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Abstract. This paper deals with the solution and the dynamics of the pneumonia fractional-order
mathematical model using numerical computational methods. We study positivity, boundedness,
equilibria, local and global stability, and the basic reproductive number R0 of the proposed model,
which is the one most significant parameter in epidemiological modeling. It estimates the average
number of additional infections induced by a sole infectious individual within a fully susceptible
group during the mean period of infection. To verify the theoretical analysis of the proposed model,
we use numerical techniques including the Adams-Bashforth-Moulton method, the generalized
Euler method, the generalized Runge-Kutta method, and the multistep generalized differential
transform method. The numerical results and simulations confirm the convergence between the
presented fractional-order model and its integer-order form. The proposed model proves to be a
valuable tool for investigating dynamical and numerical analysis for a variety of disease models in
epidemiology.
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1. Introduction

According to Johns Hopkins Medicine [34], pneumonia is a disease of one or both
of the lungs caused by infection with bacteria, viruses, or fungi. Pneumonia has more
than 30 different causes, which are grouped according to the cause. The main species of
pneumonia include bacterial pneumonia, viral pneumonia, mycoplasma pneumonia, and
other pneumonias. People of different ages can get pneumonia, but the groups at the
highest risk are children under the age of 2, adults ages 65 and older, individuals with
specific medical conditions, and individuals who smoke. The majority of people with
pneumonia have a good reaction to medicine, but pneumonia can be lethal. In 2013,
Ong’ala et al. [46] created a mathematical model for pneumonia dynamics with carriers.
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They use bifurcation and stability of equilibrium points to study the reduction paths or
transfer rates between infected individuals and the carriers. In 2014, a simple model of
ODE was presented by Mochan et al. [36] to dynamically describe the host’s immune
response to pneumonia caused by bacteria infection in murine strains. In 2014, Drusano
et al. [21] examined how granulates work to kill bacteria and found no role for antibiotics.
Ndelwa et al. [39] created in 2015 a mathematical model to describe the pneumonia
transmission process in order to estimate transmission and effects. In 2015, Kosasih et
al. [29] used wavelet-based crackle detection to analyze a mathematical model of cough
sounds for quick identification of pneumonia caused by bacteria in children. Cesar et
al. [16] mathematically evaluated in 2016 a fine particulate matter using a model and
assessed medicines for pediatric asthma and pneumonia. Atypical bacterial pathogens were
recorded as the primary reasons for lower respiratory illnesses such as CAP, bronchitis, and
coughs by Marchello et al. [32] in 2016. Cheng et al. in 2017 estimated an IAV-SP model
dynamically and mathematically [17]. To develop the respiratory health of COPD patients,
they created a quantitative risk-assessment structure. In 2017, Kosasih and Abeyratne [28]
proposed a straightforward mathematical model to illustrate the measurement analysis for
the clinical identification of pediatric pneumonia.

Tilahun et al. [55] presented in 2017 a non-linear mathematical model along with an
analysis of optical control approaches for pneumonia disease. Tilahun et al. [56] consid-
ered in 2018 a co-infection model for the diseases of pneumonia and typhoid fever, and
their distinctive relation in the case of a treatment and medical plans of action was math-
ematically analyzed. Based on mathematical characteristics of cough sounds, Raj et al. in
2018 [49] studied the classification of pneumonia and asthma in poor populations. Kizito
and Tumwiine [27] provided a mathematical model in 2018 that illustrates how bacteria
control the spread of pneumonia. In addition, the dynamics of vaccine formulation and
treatment were discussed. A non-linear mathematical model that describes the modeling
of co-infection of the influenza A virus and pneumonia within the host was studied in
2018 by Mbabazi et al. [33]. Tilahun in 2019 [54] used theorems and ordinary differential
equations to describe a pneumonia-meningitis co-infection model. Tilahun provided an
explanation of different disease clearance methods. In 2019, Diah and Aziz [19] reviewed
dynamic mathematical models of pneumonia, followed by earlier research. Tilahun in
2019 [53] investigated a mathematical model of co-dynamics for the diseases meningitis
and pneumonia. In 2020, Otoo et al. [47] studied a model that illustrates how bacteria
spread pneumonia, and the analysis in this study was helpful in determining the effects of
vaccination on disease control. In 2020, the graphical result for the dynamics of a math-
ematical model for pneumonia was provided by Zephaniah et al. [60]. Ming et al. [35]
discussed in 2020 the growing number of coronavirus pneumonia cases and the spread of
this disease in Wuhan, China. In 2020, Jung et al. [26] exhibited the observations through
a variety of clinical tests and revealed a novel pathogen as the cause of disease. In 2021,
Wafula et al. [59] established a deterministic mathematical model of pneumonia-HIV co-
infection with the utilization of anti-pneumonia and ART therapy strategies as control
to describe optimal control treatment. Oluwatobi and Erinle-Ibrahim in 2021 [45] inves-
tigated the impact of treating pneumonia disease, the existence of efficient reproduction
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numbers, and the stability of equilibrium points. In 2021, a delayed mathematical model-
ing technique was implemented by Muhammad Naveed et al. [38] to analyze pneumonia
disease. Olumuyiwa James Peter et al. in 2021 [44] introduced a model for pneumococcal
pneumonia infection using fractional order derivatives in the sense of the Caputo-Fabrizio
operator. In 2022, Sayed Saber et al. [52] studied a fractional mathematical SVCIR model
to estimate the pneumonia disease transmission dynamics in sheep and goats in Al-Baha
region of Saudi Arabia with cost-effective strategies. The research conducted by Sayed
Saber et al. investigated critical parameters that impact the transmission of pneumonia
in livestock. They provided evidence that the implementation of cost-effective vaccination
and treatment strategies led to a substantial reduction in disease prevalence. Furthermore,
the fractional models usually have more accurate predictions compared to the traditional
integer models. In 2022, Kamaledin Abodayeh et al. [1] discussed the dynamical and nu-
merical analysis of a pneumonia model using appropriate numerical techniques. Fractional
epidemic models provide various advantages, such as improved accuracy in representing
the memory and hereditary properties of disease transmission. They offer improved ca-
pacity to explain the complex dynamics of disease transmission over time, a facet that
traditional integer models may neglect. This results in heightened predictive accuracy
and more efficacious intervention strategies. There is also substantial literature dealing
with the mathematical investigation of a disease model; (see, for example, but not limited
to, ([13], [5], [50], [7], [3], [14], [2], [12]).

