(iv) If y ∈ Rη
λ(V ), then y λ-nearly probably (ηλ-probably) belongs to V , denoted by

y ∈ηλV, η ∈ {α, P, S, β}.

Definition 16. [23] Let (X,R,Ξλ) be a Gλ-space, y ∈ X and V ⊆ X:

(i) If y ∈ RL−η
λ (V ), then y is λ-nearly certainly with respect to L ( L − ηλ-certainly)

belongs to V , denoted by y ∈L−η
λ A.

(ii) If y ∈ RL−η
λ (V ), then y is λ-nearly probably with respect to L (briefly L−ηλ-probably)

belongs to V , denoted by y ∈L−η
λ A.

Proposition 4. [23] The subsequent properties hold true for each subset V .

(i) if y ∈λA⇒ y ∈ηλA⇒ y ∈L−η
λ A.

(ii) if y ∈L−η
λ A⇒ y ∈ηλA⇒ y ∈λA.

3. L-θβλ-open sets

This section aims to adopt a fresh class of nearly open sets called L-θβλ-open sets,
serving as an introduction to building rough set paradigms. This type of nearly open
sets is established by replacing the empty difference of θβ-open sets with the belonging
of difference to the ideal, which enlarges the class of θβ-open sets. We conclude the core
characterizations of this class and elucidate its relationship with the forgoing classes.

Definition 17. A subset V of an L−Gλ-space (X,R,Ξλ,L) is called L-θβλ-open providing
that ∃ G ∈ ϑλ s.t. (V − clλ(G)) ∈ L and (G − clθλ(V )) ∈ L. We call a complement of a
L-θβλ-open set an L-θβλ-closed set. The classes of all L-θβλ-open and L-θβλ-closed are
respectively symbolized by L-θβλO(X) and L-θβλC(X).

Example 1. Let

X = {y1, y2, y3, y4, y5},L = {∅, {y3}},

and

R = {(y1, y1), (y1, y2), (y2, y2), (y3, y3), (y3, y4), (y4, y3), (y4, y4), (y5, y2), (y5, y3), (y5, y4)}.

Then, the topology generated by a relation R in the case of λ = a is ϑa = {X, ∅, {y2}, {y1, y2},
{y3, y4}, {y2, y3, y4}, {y, y2, y3, y4}, {y2, y3, y4, y5}} and L-θβaO(X) is the power set of X.

We demonstrate in the next result that the class of L-θβλ-open sets is wider than the
classes of L-δβλ-open sets, L-

∧
βλ

-sets.

Proposition 5. (i) Every L-δβλ-open set is L-θβλ-open set.

(ii) Every L-
∧
βλ

-set is L-θβλ-open set.
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Proof. It is evident by Definitions 8 [23] and 17.

Remark 1. Example 1 yields an evidence that the converse of Proposition 5 fails. By
this example, we remark that L-θβaO(X) = P (X), L-δβaO(X) = P (X)−{{y5}}, and L-∧
βa
O(X) = {X, ∅, {y2}, {y3}, {y4}, {y5}, {y1, y2}, {y2, y3}, {y2, y4}, {y2, y5}, {y3, y4}, {y3, y5},

{y4, y5}, {y, y2, y3}, {y1, y2, y5}, {y1, y2, y4}, {y2, y3, y4}, {y2, y3, y5}, {y2, y4, y5}, {y3, y4, y5}
, {y1, y2, y3, y4}, {y1, y2, y3, y5}, {y1, y2, y4, y5},{y2, y3, y4, y5}}. Now, {y5} is an
L-θβaO(X)-open set, but it is neither an L-δβaO(X)-open set nor an L-

∧
βa
-set.

Also, the next result clarifies that the class of L-θβλ-open sets is wider than the classes
of δβλ-open sets and

∧
βλ

-sets.

Proposition 6. (i) Every δβλ-open set is L-θβλ-open set.

(ii) Every
∧
βλ

-set is L-θβλ-open set.

Proof. By using Propositions 1 [23] and 5.

Example 2. Let

X = {y1, y2, y3, y4},L = {∅, {y3}},

and

R = {(y1, y1), (y1, y2), (y2, y1), (y2, y2), (y3, y3), (y4, y3), (y4, y4))}.

Then, the topology generated by a relation R in the case of λ = a is ϑa = {X, ∅, {y3}, {y1, y2},
{y1, y2, y3}}. Now, L-θβaO(X) is the power set of X and δβaO(X) is P (X)\{{y4}}. One
can check that {y4} is an L-θβaO(X)-open set, but it is not δβaO(X)-open.

Example 3. Let

X = {y1, y2, y3, y4},L = {∅, {y3}}

and

R = {(y1, y1), (y1, y3), (y2, y1), (y2, y3), (y3, y3), (y4, y4)}

Then, the topology generated by a relation R in the case of λ = a is ϑa = {X, ∅, {y3}, {y4}, {y1, y3},
{y3, y4}, {y1, y3, y4}}. Note that L-θβaO(X) = P (X) and

∧
βa
O(X) = {X, ∅, {y2}, {y3}, {y4},

{y1, y3}, {y2, y3}, {y2, y4}, {y3, y4}, {y1, y2, y3}, {y1, y3, y4}, {y2, y3, y4}}.

