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Abstract. This paper deals with the concept of faintly (τ1, τ2)-continuous functions. Furthermore,
some characterizations of faintly (τ1, τ2)-continuous functions are investigated. The relationships
between faint (τ1, τ2)-continuity and other forms of (τ1, τ2)-continuity are considered.
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1. Introduction

The field of the mathematical science which goes under the name of topology is con-
cerned with all questions directly or indirectly related to continuity. Semi-open sets [25],
preopen sets [27], α-open sets [29], β-open sets [22] and θ-open sets [38] play an impor-
tant role in researches of generalizations of continuity. Using these sets several authors
introduced and investigated various types of generalizations of continuity in topological
spaces. Viriyapong and Boonpok [40] studied some characterizations of (Λ, sp)-continuous
functions by utilizing the notions of (Λ, sp)-open sets and (Λ, sp)-closed sets due to Boon-
pok and Khampakdee [8]. Dungthaisong et al. [21] introduced and studied the concept
of g(m,n)-continuous functions. Duangphui et al. [20] introduced and investigated the no-

tion of (µ, µ′)(m,n)-continuous functions. Furthermore, several characterizations of almost
(Λ, p)-continuous functions, strongly θ(Λ, p)-continuous functions, almost strongly θ(Λ, p)-
continuous functions, θ(Λ, p)-continuous functions, weakly (Λ, b)-continuous functions,
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(Λ, p(⋆))-continuous functions, θ(⋆)-precontinuous functions, ⋆-continuous functions, θ-
I -continuous functions, almost (g,m)-continuous functions, pairwise M -continuous func-
tions, almost quasi (τ1, τ2)-continuous functions and weakly quasi (τ1, τ2)-continuous func-
tions were presented in [35], [37], [9], [33], [12], [5], [7], [6], [3], [1], [2], [24] and [17], respec-
tively. Long and Herrington [26] introduced the notion of faintly continuous functions.
Moreover, some characterizations of faintly continuous functions were investigated in [28]
and [30], respectively. Three weak forms of faint continuity were introduced by Noiri and
Popa [31]. Nasef and Noiri [28] introduced and studied three strong forms of faint conti-
nuity under the names of strongly faint semi-continuity, strongly faint precontinuity and
strongly faint β-continuity. Jafari and Noiri [23] introduced and investigated the concept
of faintly α-continuous functions. Chananan et al. [15] introduced a new class of functions,
called faintly (m,µ)-continuous functions and established the relationships between faint
(m,µ)-continuity and other related generalized forms of (m,µ)-continuity. Noiri and Popa
[32] introduced the notion of faintly m-continuous functions as functions from a set X
satisfying some minimal conditions into a topological space and investigated several char-
acterizations of faintly m-continuous functions. Pue-on et al. [34] introduced the concept
of faintly (τ1, τ2)-continuous functions. In this paper, we investigate some characteriza-
tions of faintly (τ1, τ2)-continuous functions. We also discuss the relationships between
faintly (τ1, τ2)-continuous functions and other forms of (τ1, τ2)-continuous functions.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [14] if
A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. A subset A
of a bitopological space (X, τ1, τ2) is said to be τ1τ2-clopen [14] if A is both τ1τ2-open and
τ1τ2-closed. Let A be a subset of a bitopological space (X, τ1, τ2). The intersection of all
τ1τ2-closed sets of X containing A is called the τ1τ2-closure [14] of A and is denoted by
τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior
[14] of A and is denoted by τ1τ2-Int(A).

Lemma 1. [14] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-
closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).
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(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-open [39] (resp.
(τ1, τ2)s-open [4], (τ1, τ2)p-open [4], (τ1, τ2)β-open [4]) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp.
A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))).
The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-open, (τ1, τ2)p-open, (τ1, τ2)β-open)
set is called (τ1, τ2)r-closed (resp. (τ1, τ2)s-closed, (τ1, τ2)p-closed, (τ1, τ2)β-closed). A
subset A of a bitopological space (X, τ1, τ2) is said to be α(τ1, τ2)-open [41] if A ⊆
τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))). The complement of an α(τ1, τ2)-open set is said to be
α(τ1, τ2)-closed. Let A be a subset of a bitopological space (X, τ1, τ2). A point x ∈ X is
called a (τ1, τ2)θ-cluster point [39] of A if τ1τ2-Cl(U)∩A ̸= ∅ for every τ1τ2-open set U of X
containing x. The set of all (τ1, τ2)θ-cluster points of A is called the (τ1, τ2)θ-closure [39]
of A and is denoted by (τ1, τ2)θ-Cl(A). A subset A of a bitopological space (X, τ1, τ2) is
said to be (τ1, τ2)θ-closed [39] if (τ1, τ2)θ-Cl(A) = A. The complement of a (τ1, τ2)θ-closed
set is said to be (τ1, τ2)θ-open. The union of all (τ1, τ2)θ-open sets of X contained in A is
called the (τ1, τ2)θ-interior [39] of A and is denoted by (τ1, τ2)θ-Int(A).