We develop in this research a fractional-order model for the presented model in [1]
to describe the dynamics of transmission for pneumonia disease. More precisely, for any
arbitrary time t, a fractional-order SCIR model is taken into consideration in the context
of the Caputo derivative Dα, 0 < α ≤ 1, and is provided by:

DαS(t) = Λ− δ(I(t) + ωC(t))

N
S(t)− µS(t) + ηR(t),

DαC(t) =
δ(I(t) + ωC(t))

N
θS(t)− Z1C(t),

DαI(t) =
δ(I(t) + ωC(t))

N
(1− θ)S(t) + πC(t)− Z2I(t),

DαR(t) = βC(t) + τI(t)− (µ+ η)R(t),

(1)

with the initial conditions S(0) = S0, C(0) = C0, I(0) = I0, and R(0) = R0. Here,

the infection force is give by δ(I(t)+ωC(t))
N . The fractional-order SCIR model, as expressed

in Eq. (1), serves as a mathematical representation tailored to elucidate the dynamics of
pneumonia transmission. The model employs the Caputo derivative Dα, where 0 < α ≤ 1,
to incorporate memory effects in the system dynamics. This approach facilitates a more
precise characterization of biological processes in the real-world, frequently exhibited by
fractional dynamics. Fractional mathematical modeling has been shown to be an effective
mathematical tool with uses in a variety of fields of study (see, for example, but not limited
to, ([4], [8], [10], [11], [48], [9], [51], [57], [6]). In Eq. (1), S(t) represents the susceptible
who is susceptible to infection with pneumonia. C(t) stands for the individuals who
carry pneumonia bacteria and can transmit the infection. I(t) stands for the infectious
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individuals who have the potential to transfer the infection to the susceptible; and R(t)
stands for the individuals who received treatment for pneumonia and made a recovery.
Over time, susceptibility to the disease may be regained by these individuals, contingent
upon factors such as waning immunity. Λ represents the per capita recruitment rate
of new susceptible individuals into the population, which may occur through processes
such as births or immigration. δ stands for the transmission rate of pneumonia, denoting
the efficiency with which the disease spreads from infectious and carrier individuals to
susceptible individuals. ω indicates the rate of treated individuals who had vaccinations.
µ stands for the per capita natural death rate of individuals due to non-pneumonia-related
causes. η represents the rate of immunity loss in recovered individuals, leading to their
return to the susceptible class and accounting for the potential of reinfection. Z1 = µ+β+π
is a combined rate representing the sum of (µ), the per capita carriers recovery rate (β),
and the rate of developing symptoms by carriers (π). Z2 = τ + µ + σ is a combined
rate representing the sum of (µ), the per capita recovery rate of infected individuals by
pneumonia (τ), and the disease-induced death rate and birth rate of the human population
per capita (σ). θ is the rate of susceptible individuals who, following infection, become
carriers instead of manifesting symptoms. The total population size, often assumed to be
constant, is denoted by N , where N = S(t) + C(t) + I(t) +R(t).

