EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 4, 2024, 2753-2762 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Characterizations of Faintly (τ_1, τ_2) -Continuous Functions

Napassanan Srisarakham¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,∗}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand ² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

Abstract. This paper deals with the concept of faintly (τ_1, τ_2) -continuous functions. Furthermore, some characterizations of faintly (τ_1, τ_2) -continuous functions are investigated. The relationships between faint (τ_1, τ_2) -continuity and other forms of (τ_1, τ_2) -continuity are considered.

2020 Mathematics Subject Classifications: 54C08, 54E55

Key Words and Phrases: $(\tau_1, \tau_2)\theta$ -open set, $(\tau_1, \tau_2)\theta$ -closed set, faintly (τ_1, τ_2) -continuous function

1. Introduction

The field of the mathematical science which goes under the name of topology is concerned with all questions directly or indirectly related to continuity. Semi-open sets [25], preopen sets [27], α -open sets [29], β -open sets [22] and θ -open sets [38] play an important role in researches of generalizations of continuity. Using these sets several authors introduced and investigated various types of generalizations of continuity in topological spaces. Viriyapong and Boonpok [40] studied some characterizations of (Λ, sp) -continuous functions by utilizing the notions of (Λ, sp) -open sets and (Λ, sp) -closed sets due to Boonpok and Khampakdee [8]. Dungthaisong et al. [21] introduced and studied the concept of $g_{(m,n)}$ -continuous functions. Duangphui et al. [20] introduced and investigated the notion of $(\mu, \mu')^{(m,n)}$ -continuous functions. Furthermore, several characterizations of almost (Λ, p) -continuous functions, strongly $\theta(\Lambda, p)$ -continuous functions, almost strongly $\theta(\Lambda, p)$ continuous functions, $\theta(\Lambda, p)$ -continuous functions, weakly (Λ, b) -continuous functions,

Email addresses: napassanan.sri@msu.ac.th (N. Srisarakham), areeyuth.s@psu.ac.th (A. Sama-Ae), chawalit.b@msu.ac.th (C. Boonpok)

https://www.ejpam.com 2753 Copyright: © 2024 The Author(s). (CC BY-NC 4.0)

[∗]Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v17i4.5395

 $(\Lambda, p(\star))$ -continuous functions, $\theta(\star)$ -precontinuous functions, \star -continuous functions, θ - \mathscr{I} -continuous functions, almost (q, m) -continuous functions, pairwise M-continuous functions, almost quasi (τ_1 , τ_2)-continuous functions and weakly quasi (τ_1 , τ_2)-continuous functions were presented in [35], [37], [9], [33], [12], [5], [7], [6], [3], [1], [2], [24] and [17], respectively. Long and Herrington [26] introduced the notion of faintly continuous functions. Moreover, some characterizations of faintly continuous functions were investigated in [28] and [30], respectively. Three weak forms of faint continuity were introduced by Noiri and Popa [31]. Nasef and Noiri [28] introduced and studied three strong forms of faint continuity under the names of strongly faint semi-continuity, strongly faint precontinuity and strongly faint β-continuity. Jafari and Noiri [23] introduced and investigated the concept of faintly α -continuous functions. Chananan et al. [15] introduced a new class of functions, called faintly (m, μ) -continuous functions and established the relationships between faint (m, μ) -continuity and other related generalized forms of (m, μ) -continuity. Noiri and Popa [32] introduced the notion of faintly m-continuous functions as functions from a set X satisfying some minimal conditions into a topological space and investigated several characterizations of faintly m-continuous functions. Pue-on et al. [34] introduced the concept of faintly (τ_1, τ_2) -continuous functions. In this paper, we investigate some characterizations of faintly (τ_1, τ_2) -continuous functions. We also discuss the relationships between faintly (τ_1, τ_2) -continuous functions and other forms of (τ_1, τ_2) -continuous functions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for $i = 1, 2$. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [14] if $A = \tau_1\text{-Cl}(\tau_2\text{-Cl}(A))$. The complement of a $\tau_1\tau_2\text{-closed}$ set is called $\tau_1\tau_2\text{-open}$. A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -clopen [14] if A is both $\tau_1 \tau_2$ -open and $\tau_1\tau_2$ -closed. Let A be a subset of a bitopological space (X,τ_1,τ_2) . The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [14] of A and is denoted by $\tau_1\tau_2\text{-Cl}(A)$. The union of all $\tau_1\tau_2$ -open sets of X contained in A is called the $\tau_1\tau_2$ -interior [14] of A and is denoted by $\tau_1 \tau_2$ -Int(A).