3. Characterizations of faintly (τ1, τ2)-continuous functions

In this section, we investigate several characterizations of faintly (τ1, τ2)-continuous
functions.

Definition 1. [34] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is called faintly (τ1, τ2)-continuous
at a point x ∈ X if for each (σ1, σ2)θ-open set V of Y containing f(x), there exists a τ1τ2-
open set U of X containing x such that f(U) ⊆ V . A function f : (X, τ1, τ2) → (Y, σ1, σ2)
is called faintly (τ1, τ2)-continuous if f has this property at every point of X.

Theorem 1. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is faintly (τ1, τ2)-continuous at x ∈ X
if and only if for each (σ1, σ2)θ-open set V of Y containing f(x), x ∈ τ1τ2-Int(f

−1(V )).

Proof. Let x ∈ X and V be any (σ1, σ2)θ-open set of Y containing f(x). Then, there
exists a τ1τ2-open set U of X containing x such that f(U) ⊆ V . Thus x ∈ U ⊆ f−1(V )
and hence x ∈ τ1τ2-Int(f

−1(V )).
Conversely, let V be any (σ1, σ2)θ-open set of Y containing f(x). By the hypothesis,

x ∈ τ1τ2-Int(f
−1(V )). Then, there exists a τ1τ2-open set U of X containing x such that

U ⊆ f−1(V ); hence f(U) ⊆ V . This shows that f is faintly (τ1, τ2)-continuous at x ∈ X.

Recall that a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-T2 [19] if for any pair
of distinct points x, y in X, there exist disjoint τ1τ2-open sets U and V of X containing x
and y, respectively.

Definition 2. A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)θ-T2 if for each distinct
points x, y ∈ X, there there exist (τ1, τ2)θ-open sets U and V of X containing x and y,
respectively, such that U ∩ V = ∅.

Theorem 2. If f : (X, τ1, τ2) → (Y, σ1, σ2) is a faintly (τ1, τ2)-continuous injection and
(Y, σ1, σ2) is (σ1, σ2)θ-T2, then (X, τ1, τ2) is (τ1, τ2)-T2.
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Proof. Let x, y be any distinct points of X. Then f(x) ̸= f(y). Since (Y, σ1, σ2)
is (σ1, σ2)θ-T2, there exist (σ1, σ2)θ-open sets U and V of Y containing f(x) and f(y),
respectively, such that U ∩ V = ∅. Since f is faintly (τ1, τ2)-continuous, there exist τ1τ2-
open sets G and W of X containing x and y, respectively, such that f(G) ⊆ U and
f(W ) ⊆ V . This implies that G ∩W = ∅. Thus, (X, τ1, τ2) is (τ1, τ2)-T2.

Recall that a bitopological space (X, τ1, τ2) is said to be τ1τ2-compact [14] if every
cover of X by τ1τ2-open sets of X has a finite subcover. A subset K of X is said to be
τ1τ2-compact relative to (X, τ1, τ2) if every cover of K by τ1τ2-open sets of X has a finite
subcover.

Definition 3. A subset K of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)θ-compact
relative to (X, τ1, τ2) if every cover of K by (τ1, τ2)θ-open sets of X has a finite subcover. A
bitopological space (X, τ1, τ2) is said to be (τ1, τ2)θ-compact if the set X is (τ1, τ2)θ-compact
relative to (X, τ1, τ2).

Theorem 3. If f : (X, τ1, τ2) → (Y, σ1, σ2) is a faintly (τ1, τ2)-continuous function and K
is τ1τ2-compact relative to (X, τ1, τ2), then f(K) is (σ1, σ2)θ-compact relative to (Y, σ1, σ2).

Proof. Let {Vγ : γ ∈ Γ} be any cover of f(K) by (σ1, σ2)θ-open sets of Y . For each
x ∈ K, there exists γ(x) ∈ Γ such that f(x) ∈ Vγ(x). Since f is faintly (τ1, τ2)-continuous,
there exist a τ1τ2-open set U(x) of X containing x such that f(U(x)) ⊆ Vγ(x). The family
{U(x) : x ∈ K} is a cover of K by τ1τ2-open sets of X. Since K is τ1τ2-compact relative
to (X, τ1, τ2), there exists a finite number of points, say, x1, x2, x3, ..., xn in K such that
K ⊆ ∪{U(xk) : xk ∈ K, 1 ≤ k ≤ n}. Thus,

f(K) ⊆ ∪{f(U(xk)) : xk ∈ K, 1 ≤ k ≤ n}
⊆ ∪{Vγ(xk) : xk ∈ K, 1 ≤ k ≤ n}.