The next proposition elucidates that the the class of L-θβλ-open sets is proper wider
than the class of L-δβλ-open sets. Therefore, the class of L-θβλ-open sets is also wider
than the classes of all L-λ-near open sets introduced in Definition 8 [21], i.e., L-βλ-open,
L-Pλ-open, L-Sλ-open and L-αλ-open sets. Moreover, it is wider than the classes of
δβλ-open sets. Hence, it is also wider than all classes of λ-near open sets introduced in
Definition 5 [15], i.e., βλ-open, Pλ-open, Sλ-open and αλ-open sets.
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Proposition 7. The next implications hold true:

ϑλ(Γλ) ⇒ L-αλO(L-αλC) L-PλO(L-PλC)
⇓ ⇓

L-SλO(L-SλC) ⇒ L-βλO(L-βλC) ⇒ L-δβλO(L-δβλC)
⇓

L-θβλO(L-θβλC).

ϑλ(Γλ) ⇒ L-αλO(L-αλC) L-PλO(L-PλC)
⇓ ⇓

L-SλO(L-SλC) ⇒ L-βλO(L-βλC) ⇒ L-
∧
βλO

(L-
∧
βλC

)
⇓

L-θβλO(L-θβλC).

ϑλ(Γλ) ⇒ αλO(αλC) PλO(PλC)
⇓ ⇓
SλO(SλC) ⇒ βλO(βλC) ⇒ δβλO(δβλC)

⇓
L-θβλO(L-θβλC).

ϑλ(Γλ) ⇒ αλO(αλC) PλO(PλC)
⇓ ⇓
SλO(SλC) ⇒ βλO(βλC) ⇒

∧
βλO

(
∧
βλC

)
⇓

L-θβλO(L-θβλC).

Proof. By Propositions 2 [23], 5, 6 the proof is obvious.

Theorem 3. The union of two L-θβλ-open subsets is L-θβλ-open. That is, the family of
L-θβλ-open subsets is closed under finite union.

Proof. Take arbitrary two L-θβλ-open subsets V and W . Then, there are open sets G
and H s.t. the four sets (V \ clλ(G)), (G \ clθλ(V )), (W \ clλ(H)) and (W − clθλ(B)) belong
to L. Since (G\clθλ(V ∪W )) ⊆ (G\clθλ(V )) ∈ L, (H \clθλ(V ∪W )) ⊆ (H \clθλ(W )) ∈ L, we
have (G\clθλ(V ∪W ))∪ (H \clθλ(V ∪W )) ∈ L. Let Z = G∪H, then (Z−clθλ(V ∪W )) ∈ L.
Also, (V \ clλ(Z)) ⊆ (V \ clλ(G)) ∈ L and (W \ clλ(Z)) ⊆ (W \ clλ(H)) ∈ L. Then,
(V \ clλ(Z))∪ (W \ clλ(Z)) ⊆ (V \ clλ(G))∪ (W \ clλ(H)) ∈ L and so ((V ∪W ) \ clλ(Z)) ⊆
(V \ clλ(G)) ∪ (W \ clλ(H)) ∈ L. Hence, V ∪W is an L-θβλ-open subset.
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In Algorithm 1, we present the steps to calculate the family of L-θβλ-open subsets.

Input : The universal set X, a relation R, and an ideal L under consideration.
Output: The family of L-θβλ-open subsets.

1 Ask the the expert(s) to give a relation L over X;
2 Choose a λ type;
3 for every y ∈ X do
4 compute Gλ(y)
5 end
6 Construct a topology ϑλ = {V ⊆ X : ∀y ∈ V,Gλ(y) ⊆ V } on X;
7 Initiate C1 = {clλ(V ) : V ∈ ϑλ};
8 Construct a θ-topology ϑθλ = {V ∈ ϑλ : intθλ(V ) = V };
9 Define F = P (X) \ ϑλ;

10 Initiate C2 = {clθλ(W ) :W ∈ F};
11 Ask the the expert(s) to give an ideal L over X;
12 for every W ∈ F do
13 if ∃ V ∈ ϑλ s.t. (W \ clλ(V )) ∈ L and (V \ clθλ(W )) ∈ L then
14 W is an L-θβλ-open set;
15 W ∈ F∗

16 else
17 W is not an L-θβλ-open set
18 end

19 end
20 L-θβλO(X) = ϑλ ∪ F∗.

Algorithm 1: Determination of the family of L-θβλ-open subsets

4. Approximations spaces by using L-θβλ-open sets

Herein, we establish novel rough paradigms inspired by the family of L-θβλ-open sets.
We focus on the role of the proposed rough paradigms in developing decision-making meth-
ods through the preservation of most properties of the standard model given by Pawlak
and heighten the accuracy measures of extracted knowledge compared to paradigms stud-
ied in the literature. Additionally, we make comparisons between the proposed models for
all cases of λ with the assistance of counterexamples.

Definition 18. Let V be a subset of an L − Gλ-space (X,R,Ξλ,L). We respectively
define the L-θβλ-lower, L-θβλ-upper approximations, L-θβλ-boundary regions and L-θβλ-
accuracy of V as follows:

RL−θβ
λ (V ) = ∪{G ∈ L-θβλO(X) : G ⊆ A} = L-θβλ-interior of V .

RL−θβ
λ (V ) = ∩{H ∈ L-θβλC(X) : V ⊆ H} = L-θβλ-closure of V .

BNDL−θβ
λ (V ) = RL−θβ

λ (V )−RL−θβ
λ (V ).

ACCL−θβ
λ (V ) =

|RL−θβ
λ (V )|

|RL−θβ
λ (V )|

, where |RL−θβ
λ (V )| ≠ 0.
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Proposition 8. Let V,W be subsets of an L −Gλ-space (X,R,Ξλ,L). Then,

(i) RL−θβ
λ (V ) ⊆ V ⊆ RL−θβ

λ (V ) equality hold if V = ∅ or X.

(ii) V ⊆W ⇒ RL−θβ
λ (V ) ⊆ RL−θβ

λ (W ).