We study the local and global stability of steady states. We derive the fundamental
reproduction threshold parameter to show that the disease-free steady state is locally and
globally asymptotically stable when R0 < 1. However, a positive (endemic) steady state
that is both locally and globally asymptotically stable exists when R0 > 1. To obtain
the approximate solution and verify the theoretical analysis of the fractional-order SCIR
model, we have used numerical methods including the Adams-Bashforth-Moulton Method
(ABMM), the Generalized Euler Method (GEM), the Generalized Runge-Kutta Method
(GRKM), and the Multistep Generalized Differential Transform Method (MSGDTM). The
paper is structured as follows: Section 2 discusses the properties of the model. Section 3
investigates the stability analysis of the model. Section 4 explains the numerical compu-
tational methods of solution. Sections 5, 6, and 7 present the numerical simulations and
results, discussion of the results, and conclusion.

2. Properties of the Model

Let R+ be the set of all nonnegative real numbers and assume that Ω+ = {(S,C, I,R) ∈
R4
+ : S ≥ 0, C ≥ 0, I ≥ 0, R ≥ 0, max (|S|, |C|, |I|, |R|) ≤ N}.

Theorem 1 ([13]). If the starting condition Γ0 = (S(0), C(0), I(0), R(0)) ∈ Ω is satisfied,
then the solution Γ = (S(t), C(t), I(t), R(t)) ∈ Ω to the model (1) is the only one that can
exist for t ≥ 0.
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Proof. Take

T1(Γ) = Λ− δI(t)S(t)

N
− δωC(t)S(t)

N
− µS(t) + δR(t),

T2(Γ) =
δθI(t)S(t)

N
+

δωθC(t)S(t)

N
− Z1C(t),

T3(Γ) =
δ(I(t) + ωC(t))

N
(1− θ)S(t) + πC(t)− Z2I(t),

T4(Γ) = βC(t) + τI(t)− (µ+ η)R(t).

Inputting the values Γ,Γ ∈ Ω, with | δ(I(t)+ωC(t))
N | ≤ K, yields the following:

∥T(Γ)− T(Γ)∥ = |T1(Γ)− T1(Γ)|+ |T2(Γ)− T2(Γ)|+ |T3(Γ)− T3(Γ)|+ |T4(X)− T4(X)|
≤ (3K + µ−Kθ)|S − S|+ (Z1 + β + π)|C − C|
+ (τ + Z2)|I − I|+ (δ + µ+ η)|R−R|
≤ Γ|X −X|,

where

Γ = max {(2δ(1 + ω) + β + Z1), (2δω + π + µ), (2δ + τ + Z2), (δ + µ+ η)} .

Consequently, the solution to the model (1) exists and is unique iff H(X) satisfies the
Lipschitz condition.

Lemma 1 ([31], Lemma 3). Let u(t) be a function meeting the conditions that Dαu(t)
exists for every t. Therefore, {

Dαu(t) ≤ −λu(t) + µ,

u(t0) = ut0 ,

where 0 < α < 1, (λ, µ) ∈ R2, λ ̸= 0, and t0 ≥ 0 is the initial time. Then,

u(t) ≤
(
u(t0)−

µ

λ

)
Eα,1

[
− λ(t− t0)

α
]
+

µ

λ
,

where Eα,1(t) =
∞∑
k=0

tk

Γ(kq + 1)
> 0 is the Mittag Leffler function.

Theorem 2 ([31]). The model (1) has non-negative solutions if and only if θ < 1.

Proof. We have

DαS(t)|S=0 = Λ+ δR(t) > 0,

DαC(t)|C=0 =
δθI(t)S(t)

N
+

δωθC(t)S(t)

N
> 0,

DαI(t)|I=0 =
δΩC(t)

N
(1− θ)S(t) + πC(t) > 0,

DαR(t)|R=0 = βC(t) + τI(t) > 0.
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Using Lemmas 5 and 6 from [15], we see that the solutions to (1) are non-negative.

Theorem 3 ([13]). Uniformly bounded solutions for the model (1) begin in

Ω =

{
(S,C, I,R) ∈ Ω+ : 0 ≤ S + C + I +R ≤ Λ

µ

}
.

Proof. Let
N(t) = S(t) + C(t) + I(t) +R(t)

be the total population at time t. Thus, we have

DαN(t) = Λ− µN(t)− σI(t) ≤ Λ− µN(t).

Thus,
DαN(t) + µN(t) ≤ Λ.

It follows from [18] that if Mα is the Mittag-Leffler function, we have

0 ≤ N(t) ≤ N(0)Mα(−µtα) + tαMα,α+1(−µtα)).

Boukhouima et al. [15] yields

0 ≤ N(t) ≤ Λ

µ
, t −→ ∞.

For this reason, the solutions of (1) are uniformly limited in the region Ω, beginning with
Ω+.