This shows that f(K) is (σ1, σ2)θ-compact relative to (Y, σ1, σ2).

Recall that a bitopological space (X, τ1, τ2) is said to be τ1τ2-connected [14] if X cannot
be written as the union of two disjoint nonempty τ1τ2-open sets.

Lemma 2. [34] For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) f is faintly (τ1, τ2)-continuous;

(2) f−1(V ) is τ1τ2-open in X for each (σ1, σ2)θ-open set V of Y ;

(3) f−1(K) is τ1τ2-closed in X for each (σ1, σ2)θ-closed set K of Y ;

(4) for each x ∈ X and for each (σ1, σ2)θ-open set V of Y containing f(x), there exists
a τ1τ2-open set U of X containing x such that f(U) ⊆ V .

Theorem 4. If f : (X, τ1, τ2) → (Y, σ1, σ2) is a faintly (τ1, τ2)-continuous surjection and
(X, τ1, τ2) is τ1τ2-connected, then (Y, σ1, σ2) is σ1σ2-connected.
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Proof. Assume that (Y, σ1, σ2) is not σ1σ2-connected. Then, there exist nonempty
σ1σ2-open sets V andW such that V ∩W = ∅ and V ∪W = Y . Thus, f−1(V )∩f−1(W ) = ∅
and f−1(V )∪f−1(W ) = X. Since f is surjective, f−1(V ) and f−1(W ) are nonempty. Since
V and W are σ1σ2-open and σ1σ2-closed, we have V and W are (σ1, σ2)θ-open sets of Y .
Since f is faintly (τ1, τ2)-continuous, by Lemma 2, f−1(V ) and f−1(W ) are τ1τ2-open in
X. Thus, (X, τ1, τ2) is not τ1τ2-connected. This is a contradiction and hence (Y, σ1, σ2) is
σ1σ2-connected.

The τ1τ2-frontier [13] of a subset A of a bitopological space (X, τ1, τ2), denoted by
τ1τ2-fr(A), is defined by

τ1τ2-fr(A) = τ1τ2-Cl(A) ∩ τ1τ2-Cl(X −A) = τ1τ2-Cl(A)− τ1τ2-Int(A).

Theorem 5. The set of all points x ∈ X at which a function f : (X, τ1, τ2) → (Y, σ1, σ2) is
not faintly (τ1, τ2)-continuous is identical with the union of the τ1τ2-frontier of the inverse
images of (σ1, σ2)θ-open sets of Y containing f(x).

Proof. Suppose that f is not faintly (τ1, τ2)-continuous at x ∈ X. Then, there exists a
(σ1, σ2)θ-open set V of Y containing f(x) such that f(U) is not contained in V for every
τ1τ2-open set U of X containing x. Then, U ∩ (X − f−1(V )) ̸= ∅ for every τ1τ2-open
set U of X containing x. Thus, x ∈ τ1τ2-Cl(X − f−1(V )). On the other hand, we have
x ∈ f−1(V ) ⊆ τ1τ2-Cl(f

−1(V )) and hence x ∈ τ1τ2-fr(A).
Conversely, suppose that f is faintly (τ1, τ2)-continuous at x ∈ X. Let V be any

(σ1, σ2)θ-open set of Y containing f(x). Then by Theorem 1, x ∈ τ1τ2-Int(f
−1(V )). Thus,

x ̸∈ τ1τ2-fr(f
−1(V )) for each (σ1, σ2)θ-open set V of Y containing f(x). This completes

the proof.

Definition 4. [36] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be slightly (τ1, τ2)-
continuous if for each x ∈ X and each σ1σ2-clopen set V of Y containing f(x), there
exists a τ1τ2-open set U of X containing x such that f(U) ⊆ V .

Theorem 6. If f : (X, τ1, τ2) → (Y, σ1, σ2) is faintly (τ1, τ2)-continuous, then f is slightly
(τ1, τ2)-continuous.

Proof. Let x ∈ X and V be any σ1σ2-clopen set of Y containing f(x). Then, V is
(σ1, σ2)θ-open in Y . Since f is faintly (τ1, τ2)-continuous, there exists a τ1τ2-open set U
of X containing x such that f(U) ⊆ V . This shows that f is slightly (τ1, τ2)-continuous.

4. On faint (τ1, τ2)-continuity and other forms of (τ1, τ2)-continuity

In this paper, we investigate the relationships between faintly (τ1, τ2)-continuous func-
tions and other forms of (τ1, τ2)-continuous functions.