(iii) V ⊆W ⇒ RL−θβ
λ (V ) ⊆ RL−θβ

λ (W ).

(iv) RL−θβ
λ (V ∩W ) ⊆ RL−θβ

λ (V ) ∩RL−θβ
λ (W ).

(v) RL−θβ
λ (V ∪W ) ⊇ RL−θβ

λ (V ) ∪RL−θβ
λ (W ).

(vi) RL−θβ
λ (V ∪W ) ⊇ RL−θβ

λ (V ) ∪RL−θβ
λ (W ).

(vii) RL−θβ
λ (V ∩W ) ⊆ RL−θβ

λ (V ) ∩RL−θβ
λ (W ).

(viii) RL−θβ
λ (V ) = (RL−θβ

λ (V
′
))

′
, RL−θβ

λ (V ) = (RL−θβ
λ (V

′
))

′
.

(ix) RL−θβ
λ (RL−θβ

λ (V )) = RL−θβ
λ (V ).

(x) RL−θβ
λ (RL−θβ

λ (V )) = RL−θβ
λ (V ).

(xi) RL−θβ
λ (RL−θβ

λ (V )) ⊆ RL−θβ
λ (RL−θβ

λ (V )).

(xii) RL−θβ
λ (RL−θβ

λ (V )) ⊆ RL−θβ
λ (RL−θβ

λ (V )).

Proof. The proof is warranted by using the properties of L-θβλ-interior and L-θβλ-
closure operators.

Definition 19. A subset V of an L−Gλ-space (X,R,Ξλ,L) is named an L-θβλ-definable
(an L-θβλ-exact) set if RL−θβ

λ (V ) = RL−θβ
λ (V ). Otherwise, V is an L-θβλ-rough set.

In Example 1 V = {y3} is L-θβa-exact.
To articulate the relationships between the present rough paradigms (Definition 18)

and those given in Definition 9 [22, 23], we provide the next two results.

Theorem 4. Let V be a subset of an L −Gλ-space (X,R,Ξλ,L). Then:

(i) RL−P
λ (V ) ⊆ RL−β

λ (V ) ⊆ RL−δβ
λ (V ) ⊆ RL−θβ

λ (V ).

(ii) RL−α
λ (V ) ⊆ RL−S

λ (V ) ⊆ RL−β
λ (V ) ⊆ RL−δβ

λ (V ) ⊆ RL−θβ
λ (V ).

(iii) RL−P
λ (V ) ⊆ RL−β

λ (V ) ⊆ RL−
∧

βλ(V ) ⊆ RL−θβλ(V ).

(iv) RL−α
λ (V ) ⊆ RL−S

λ (V ) ⊆ RL−β
λ (V ) ⊆ RL−

∧
βλ(V ) ⊆ RL−θβλ(V ).

(v) RL−θβ
λ (V ) ⊆ RL−δβ

λ (V ) ⊆ RL−β
λ (V ) ⊆ RL−P

λ (V ).
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(vi) RL−θβ
λ (V ) ⊆ RL−δβ

λ (V ) ⊆ RL−β
λ (V ) ⊆ RL−S

λ (V ) ⊆ RL−α
λ (V ).

(vii) RL−θβλ(V ) ⊆ RL−
∧

βλ(V ) ⊆ RL−β
λ (V ) ⊆ RL−P

λ (V ).

(viii) RL−θβλ(V ) ⊆ RL−
∧

βλ(V ) ⊆ RL−β
λ (V ) ⊆ RL−S

λ (V ) ⊆ RL−α
λ (V ).

Proof. It is warranted by Proposition 3.

Corollary 1. Let V be a subset of an L −Gλ-space (X,R,Ξλ,L). Then:

(i) BNDL−θβ
λ (V ) ⊆ BNDL−δβ

λ (V ) ⊆ BNDL−β
λ (V ) ⊆ BNDL−P

λ (V ).

(ii) BNDL−θβ
λ (V ) ⊆ BNDL−δβ

λ (V ) ⊆ BNDL−β
λ (V ) ⊆ BNDL−S

λ (V ) ⊆ BNDL−α
λ (V ).

(iii) BNDL−θβλ(V ) ⊆ BNDL−
∧

βλ(V ) ⊆ BNDL−β
λ (V ) ⊆ BNDL−P

λ (V ).

(iv) BNDL−θβλ(V ) ⊆ BNDL−
∧

βλ(V ) ⊆ BNDL−β
λ (V ) ⊆ BNDL−S

λ (V ) ⊆ BNDL−α
λ (V ).

(v) ACCL−P
λ (V ) ⩽ ACCL−β

λ (V ) ⩽ ACCL−δβ
λ (V ) ⩽ ACCL−θβ

λ (V ).

(vi) ACCL−α
λ (V ) ⩽ ACCL−S

λ (V ) ⩽ ACCL−β
λ (V ) ⩽ ACCL−δβ

λ (V ) ⩽ ACCL−θβ
λ (V ).

(vii) ACCL−P
λ (V ) ⩽ ACCL−β

λ (V ) ⩽ ACCL−
∧

βλ(V ) ⩽ ACCL−θβλ(V ).

(viii) ACCL−α
λ (V ) ⩽ ACCL−S

λ (V ) ⩽ ACCL−β
λ (V ) ⩽ ACCL−

∧
βλ(V ) ⩽ ACCL−θβλ(V ).

Remark 2. By Example 1, we will illustrate that the converse of the implications in
Theorem 4 and Corollary 1 is not always true as follows.