Lemma 1. [14] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1 \tau_2$ closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2\text{-}Cl(A)$ and $\tau_1 \tau_2\text{-}Cl(\tau_1 \tau_2\text{-}Cl(A)) = \tau_1 \tau_2\text{-}Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ -Cl(A) $\subseteq \tau_1 \tau_2$ -Cl(B).
- (3) $\tau_1 \tau_2$ -Cl(A) is $\tau_1 \tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).

(5)
$$
\tau_1 \tau_2 \text{-} Cl(X - A) = X - \tau_1 \tau_2 \text{-} Int(A)
$$
.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [39] (resp. (τ_1, τ_2) s-open [4], (τ_1, τ_2) p-open [4], (τ_1, τ_2) β-open [4]) if $A = \tau_1 \tau_2$ -Int($\tau_1 \tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(A)), A \subseteq \tau_1\tau_2\text{-Int}(\tau_1\tau_2\text{-Cl}(A)), A \subseteq \tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(\tau_1\tau_2\text{-Cl}(A))).$ The complement of a (τ_1, τ_2) r-open (resp. (τ_1, τ_2) s-open, (τ_1, τ_2) p-open, (τ_1, τ_2) β -open) set is called $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open [41] if $A \subseteq$ $\tau_1\tau_2$ -Int($\tau_1\tau_2$ -Cl($\tau_1\tau_2$ -Int(A))). The complement of an $\alpha(\tau_1, \tau_2)$ -open set is said to be $\alpha(\tau_1, \tau_2)$ -closed. Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ -cluster point [39] of A if $\tau_1\tau_2$ -Cl(U)∩A $\neq \emptyset$ for every $\tau_1\tau_2$ -open set U of X containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [39] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [39] if $(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -open. The union of all $(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [39] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Int(A).

3. Characterizations of faintly (τ_1, τ_2) -continuous functions

In this section, we investigate several characterizations of faintly (τ_1, τ_2) -continuous functions.

Definition 1. [34] A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called faintly (τ_1, τ_2) -continuous at a point $x \in X$ if for each $(\sigma_1, \sigma_2)\theta$ -open set V of Y containing $f(x)$, there exists a $\tau_1\tau_2$ open set U of X containing x such that $f(U) \subseteq V$. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called faintly (τ_1, τ_2) -continuous if f has this property at every point of X.

Theorem 1. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is faintly (τ_1, τ_2) -continuous at $x \in X$ if and only if for each $(\sigma_1, \sigma_2)\theta$ -open set V of Y containing $f(x)$, $x \in \tau_1 \tau_2$ -Int $(f^{-1}(V))$.

Proof. Let $x \in X$ and V be any $(\sigma_1, \sigma_2)\theta$ -open set of Y containing $f(x)$. Then, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $f(U) \subseteq V$. Thus $x \in U \subseteq f^{-1}(V)$ and hence $x \in \tau_1 \tau_2$ -Int $(f^{-1}(V))$.

Conversely, let V be any $(\sigma_1, \sigma_2)\theta$ -open set of Y containing $f(x)$. By the hypothesis, $x \in \tau_1 \tau_2$ -Int $(f^{-1}(V))$. Then, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $U \subseteq f^{-1}(V)$; hence $f(U) \subseteq V$. This shows that f is faintly (τ_1, τ_2) -continuous at $x \in X$.

Recall that a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) -T₂ [19] if for any pair of distinct points x, y in X, there exist disjoint $\tau_1 \tau_2$ -open sets U and V of X containing x and y, respectively.