Definition 5. [10] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be weakly (τ1, τ2)-
continuous at a point x ∈ X if for each τ1τ2-open set V of Y containing f(x), there
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exists a τ1τ2-open set U of X containing x such that f(U) ⊆ σ1σ2-Cl(V ). A function
f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be weakly (τ1, τ2)-continuous if f has this property
at each point of X.

Theorem 7. If f : (X, τ1, τ2) → (Y, σ1, σ2) is weakly (τ1, τ2)-continuous, then f is faintly
(τ1, τ2)-continuous.

Proof. Let x ∈ X and V be any (σ1, σ2)θ-open set of Y containing f(x). There
exists a σ1σ2-open set W of Y such that f(x) ∈ W ⊆ σ1σ2-Cl(W ) ⊆ V . Since f is
weakly (τ1, τ2)-continuous, there exists a τ1τ2-open set U of X containing x such that
f(U) ⊆ σ1σ2-Cl(W ) ⊆ V . Thus, f is faintly (τ1, τ2)-continuous.

Definition 6. [13] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is called (τ1, τ2)-continuous at
a point x ∈ X if for each σ1σ2-open set V of Y containing f(x), there exists a τ1τ2-open
set U of X containing x such that f(U) ⊆ V . A function f : (X, τ1, τ2) → (Y, σ1, σ2) is
called (τ1, τ2)-continuous if f has this property at each point of X.

Recall that a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-regular [16] if for each
τ1τ2-closed set F and each point x ∈ X − F , there exist disjoint τ1τ2-open sets U and V
such that x ∈ U and F ⊆ V .

Lemma 3. [13] For a function (X, τ1, τ2) → (Y, σ1, σ2), the following properties are equiv-
alent:

(1) f is (τ1, τ2)-continuous;

(2) f−1(V ) is τ1τ2-open in X for every σ1σ2-open set V of Y ;

(3) f(τ1τ2-Cl(A)) ⊆ σ1σ2-Cl(f(A)) for every subset A of X;

(4) τ1τ2-Cl(f
−1(B)) ⊆ f−1(σ1σ2-Cl(B)) for every subset B of Y ;

(5) f−1(σ1σ2-Int(B)) ⊆ τ1τ2-Int(f
−1(B)) for every subset B of Y ;

(6) f−1(K) is τ1τ2-closed in X for every σ1σ2-closed set K of Y .

Theorem 8. If f : (X, τ1, τ2) → (Y, σ1, σ2) is faintly (τ1, τ2)-continuous and (Y, σ1, σ2) is
a (σ1, σ2)-regular space, then f is (τ1, τ2)-continuous.

Proof. Let V be any σ1σ2-open set of Y . Since (Y, σ1, σ2) is a (σ1, σ2)-regular space, V
is (σ1, σ2)θ-open in Y . Since f is faintly (τ1, τ2)-continuous, by Lemma 2 we have f−1(V )
is τ1τ2-open in X and hence by Lemma 3, f is (τ1, τ2)-continuous.

Definition 7. [11] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be almost (τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-open set V of Y containing f(x), there exists
a τ1τ2-open set U of X containing x such that f(U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )). A function
f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be almost (τ1, τ2)-continuous if f has this property
at each point of X.
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Lemma 4. [11] For a function (X, τ1, τ2) → (Y, σ1, σ2), the following properties are equiv-
alent:

(1) f is almost (τ1, τ2)-continuous at x ∈ X;

(2) x ∈ τ1τ2-Int(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) for every σ1σ2-open set V of Y containing

f(x);

(3) x ∈ τ1τ2-Int(f
−1(V )) for every (σ1, σ2)r-open set V of Y containing f(x);

(4) for each (σ1, σ2)r-open set V of Y containing f(x), there exists a τ1τ2-open set U of
X containing x such that f(U) ⊆ V .

Recall that a bitopological space (X, τ1, τ2) is said to be almost (τ1, τ2)-regular [18] if
for each (τ1, τ2)r-closed set F and each x ̸∈ F , there exist disjoint τ1τ2-open sets U and V
such that x ∈ U and F ⊆ V .

Lemma 5. Let (X, τ1, τ2) be an almost (τ1, τ2)-regular space. Then, every (τ1, τ2)r-open
set is (τ1, τ2)θ-open.

Theorem 9. If f : (X, τ1, τ2) → (Y, σ1, σ2) is faintly (τ1, τ2)-continuous and (Y, σ1, σ2) is
almost (σ1, σ2)-regular, then f is almost (τ1, τ2)-continuous.

Proof. Let x ∈ X and V be any (σ1, σ2)r-open set of Y containing f(x). Then by
Lemma 5, V is (σ1, σ2)θ-open in Y . Since f is faintly (τ1, τ2)-continuous, there exists a
τ1τ2-open set U of X containing x such that f(U) ⊆ V . It follows from Lemma 4 that f
is almost (τ1, τ2)-continuous.
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