(i) If V = {y5}, then RL−θβ
a (V ) = A,RL−θβ

a (V ) = A, BNDL−θβ
a (V ) = ∅, ACCL−θβ

a (V ) =

1, and RL−δβ
a (V ) = ∅,RL−δβ

a (V ) = A, BNDL−δβ
a (V ) = A,ACCL−δβ

a (V ) = 0.

(ii) If V = {y}, then RL−θβ
a (V ) = A,RL−θβ

a (V ) = A,BNDL−θβ
a (V ) = ∅, ACCL−θβ

a (V ) =

1, and RL−
∧

βa(V ) = ∅,RL−
∧

βa(V ) = A,BNDL−
∧

βa(V ) = A,ACCL−
∧

βa(V ) = 0.

Corollary 2. Let V be a subset of an L −Gλ-space (X,R,Ξλ,L). Then:

(i) V is L-αλ-exact ⇒ V is L-Sλ-exact ⇒ V is L-βλ-exact ⇒ V is L-δβλ-exact ⇒ V is
L-θβλ-exact.

(ii) V is L-Pλ-exact ⇒ V is L-βλ-exact ⇒ V is L-δβλ-exact ⇒ V is L-θβλ-exact.

(iii) V is λ-exact ⇒ V is L-αλ-exact ⇒ V is L-Sλ-exact ⇒ V is L-βλ-exact ⇒ V is
L-

∧
βλ

-exact ⇒ V is L-θβλ-exact.

(iv) V is L-Pλ-exact ⇒ V is L-βλ-exact ⇒ V is L-
∧
βλ

-exact ⇒ V is L-θβλ-exact.
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(v) V is L-θβλ-rough ⇒ V is L-δβλ-rough ⇒ V is L-βλ-rough ⇒ V is L-Sλ-rough ⇒ V
is L-αλ-rough.

(vi) V is L-θβλ-rough ⇒ V is L-δβλ-rough ⇒ V is L-βλ-rough ⇒ V is L-Pλ-rough.

(vii) V is L-θβλ-rough ⇒ V is L-
∧
βλ

-rough ⇒ V is L-βλ-rough ⇒ V is L-Sλ-rough ⇒
V is L-αλ-rough.

(vii) V is L-θβλ-rough ⇒ V is L-
∧
βλ

-rough ⇒ V is L-βλ-rough ⇒ V is L-Pλ-rough.

Remark 3. By Example 1, we will illustrate that the converse of the implications in
Corollary 2 fails.

(i) If V = {y5}, then it is L-θβa-exact, but it is not L-δβa-exact and consequently, not
L-βa-exact, not L-Sa-exact, not L-αa-exact and not L-Pa-exact.

(ii) If V = {y}, then it is L-θβa-exact, but it is not L-
∧
βa-exact and consequently, not

L-βa-exact, not L-Sa-exact, not L-αa-exact and not L-Pa-exact.

We elucidate the interrelations between the present rough paradigms (Definition 18)
and the those displayed in Definition 4 [45] and Definition 6 [15, 20].

Theorem 5. Let V be a subset of an L −Gλ-space (X,R,Ξλ,L). Then:

(i) Rα
λ(V ) ⊆ Rp

λ(V ) ⊆ Rγ
λ(V ) ⊆ Rβ

λ(V ) ⊆ Rδβ
λ (V ) ⊆ RL−θβ

λ (V ).

(ii) Rα
λ(V ) ⊆ Rs

λ(V ) ⊆ Rγ
λ(V ) ⊆ Rβ

λ(V ) ⊆ Rδβ
λ (V ) ⊆ RL−θβ

λ (V ).

(iii) Rα
λ(V ) ⊆ Rp

λ(V ) ⊆ Rγ
λ(V ) ⊆ Rβ

λ(V ) ⊆ R
∧

β

λ (V ) ⊆ RL−θβλ(V ).

(iv) Rα
λ(V ) ⊆ Rs

λ(V ) ⊆ Rγ
λ(V ) ⊆ Rβ

λ(V ) ⊆ R
∧

βλ (V ) ⊆ RL−θβλ(V ).

(v) Rλ(V ) ⊆ RL−θβ
λ (V ).

(vi) RL−θβ
λ (V ) ⊆ Rδβ

λ (V ) ⊆ Rβ
λ(V ) ⊆ Rγ

λ(V ) ⊆ Rp
λ(V ) ⊆ Rα

λ(V ).

(vii) RL−θβ
λ (V ) ⊆ Rδβ

λ (V ) ⊆ Rβ
λ(V ) ⊆ Rγ

λ(V ) ⊆ Rs
λ(V ) ⊆ Rα

λ(V ).

(viii) RL−θβλ(V ) ⊆ R
∧

β

λ (V ) ⊆ Rβ
λ(V ) ⊆ Rγ

λ(V ) ⊆ Rp
λ(V ) ⊆ Rα

λ(V ).

(ix) RL−θβλ(V )) ⊆ R
∧

β

λ (V ) ⊆ Rβ
λ(V ) ⊆ Rγ

λ(V ) ⊆ Rs
λ(V ) ⊆ Rα

λ(V ).

(x) RL−θβ
λ (V ) ⊆ Rλ(V ).

Proof.

(i) By Theorem 2 [23], Rα
λ(V ) ⊆ Rp

λ(V ) ⊆ Rγ
λ(V ) ⊆ Rβ

λ(V ) ⊆ Rδβ
λ (V ) and Rδβ

λ (V )) =

∪{G ∈ δβλO(X) : G ⊆ A} ⊆ ∪{G ∈ L-θβλO(X) : G ⊆ A} = RL−θβ
λ (V ) (by

Proposition 6).
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(ii)–(iv) It is similar to (i).