Definition 2. A bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -T₂ if for each distinct points $x, y \in X$, there there exist $(\tau_1, \tau_2)\theta$ -open sets U and V of X containing x and y, respectively, such that $U \cap V = \emptyset$.

Theorem 2. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a faintly (τ_1, τ_2) -continuous injection and (Y, σ_1, σ_2) is $(\sigma_1, \sigma_2)\theta - T_2$, then (X, τ_1, τ_2) is $(\tau_1, \tau_2) - T_2$.

Proof. Let x, y be any distinct points of X. Then $f(x) \neq f(y)$. Since (Y, σ_1, σ_2) is $(\sigma_1, \sigma_2)\theta - T_2$, there exist $(\sigma_1, \sigma_2)\theta$ -open sets U and V of Y containing $f(x)$ and $f(y)$, respectively, such that $U \cap V = \emptyset$. Since f is faintly (τ_1, τ_2) -continuous, there exist $\tau_1 \tau_2$ open sets G and W of X containing x and y, respectively, such that $f(G) \subseteq U$ and $f(W) \subseteq V$. This implies that $G \cap W = \emptyset$. Thus, (X, τ_1, τ_2) is (τ_1, τ_2) - T_2 .

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -compact [14] if every cover of X by $\tau_1\tau_2$ -open sets of X has a finite subcover. A subset K of X is said to be $\tau_1\tau_2$ -compact relative to (X,τ_1,τ_2) if every cover of K by $\tau_1\tau_2$ -open sets of X has a finite subcover.

Definition 3. A subset K of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -compact relative to (X, τ_1, τ_2) if every cover of K by $(\tau_1, \tau_2)\theta$ -open sets of X has a finite subcover. A bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -compact if the set X is $(\tau_1, \tau_2)\theta$ -compact relative to (X, τ_1, τ_2) .

Theorem 3. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a faintly (τ_1, τ_2) -continuous function and K is $\tau_1\tau_2$ -compact relative to (X,τ_1,τ_2) , then $f(K)$ is $(\sigma_1,\sigma_2)\theta$ -compact relative to (Y,σ_1,σ_2) .

Proof. Let $\{V_\gamma : \gamma \in \Gamma\}$ be any cover of $f(K)$ by $(\sigma_1, \sigma_2)\theta$ -open sets of Y. For each $x \in K$, there exists $\gamma(x) \in \Gamma$ such that $f(x) \in V_{\gamma(x)}$. Since f is faintly (τ_1, τ_2) -continuous, there exist a $\tau_1\tau_2$ -open set $U(x)$ of X containing x such that $f(U(x)) \subseteq V_{\gamma(x)}$. The family $\{U(x): x \in K\}$ is a cover of K by $\tau_1\tau_2$ -open sets of X. Since K is $\tau_1\tau_2$ -compact relative to (X, τ_1, τ_2) , there exists a finite number of points, say, $x_1, x_2, x_3, ..., x_n$ in K such that $K \subseteq \bigcup \{U(x_k): x_k \in K, 1 \leq k \leq n\}.$ Thus,

$$
f(K) \subseteq \bigcup \{ f(U(x_k)) : x_k \in K, 1 \le k \le n \}
$$

$$
\subseteq \bigcup \{ V_{\gamma(x_k)} : x_k \in K, 1 \le k \le n \}.
$$

This shows that $f(K)$ is $(\sigma_1, \sigma_2) \theta$ -compact relative to (Y, σ_1, σ_2) .

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -connected [14] if X cannot be written as the union of two disjoint nonempty $\tau_1\tau_2$ -open sets.

Lemma 2. [34] For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is faintly (τ_1, τ_2) -continuous;
- (2) $f^{-1}(V)$ is $\tau_1\tau_2$ -open in X for each $(\sigma_1, \sigma_2)\theta$ -open set V of Y;
- (3) $f^{-1}(K)$ is $\tau_1 \tau_2$ -closed in X for each $(\sigma_1, \sigma_2)\theta$ -closed set K of Y;
- (4) for each $x \in X$ and for each $(\sigma_1, \sigma_2)\theta$ -open set V of Y containing $f(x)$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $f(U) \subseteq V$.

Theorem 4. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a faintly (τ_1, τ_2) -continuous surjection and (X, τ_1, τ_2) is $\tau_1 \tau_2$ -connected, then (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -connected.

Proof. Assume that (Y, σ_1, σ_2) is not $\sigma_1 \sigma_2$ -connected. Then, there exist nonempty $\sigma_1 \sigma_2$ -open sets V and W such that $V \cap W = \emptyset$ and $V \cup W = Y$. Thus, $f^{-1}(V) \cap f^{-1}(W) = \emptyset$ and $f^{-1}(V) \cup f^{-1}(W) = X$. Since f is surjective, $f^{-1}(V)$ and $f^{-1}(W)$ are nonempty. Since V and W are $\sigma_1 \sigma_2$ -open and $\sigma_1 \sigma_2$ -closed, we have V and W are $(\sigma_1, \sigma_2) \theta$ -open sets of Y. Since f is faintly (τ_1, τ_2) -continuous, by Lemma 2, $f^{-1}(V)$ and $f^{-1}(W)$ are $\tau_1 \tau_2$ -open in X. Thus, (X, τ_1, τ_2) is not $\tau_1 \tau_2$ -connected. This is a contradiction and hence (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -connected.

The $\tau_1\tau_2$ -frontier [13] of a subset A of a bitopological space (X, τ_1, τ_2) , denoted by $\tau_1\tau_2\text{-}\mathrm{fr}(A)$, is defined by

$$
\tau_1 \tau_2 \text{-}fr(A) = \tau_1 \tau_2 \text{-}Cl(A) \cap \tau_1 \tau_2 \text{-}Cl(X - A) = \tau_1 \tau_2 \text{-}Cl(A) - \tau_1 \tau_2 \text{-}Int(A).
$$

Theorem 5. The set of all points $x \in X$ at which a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is not faintly (τ_1, τ_2) -continuous is identical with the union of the $\tau_1\tau_2$ -frontier of the inverse images of $(\sigma_1, \sigma_2)\theta$ -open sets of Y containing $f(x)$.

Proof. Suppose that f is not faintly (τ_1, τ_2) -continuous at $x \in X$. Then, there exists a $(\sigma_1, \sigma_2)\theta$ -open set V of Y containing $f(x)$ such that $f(U)$ is not contained in V for every $\tau_1\tau_2$ -open set U of X containing x. Then, $U \cap (X - f^{-1}(V)) \neq \emptyset$ for every $\tau_1\tau_2$ -open set U of X containing x. Thus, $x \in \tau_1 \tau_2\text{-Cl}(X - f^{-1}(V))$. On the other hand, we have $x \in f^{-1}(V) \subseteq \tau_1 \tau_2\text{-}Cl(f^{-1}(V))$ and hence $x \in \tau_1 \tau_2\text{-}fr(A)$.

Conversely, suppose that f is faintly (τ_1, τ_2) -continuous at $x \in X$. Let V be any $(\sigma_1, \sigma_2)\theta$ -open set of Y containing $f(x)$. Then by Theorem 1, $x \in \tau_1\tau_2$ -Int $(f^{-1}(V))$. Thus, $x \notin \tau_1 \tau_2$ -fr $(f^{-1}(V))$ for each $(\sigma_1, \sigma_2) \theta$ -open set V of Y containing $f(x)$. This completes the proof.

Definition 4. [36] A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be slightly (τ_1, τ_2) continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -clopen set V of Y containing $f(x)$, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq V$.

Theorem 6. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is faintly (τ_1, τ_2) -continuous, then f is slightly (τ_1, τ_2) -continuous.

Proof. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -clopen set of Y containing $f(x)$. Then, V is $(\sigma_1, \sigma_2)\theta$ -open in Y. Since f is faintly (τ_1, τ_2) -continuous, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq V$. This shows that f is slightly (τ_1, τ_2) -continuous.