(v) By Theorem 2 [23], Rλ(V ) ⊆ Rδβλ(V ), and by (1) Rδβλ(V ) ⊆ RL−θβ
λ (V ). Hence,

Rλ(V ) ⊆ RL−θβ
λ (V ).

(vi)–(x) They are similar to (i)–(v).

The subsequent corollary points out that the greater the size of the boundary region,
the lower the accuracy measures.

Corollary 3. If V is a subset of an L−Gλ-space (X,R,Ξλ,L), then the next properties
are satisfied.

(i) BNDL−θβλ(V ) ⊆ BNDδβ
λ (V ) ⊆ BNDβ

λ(V ) ⊆ BNDγ
λ(V ) ⊆ BNDp

λ(V ) ⊆ BNDα
λ(V ).

(ii) BNDL−θβλ(V ) ⊆ BNDδβ
λ (V ) ⊆ BNDβ

λ(V ) ⊆ BNDγ
λ(V ) ⊆ BNDs

λ(V ) ⊆ BNDα
λ(V ).

(iii) BNDL−θβλ(V ) ⊆ BND
∧

β

λ (V ) ⊆ BNDβ
λ(V ) ⊆ BNDγ

λ(V ) ⊆ BNDp
λ(V ) ⊆ BNDα

λ(V ).

(iv) BNDL−θβλ(V ) ⊆ BND
∧

β

λ (V ) ⊆ BNDβ
λ(V ) ⊆ BNDγ

λ(V ) ⊆ BNDs
λ(V ) ⊆ BNDα

λ(V ).

(v) BNDL−θβ
λ (V ) ⊆ BNDλ(V ).

(vi) ACCαλ(V ) ⩽ ACCpλ(V ) ⩽ ACCγλ(V ) ⩽ ACCβλ(V ) ⩽ ACCδβλ (V ) ⩽ ACCL−θβ
λ (V ).

(vii) ACCαλ(V ) ⩽ ACCsλ(V ) ⩽ ACCγλ(V ) ⩽ ACCβλ(V ) ⩽ ACCδβλ (V ) ⩽ ACCL−θβ
λ (V ).

(viii) ACCαλ(V ) ⩽ ACCpλ(V ) ⩽ ACCγλ(V ) ⩽ ACCβλ(V ) ⩽ ACC
∧

β

λ (V ) ⩽ ACC
L−θβ
λ (V ).

(ix) ACCαλ(V ) ⩽ ACCsλ(V ) ⩽ ACCγλ(V ) ⩽ ACCβλ(V ) ⩽ ACC
∧

β

λ (V ) ⩽ ACC
L−θβ
λ (V ).

(x) ACCλ(V ) ⩽ ACCL−θβ
λ (V ).

Remark 4. The converse of the implications in Theorem 5 and Corollary 3 is not true
in general as shown in

(i) Example 2, if V = {y4}, then RL−θβ
a (V ) = A,RL−θβ

a (V ) = A, BNDL−θβ
a (V ) =

∅, ACCL−θβ
a(V ) = 1, and Rδβ

a(V ) = ∅, Rδβ
a(V ) = A and BNDδβ

a(V ) = A,ACCδβa(V ) =
0.

(ii) Example 3, if V = {y}, then RL−θβ
a (V ) = A,RL−θβ

a (V ) = A,BNDL−θβ
a (V ) =

∅, ACCL−θβ
a (V ) = 1, and RL−

∧
βa(V ) = ∅,RL−

∧
βa(V ) = A,BNDL−

∧
βa(V ) = A,

ACCL−
∧

βa(V ) = 0.

Corollary 4. For a subset V of an L−Gλ-space (X,R,Ξλ,L), we have the next results.
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(i) V is αλ-exact ⇒ V is Sλ-exact ⇒ V is βλ-exact ⇒ δβλ-exact ⇒ V is L-θβλ-exact.

(ii) V is Pλ-exact ⇒ V is βλ-exact ⇒ V is δβλ-exact ⇒ V is L-θβλ-exact.

(iii) V is αλ-exact ⇒ V is Sλ-exact ⇒ V is βλ-exact ⇒ V is
∧
βλ

-exact ⇒ V is L-θβλ-
exact.

(iv) V is Pλ-exact ⇒ V is βλ-exact ⇒ V is
∧
βλ

-exact ⇒ V is L-θβλ-exact.

(v) V is λ-exact ⇒ V is L-θβλ-exact.

(vi) V is L-θβλ-rough ⇒ V is δβλ-rough ⇒ V is βλ-rough ⇒ V is Sλ-rough ⇒ V is
αλ-rough.

(vii) V is L-θβλ-rough ⇒ V is δβλ-rough ⇒ V is βλ-rough ⇒ V is Pλ-rough.

(viii) V is L-θβλ-rough ⇒ V is
∧
βλ

-rough ⇒ V is βλ-rough ⇒ V is Sλ-rough ⇒ V is
αλ-rough.

(ix) V is L-θβλ-rough ⇒ V is
∧
βλ

-rough ⇒ V is βλ-rough ⇒ V is Pλ-rough.

(x) V is L-θβλ-rough ⇒ V is λ-rough.

Remark 5. The converse of Corollary 4 is wrong in general. We demonstrate this claim
in the following.

(i) Example 2, if V = {y4}, then it is L-θβa-exact, but it is neither δβa-exact nor
R-exact.

(ii) Example 3, if V = {y}, then it is L-θβa-exact, but it is neither
∧
βa
-exact nor

a-exact.