4. On faint (τ_1, τ_2) -continuity and other forms of (τ_1, τ_2) -continuity

In this paper, we investigate the relationships between faintly (τ_1, τ_2) -continuous functions and other forms of (τ_1, τ_2) -continuous functions.

Definition 5. [10] A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be weakly (τ_1, τ_2) continuous at a point $x \in X$ if for each $\tau_1 \tau_2$ -open set V of Y containing $f(x)$, there

exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2$ -Cl(V). A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be weakly (τ_1, τ_2) -continuous if f has this property at each point of X.

Theorem 7. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is weakly (τ_1, τ_2) -continuous, then f is faintly (τ_1, τ_2) -continuous.

Proof. Let $x \in X$ and V be any $(\sigma_1, \sigma_2)\theta$ -open set of Y containing $f(x)$. There exists a $\sigma_1 \sigma_2$ -open set W of Y such that $f(x) \in W \subseteq \sigma_1 \sigma_2$ -Cl $(W) \subseteq V$. Since f is weakly (τ_1, τ_2) -continuous, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $f(U) \subseteq \sigma_1 \sigma_2\text{-Cl}(W) \subseteq V$. Thus, f is faintly (τ_1, τ_2) -continuous.

Definition 6. [13] A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called (τ_1, τ_2) -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing $f(x)$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $f(U) \subseteq V$. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called (τ_1, τ_2) -continuous if f has this property at each point of X.

Recall that a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) -regular [16] if for each $\tau_1\tau_2$ -closed set F and each point $x \in X - F$, there exist disjoint $\tau_1\tau_2$ -open sets U and V such that $x \in U$ and $F \subseteq V$.

Lemma 3. [13] For a function $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is (τ_1, τ_2) -continuous;
- (2) $f^{-1}(V)$ is $\tau_1 \tau_2$ -open in X for every $\sigma_1 \sigma_2$ -open set V of Y;
- (3) $f(\tau_1\tau_2\text{-}Cl(A)) \subseteq \sigma_1\sigma_2\text{-}Cl(f(A))$ for every subset A of X:
- (4) $\tau_1 \tau_2 \text{-} Cl(f^{-1}(B)) \subseteq f^{-1}(\sigma_1 \sigma_2 \text{-} Cl(B))$ for every subset B of Y;
- (5) $f^{-1}(\sigma_1 \sigma_2 \text{-} Int(B)) \subseteq \tau_1 \tau_2 \text{-} Int(f^{-1}(B))$ for every subset B of Y;
- (6) $f^{-1}(K)$ is $\tau_1\tau_2$ -closed in X for every $\sigma_1\sigma_2$ -closed set K of Y.

Theorem 8. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is faintly (τ_1, τ_2) -continuous and (Y, σ_1, σ_2) is a (σ_1, σ_2) -regular space, then f is (τ_1, τ_2) -continuous.

Proof. Let V be any $\sigma_1 \sigma_2$ -open set of Y. Since (Y, σ_1, σ_2) is a (σ_1, σ_2) -regular space, V is $(\sigma_1, \sigma_2)\theta$ -open in Y. Since f is faintly (τ_1, τ_2) -continuous, by Lemma 2 we have $f^{-1}(V)$ is $\tau_1\tau_2$ -open in X and hence by Lemma 3, f is (τ_1, τ_2) -continuous.

Definition 7. [11] A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost (τ_1, τ_2) continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing $f(x)$, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V)). A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost (τ_1, τ_2) -continuous if f has this property at each point of X.

Lemma 4. [11] For a function $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is almost (τ_1, τ_2) -continuous at $x \in X$;
- (2) $x \in \tau_1 \tau_2$ -Int($f^{-1}(\sigma_1 \sigma_2$ -Int($\sigma_1 \sigma_2$ -Cl(V)))) for every $\sigma_1 \sigma_2$ -open set V of Y containing $f(x)$:
- (3) $x \in \tau_1 \tau_2$ -Int(f⁻¹(V)) for every (σ_1, σ_2) r-open set V of Y containing $f(x)$;
- (4) for each (σ_1, σ_2) r-open set V of Y containing $f(x)$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $f(U) \subset V$.