Remark 6. We can say that the present rough set models (Definition 18), with the com-
parison of Abd El-Monsef et al.’s method 4 [45], Amer et al.’s method [15] and Hosny’s
method 6 [20] and Hosny’s method 9 [22, 23], enlarge the confirmed knowledge by maxi-
mizing the L-θβλ-lower approximations and minimizing the L-θβλ-upper approximations
as illustrated in Theorems 4 and 5. That is, the present approach successfully shrinks the
boundary region, which refer to size of ambiguity. Furthemore, Corollaries 3 and 1 con-
firm that the our accuracy introduced in Definition 18 is greater than the previous ones in
Definitions 4 [15], 6 [15, 20] and 9 [22, 23].

In Algorithm 2, we present the steps to calculate a subset’s boundary region and
accuracy measure and determine whether an L-θβλ-definable set or an L-θβλ-rough set.
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Input : The universal set X, a relation R, and an ideal L under consideration.
Output: Boundary region BNDL−θβ

λ and accuracy measure ACCL−θβ
λ of a

subset.

1 Carry out steps 1–20 given in Algorithm 1;
2 Build L-θβλC(X) = {H ⊆ X : Hc ∈ L-θβλO(X)};
3 for a subset E ⊆ X do

4 compute RL−θβ
λ (E) = ∪{G ∈ L-θβλO(X) : G ⊆ E};

5 compute RL−θβ
λ (E) = ∩{H ∈ L-θβλC(X) : E ⊆ H};

6 compute BNDL−θβ
λ (E) = RL−θβ

λ (E)−RL−θβ
λ (E);

7 compute ACCL−θβ
λ (E) =

|RL−θβ
λ (E)|

|RL−θβ
λ (E)|

8 end

9 Print BNDL−θβ
λ (E);

10 Print ACCL−θβ
λ (E);

11 if ACCL−θβ
λ (E) = 1 then

12 Print E is an L-θβλ-definable set
13 else
14 Print E is an L-θβλ-rough set
15 end

Algorithm 2: Calculate the boundary region and accuracy measure of a subset

5. L-θβλ-rough membership functions

In this segment, we introduce the notion of L-θβλ-rough membership functions as a
generalization of classical rough membership functions. We exploit this notion to describe
the approximation operators given in the preceding section.

Definition 20. Let (X,R,Ξλ,L) be an L −Gλ-space, y ∈ X, and V ⊆ X.

(i) if y ∈ RL−θβ
λ (V ), then y is λ-θβ-certainly with respect to L ( L−θβλ-certainly) belongs

to V , denoted by y ∈L−θβλV .

(ii) if y ∈ RL−θβ
λ (V ), then y is λ-θβ-probably with respect to L (briefly L− θβλ-probably)

belongs to V , denoted by y ∈L−θβλV .

It is called λ-θβ-strong and λ-θβ-weak membership relations with respect to L respectively.

Remark 7. According to Definition 18, the L-θβλ-lower and L-θβλ-upper approximations
for any V ⊆ X can be written as:

(i) RL−θβ
λ (V ) = {y ∈ X : y ∈L−θβλV }.

(ii) RL−θβ
λ (V ) = {y ∈ X : y ∈L−θβλV }.
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Lemma 2. Let (X,R,Ξλ,L) be an L −Gλ-space and V ⊆ X. Then

(i) if y ∈L−θβλV , then y ∈ V .

(ii) if y ∈ V , then y ∈L−θβλV .

Proof. Straightforward.

Proposition 9. Let (X,R,Ξλ,L) be an L −Gλ-space and V ⊆ X. Then

(i) if y ∈λA⇒ y ∈ηλA⇒ y ∈L−η
λ V ⇒ y ∈L−θβλV .

(ii) if y ∈L−θβλA⇒ y ∈L−η
λ A⇒ y ∈ηλA⇒ y ∈λV .

Proof. We prove (i) and the other similarly. y ∈λA ⇒ y ∈ηλA ⇒ y ∈L−η
λ V by Propo-

sition 4. Let y ∈L−η
λ V . Then, y ∈ RL−η

λ (V ) ⇒ y ∈ RL−θβ
λ (V )( by Proposition 4) ⇒

y ∈L−θβλV .

Remark 8. The converse of Proposition 9 is not true in general, as it is shown in Example
1

(i) if V = {y5}, then y2 ∈L−θβaV , but y2 ∈L−δβaV .

(ii) if V = {y1}, then y2 ∈L−θβaV , but y2 ∈L−
∧

βaV .

Definition 21. Let (X,R,Ξλ) be a Gλ-space, L be an ideal on X,V ⊆ X and y ∈ X.

The L − θβλ-rough membership functions of V are defined by µ
L−θβλ
V → [0, 1], where

µ
L−θβλ
V (y) = {1 if 1∈ψL−θβλ

V (y).

min(ψ
L−θβλ
V (y)) otherwise.

}.

and ψ
L−θβλ
V (y) = |L−θβλ(y)∩V |

|L−θβλ(y)|
, y ∈ L − θβλ(y), L − θβλ(y) ∈ L-θβλO(X).

Remark 9. The L − θβλ-rough membership functions are used to define the L-θβλ-lower
and L-θβλ-upper approximations as follows:

(i) RL−θβ
λ (V ) = {y ∈ X : µ

L−θβλ
V (y) = 1}.

(ii) RL−θβ
λ (V ) = {y ∈ X : µ

L−θβλ
V (y) > 0}.

(iii) BNDL−θβ
λ (V ) = {y ∈ X : 0 < µ

L−θβλ
V (y) < 1}.

Proposition 10. Let (X,R,Ξλ,L) be an L −Gλ-space and V,W ⊆ X. Then

(i) if µ
L−θβλ
V (y) = 1 ⇔ y ∈L−θβλV .

(ii) if µ
L−θβλ
V (y) = 0 ⇔ y ∈ X −RL−θβ

λ (V ).

(iii) if 0 < µ
L−θβλ
V (y) < 1 ⇔ y ∈ BNDL−θβ

λ (V ).
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(iv) if µ
L−θβλ

A′ (y) = 1− µ
L−θβλ
V (y), ∀ y ∈ X.

(v) if µ
L−θβλ
V ∪B (y) ≥ max(µ

L−θβλ
V (y), µ

L−θβλ
B (y)), ∀ y ∈ X.

(vi) if µ
L−θβλ
V ∩B (y) ≤ min(µ

L−θβλ
V (y), µ

L−θβλ
B (y)), ∀ y ∈ X.

Proof. We prove (i), and the others similarly. y ∈L−θβλV ⇔ y ∈ RL−θβ
λ (V ). Since

RL−θβ
λ (V ) is L− θβλ-open set contained in V , thus

|RL−θβ
λ (V )∩V |
|RL−θβ

λ (V )|
=

|RL−θβ
λ (V )|

|RL−θβ
λ (V )|

= 1. Then,

1 ∈ ψ
L−θβλ
V (y) and accordingly µ

L−θβλ
V (y) = 1.

In the next, we prove an important result showing the interrelations between the
relations of λ-rough membership [35] 12, λ-nearly rough membership [45] 13, λ-nearly
rough membership w.r.t L [22, 23] 14, and L-θβλ-rough membership functions.

Lemma 3. Let (X,R,Ξλ,L) be an L −Gλ-space and V ⊆ X. Then

(i) µλV (y) = 1 ⇒ µηλV (y) = 1 ⇒ µL−ηλV (y) = 1 ⇒ µ
L−θβλ
V (y) = 1, ∀ y ∈ X.

(ii) µλV (y) = 0 ⇒ µηλV (y) = 0 ⇒ µL−ηλV (y) = 0 ⇒ µ
L−θβλ
V (y) = 0, ∀ y ∈ X.

Proof.

(i) µλV (y) = 1 ⇒ µηλV (y) = 1 ⇒ µL−ηλV (y) = 1 directly from Lemma 1. Let µL−ηλV (y) = 1,

then y ∈ RL−η
λ (V ) ⇒ y ∈ RL−θβ

λ (V ) ⇒ µ
L−θβλ
V (y) = 1,∀ y ∈ X.

(ii) µλV (y) = 0 ⇒ µηλV (y) = 0 ⇒ µL−ηλV (y) = 0 directly from Lemma 1. Let µL−ηλV (y) = 0,

then y ∈ X −RL−η
λ (V ) ⇒ y ∈ X −RL−θβ

λ (V ) ⇒ µ
L−θβλ
V (y) = 0, ∀ y ∈ X.

Remark 10. By Example 1, one can see that the converse of Lemma 3 fails.

Remark 11. According to Lemma 3, the current Definition 21 is also generalization of
the approaches in [35] and 11 [42].

6. Practical application

We allocated this part to examine the proposed models to cope with a real situation in
the field of Chemistry. We explain how our models improve the outcomes of generalized
approximation spaces over the previous models displayed in [15, 22, 23, 45]. The authors
of [19] presented information systems of amino acids (AAs) with some characterizations.
To facilitate the mathematical computations, we shall select a sample of that information
system as given in Table 1; that is, we choose data of five AAs, say, C = {y1, y2, y3, y4, y5}
described by five attributes as follows ν1 is PIE, ν2 is surface area (SAC), ν3 is molecular
refractivity (MR), ν4 is side chain polarity (LAM), and ν5 is molecular volume (Vol).
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Table 1: Quantitative attributes of five amino acids.

ν1 ν2 ν3 ν4 ν5
y1 0.23 254.2 2.126 -0.02 82.2

y2 -0.48 303.6 2.994 -1.24 112.3

y3 -0.61 287.9 2.994 -1.08 103.7

y4 0.45 282.9 2.933 -0.11 99.1

y5 -0.11 335.0 3.458 -0.19 127.5

Table 2: Ga of each element of C inspired by each relation Rk.

G1a(yi) G2a(yi) G3a(yi) G4a(yi) G5a(yi)

y1 {y1, y4} C C {y1, y4, y5} C
y2 C {y2, y5} {y2, y3, y4, y5} C {y2, y5}
y3 C {y2, y3, y4, y5} {y2, y3, y4, y5} C {y2, y3, y4, y5}
y4 {y4} {y2, y3, y4, y5} {y2, y3, y4, y5} {y1, y4, y5} {y2, y3, y4, y5}
y5 {y1, y4, y5} {y5} {y5} {y1, y4, y5} {y3, y5}

Let us take relations on C as: Rk = {(yi, yj) : yi(νk) − yj(νk) <
σyk
2 } for i, j, k =

1, 2, 3, 4, 5 s.t. σyk is the standard deviation of the quantitative attributes.
The right neighbourhood Gka of each element of C generated by each one of these

relations Rk is presented in Table 2.
Now, we associate each element of C with all its Ga by the following relation

Ha(yi) =
5⋂

k=1

Gka(yi).

For the sake of brevity, we conduct the computation for four AAs, say, Y = C \ {y5} =
{y1, y2, y3, y4}. Therefore, we first reduce Table 2 to Table 3.

Table 3: Ga of each element of Y inspired by each relation Rk.