Recall that a bitopological space (X, τ_1, τ_2) is said to be almost (τ_1, τ_2) -regular [18] if for each $(\tau_1, \tau_2)r$ -closed set F and each $x \notin F$, there exist disjoint $\tau_1\tau_2$ -open sets U and V such that $x \in U$ and $F \subseteq V$.

Lemma 5. Let (X, τ_1, τ_2) be an almost (τ_1, τ_2) -regular space. Then, every (τ_1, τ_2) r-open set is $(\tau_1, \tau_2)\theta$ -open.

Theorem 9. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is faintly (τ_1, τ_2) -continuous and (Y, σ_1, σ_2) is almost (σ_1, σ_2) -regular, then f is almost (τ_1, τ_2) -continuous.

Proof. Let $x \in X$ and V be any (σ_1, σ_2) p-open set of Y containing $f(x)$. Then by Lemma 5, V is $(\sigma_1, \sigma_2)\theta$ -open in Y. Since f is faintly (τ_1, τ_2) -continuous, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq V$. It follows from Lemma 4 that f is almost (τ_1, τ_2) -continuous.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok. Almost (q, m) -continuous functions. *International Journal of Mathe*matical Analysis, 4(40):1957–1964, 2010.
- [2] C. Boonpok. M-continuous functions in biminimal structure spaces. Far East Journal of Mathematical Sciences, 43(1):41–58, 2010.
- [3] C. Boonpok. On characterizations of \star -hyperconnected ideal topological spaces. Journal of Mathematics, 2020:9387601, 2020.
- [4] C. Boonpok. (τ_1, τ_2) δ-semicontinuous multifunctions. Heliyon, 6:e05367, 2020.
- [5] C. Boonpok. On some closed sets and low separation axioms via topological ideals. European Journal of Pure and Applied Mathematics, 15(3):1023–1046, 2022.
- [6] C. Boonpok. On some spaces via topological ideals. Open Mathematics, 21:20230118, 2023.
- [7] C. Boonpok. $\theta(\star)$ -precontinuity. *Mathematica*, 65(1):31–42, 2023.
- [8] C. Boonpok and J. Khampakdee. (Λ, sp) -open sets in topological spaces. *European* Journal of Pure and Applied Mathematics, 15(2):572–588, 2022.
- [9] C. Boonpok and J. Khampakdee. Almost strong $\theta(\Lambda, p)$ -continuity for functions. European Journal of Pure and Applied Mathematics, 17(1):300–309, 2024.
- [10] C. Boonpok and C. Klanarong. On weakly (τ_1, τ_2) -continuous functions. *European* Journal of Pure and Applied Mathematics, 17(1):416–425, 2024.
- [11] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:33, 2024.
- [12] C. Boonpok and N. Srisarakham. Weak forms of (Λ, b) -open sets and weak (Λ, b) continuity. European Journal of Pure and Applied Mathematics, 16(1):29–43, 2023.
- [13] C. Boonpok and N. Srisarakham. (τ_1, τ_2) -continuity for functions. Asia Pacific Journal of Mathematics, 11:21, 2024.
- [14] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) precontinuous multifunctions. Journal of Mathematics and Computer Science, 18:282–293, 2018.
- [15] P. Chanapan, C. Viriyapong, and C. Boonpok. Faintly (m, μ) -continuous functions. International Journal of Mathematical Analysis, 7(39):1919–1926, 2013.
- [16] M. Chiangpradit, S. Sompong, and C. Boonpok. On characterizations of (τ_1, τ_2) regular spaces. International Journal of Mathematics and Computer Science, 19(4):1329–1334, 2024.
- [17] M. Chiangpradit, S. Sompong, and C. Boonpok. Weakly quasi (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:125, 2024.
- [18] N. Chutiman, S. Sompong, and C. Boonpok. On almost (τ_1, τ_2) -regular spaces. International Journal of Mathematics and Computer Science, 19(4):1363–1368, 2024.
- [19] N. Chutiman, S. Sompong, and C. Boonpok. On some separation axioms in bitopological spaces. Asia Pacific Journal of Mathematics, 11:41, 2024.
- [20] T. Duangphui, C. Boonpok, and C. Viriyapong. Continuous functions on bigeneralized topological spaces. International Journal of Mathematical Analysis, 5(24):1165– 1174, 2011.
- [21] T. Dungthaisong, C. Boonpok, and C. Viriyapong. Generalized closed sets in bigeneralized topological spaces. International Journal of Mathematical Analysis, 5(24):1175–1184, 2011.
- [22] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud. β -open sets and β continuous mappings. Bulletin of the Faculty of Science. Assiut University, 12:77–90, 1983.
- [23] S. Jafari and T. Noiri. On faintly α -continuous functions. *Indian Journal of Mathe*matics, 42:203–210, 2000.
- [24] B. Kong-ied, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuous functions. Asia Pacific Journal of Mathematics, 11:64, 2024.
- [25] N. Levine. Semi-open sets and semi-continuity in topological spaces. The American Mathematical Monthly, 70:36–41, 1963.
- [26] P. E. Long and L. L. Herrington. The T_{θ} -topology and faintly continuous functions. Kyungpook Mathematical Journal, 22:7–14, 1982.
- [27] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb. On precontinuous and weak precontinuous mappings. Proceedings of the Mathematical and Physical Society of Egypt, 53:47–53, 1982.
- [28] A. A. Nasef and T. Noiri. Strong forms of faint continuity. Memoirs of the Faculty of Science Kochi University Series A Mathematics, 19:21–28, 1998.
- [29] O. Njåstad. On some classes of nearly open sets. *Pasific Journal of Mathematics*, 15:961–970, 1965.
- [30] T. Noiri. Properties of some weak forms of continuity. International Journal of Mathematics and Mathematical Sciences, 10:97–111, 1987.
- [31] T. Noiri and V. Popa. Weak forms of faint continuity. *Bulletin Mathématique de* la Société des Sciences Mathématiques de la République Socialiste de Roumanie, 34(82):263–270, 1990.
- [32] T. Noiri and V. Popa. Faintly m-continuous functions. Chaos, Silitons & Fractals, 19:1147–1159, 2004.
- [33] P. Pue-on and C. Boonpok. $\theta(\Lambda, p)$ -continuity for functions. International Journal of Mathematics and Computer Science, 19(2):491–495, 2024.
- [34] P. Pue-on, A. Sama-Ae, and C. Boonpok. Upper and lower faint (τ_1, τ_2) -continuity. International Journal of Analysis and Applications, 22:169, 2024.
- [35] N. Srisarakham and C. Boonpok. Almost (Λ, p) -continuous functions. *International* Journal of Mathematics and Computer Science, 18(2):255–259, 2023.
- [36] N. Srisarakham, S. Sompong, and C. Boonpok. Slight (τ_1, τ_2) -continuity for functions. International Journal of Mathematics and Computer Science, 20(1):211–215, 2025.
- [37] M. Thongmoon and C. Boonpok. Strongly $\theta(\Lambda, p)$ -continuous functions. *International* Journal of Mathematics and Computer Science, 19(2):475–479, 2024.
- [38] N. V. Veličko. H-closed topological spaces. American Mathematical Society Translations, 78(2):102–118, 1968.
- [39] C. Viriyapong and C. Boonpok. (τ_1, τ_2) α-continuity for multifunctions. Journal of Mathematics, 2020:6285763, 2020.
- [40] C. Viriyapong and C. Boonpok. (Λ, sp) -continuous functions. WSEAS Transactions on Mathematics, 21:380–385, 2022.
- [41] N. Viriyapong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -extremal disconnectedness in bitopological spaces. International Journal of Mathematics and Computer Science, 19(3):855–860, 2024.