G1a(yi) G2a(yi) G3a(yi) G4a(yi) G5a(yi)

y1 {y1, y4} Y Y {y1, y4} Y
y2 Y {y2} {y2, y3, y4} Y {y2}
y3 Y {y2, y3, y4} {y2, y3, y4} Y {y2, y3, y4}
y4 {y4} {y2, y3, y4} {y2, y3, y4} {y1, y4} {y2, y3, y4}

Now, we associate each element of Y with all its Ga by the following relation

Ha(yi) =
4⋂

k=1

Gka(yi).

Accordingly, we obtain the following neighbourhoods:

• Ha(y1) = {y1, y4},
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• Ha(y2) = {y2},

• Ha(y3) = {y2, y3, y4}, and

• Ha(y4) = {y4}.

Thus, the topology initiated by these neighbourhoods (using the formula ϑa = {V ⊆
Y : ∀y ∈ V,H(y) ⊆ V }) is:

ϑa = {∅,Y, {y2}, {y4}, {y2, y4}, {y1, y4}, {y1, y2, y4}, {y2, y3, y4}}.

The family of all β-open, δ-open and θ-open subsets of this topology respectively are:

βaO(Y) = {∅,Y, {y2}, {y4}, {y2, y4}, {y1, y4}, {y2, y3}, {y3, y4}, {y1, y2, y4}, {y1, y3, y4}, {y2, y3, y4}},

δaO(Y) = {∅,Y, {y2}, {y1, y4}, {y1, y2, y4}}, and

θaO(Y) = {∅,Y}.

If we take L = {∅, {y1}} as an ideal structure on Y, then we find the following:

• L-βaO(Y) = {∅,Y, {y2}, {y4}, {y1, y2}, {y2, y4}, {y1, y4}, {y2, y3}, {y3, y4}, {y1, y2, y4},
{y1, y3, y4}, {y2, y3, y4}, {y1, y2, y3}} = βaO(Y) ∪ {{y1, y2}, {y1, y2, y3}},

• L-δβaO(Y) = {∅,Y, {y1}, {y2}, {y4}, {y1, y2}, {y2, y4}, {y1, y4}, {y2, y3}, {y3, y4}, {y1, y2, y4},
{y1, y3, y4}, {y2, y3, y4}, {y1, y2, y3}} = L-βaO(Y) ∪ {{y1}, {y1, y3}}, and

• L-θβaO(Y) = P (Y).
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According to the computations of boundary regions and accuracy measures of subsets
displayed in Table 4, we remark the following points: there are different techniques intro-
duced in the literature to approximate subsets using some forms of subsets of topological
spaces. Our rough approximation space minimizes the upper approximation and maxi-
mizes the lower approximation, which leads to downsizing (or removing) the boundary
regions. As a result, it outperforms other rough models given in the published litera-
ture like [15, 22, 23, 45], which makes it the most refined technique. For instance, the
above table shows that a subset {y3} is considered a rough set according to the models of
[15, 22, 23, 45], whereas this subset and all other subsets are exact according to the model
investigated herein. This observation confirms that the current model is more beneficial
for coping with real-life scenarios since it extracts a greater amount of information and
reduces data ambiguity.

Furthermore, the proposed paradigm adheres to most properties of Pawlak’s model
without any restrictions, as demonstrated in Proposition 8. In this regard, We empha-
size that the methodology of using nearly open sets in topology can achieve some or all
properties of the Pawlak model, depending on the frameworks these families of subsets
form, whether they are topology, supra topology, infra topology, or minimal structures.
To elucidate this point, we note that the family of α-open sets constitutes a topology.
Thus, rough set models inspired by this family will fulfill all the properties of the Pawlak
model. In contrast, the family of semi-open sets constitutes a supra topology. Therefore,
rough set models inspired by this family lose some properties of the Pawlak model related
to the distribution of the union and intersection operators to the upper and lower approx-
imations, respectively. On the other hand, we find that families that do not achieve all the
properties of the Pawlak model expand the confirmed knowledge and produce a greater
accuracy measure than those families that achieve all the properties of the Pawlak model.

7. Conclusions

The notion of rough neighborhoods was introduced in the literature with the aim of
removing the strict term of an equivalence relation that limited the application of the
classical rough set models. Such rough neighborhoods have shown to be useful in several
applications. Some formulas have been proposed to institute a topology from these neigh-
borhoods making topological spaces a vital instrument to represent rough approximation
operators and analyze information systems. One of the important topological tools to
reduce the vagueness of knowledge is nearly open sets. Despite this tool being applied by
many researchers, there remain other types that should be investigated.

This work goes along with this line of research. We have studied generalized ap-
proximation spaces using the ideas of L-θβλ-open sets and ideal structures. We have
explored their structural properties and pointed out the importance of the present models
in maximizing the domain of confirmed information and minimizing the boundary region
of uncertainty. Therefore, this work is a foundation for handling complicated paradigms
in decision-making. We also showed the superiority of the proposed rough paradigms over
different kinds of preceding paradigms induced by some nearly open sets. To facilitate the
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way of specifying the family of L-θβλ-open sets and exploring whether a subset is L-θβλ-
definable or L-θβλ-rough, we have initiated two algorithms. Furthermore, we have defined
the relations and functions of rough membership and established their key aspects. In the
end, we have applied the current technique in a practical situation concerning classifying
some chemical elements.

A promising avenue for upcoming research incorporates extending the present rough
set paradigms to involve fuzzy and soft settings to enhance its ability to handle uncer-
tainty. Additionally, considering other approaches like generating topological spaces by
ideals first and then applying nearly open subsets of these spaces, could further refine the
present paradigms and offer another technique to address imperfect knowledge. Moreover,
discussing the current approaches in generalizations of topology [37] opens avenues for a
deeper comprehension of their mathematical foundations.
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