3. Stability Analysis of the Model

3.1. Equilibria

For I = C = 0, we have
0 = Λ− µS(t) + ηR(t),

0 = −(µ+ η)R(t).

Therefore,

S0 =
Λ

µ
, R0 = 0.

The disease-free equilibrium E1 =

(
Λ

µ
, 0, 0, 0

)
is easy to obtain.

The pneumonia endemic equilibrium is represented by E2 = (S∗, C∗, I∗, R∗) for
I∗ > 0, and can be derived by solving the system of equations (1), that is,

DαS(t) = 0,

DαC(t) = 0,

DαI(t) = 0,

DαR(t) = 0.
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By taking α1 =
θπ + (1− θ)Z1

Z2
, we have

E∗ = (S∗, C∗, I∗, R∗),

where

S∗ =
NZ1

α1 + ω
,

C∗ =
(µ+ η)(Λ(α1 + ω)− µNZ1)

(α1 + ω)(δZ1(µ+ η)− η(β + τα1))
,

I∗ =
α1(µ+ η)(Λ(α1 + ω)− µNZ1)

(α1 + ω)(δZ1(µ+ η)− η(β + τα1))
,

R∗ =
(β + τα1)(Λ(α1 + ω)− µNZ1)

(α1 + ω)(δZ1(µ+ η)− η(β + τα1))
.

3.2. The Basic Reproductive Number R0

Next-generation matrix theory allows us to deduce that we obtain

Dαy = H(y)− h̄(y),

if we set x = (S,R)T and y = (C, I)T , where

H(y) =

[
δθI(t)S(t)

N + δωθC(t)S(t)
N

δ(I(t)+ωC(t))
N (1− θ)S(t)

]
, h̄(y) =

[
Z1C(t)

−πC(t) + Z2I(t)

]
.

At E1 =

(
Λ

µ
, 0, 0, 0

)
, the Jacobian matrix of H(y) and h̄(y) w.r.t. C and I may be

obtained as follows:

H(y) =

[
H1

H2

]
, h̄(y) =

[
h̄1
h̄2

]
,

where

H1 =
δθI(t)S(t)

N
+

δωθC(t)S(t)

N
, h̄1 = Z1C(t),

H2 =
δ(I(t) + ωC(t))

N
(1− θ)S(t), h̄2 = −πC(t) + Z2I(t).

Hence, at E0, the Jacobian matrix of H(y) and h̄(y) is derived by F and Γ, respectively,

F =

[
∂H1
∂C

∂H1
∂I

∂H2
∂C

∂H2
∂I

]
, Γ =

[
∂h̄1
∂C

∂h̄1
∂I

∂h̄2
∂C

∂h̄2
∂I

]
.

Then,
∂H1

∂C
=

δωθ

N
S(t),

∂H1

∂I
=

δθ

N
S(t),

∂H2

∂C
=

δω(1− θ)

N
S(t),

∂H2

∂I
=

δ(1− θ)

N
S(t).
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Similarly, we may obtain the Γ entries as:

∂h̄1
∂C

= Z1,
∂h̄1
∂I

= 0,

∂h̄2
∂C

= −π,
∂h̄2
∂I

= Z2.

The entries in A are derived as follows:

A =

[
δωθS0
N

δθS0
N

δω(1−θ)S0

N
δ(1−θ)S0

N

]
, B =

[
Z1 0
−π Z2

]
.

Thus,

B−1 =

[ 1
Z1

π
Z1Z2

0 1
Z2

]
.

Then,

A.B−1 =

[
δωθS0
N

δθS0
N

δω(1−θ)S0

N
δ(1−θ)S0

N

]
.

[ 1
Z1

π
Z1Z2

0 1
Z2

]
.

A.B−1 =

[
ΩθδS0
NZ1

(πω+Z1)θδS0

NZ1Z2
δω(1−θ)S0

NZ1

(πω+Z1)δ(1−θ)S0

NZ1Z2

]
.

The eigenvalues of A.B−1 can be obtained as:∣∣∣∣∣λ− ΩθδS0
NZ1

(πω+Z1)θδS0

NZ1Z2
δω(1−θ)S0

NZ1
λ− (πω+Z1)δ(1−θ)S0

NZ1Z2

∣∣∣∣∣ = 0.

As a result, the eigenvalues are:

λ1 = 0,

λ2 =
(ωθZ2 + (1− θ)(πω + Z1))δS0

NZ1Z2
.

Thus,

R0 =
(ωθZ2 + (1− θ)(πω + Z1))δS0

NZ1Z2
.

3.3. Local Stability

The Jacobian matrix of the system (1) along with its elements is presented as:

J(En) =


J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44

 ,
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where

J11 = −δI(t)

N
− δωC(t)

N
− µ, J12 = −δωS(t)

N
, J13 = −δS(t)

N
, J14 = η,

J21 =
δθI(t)

N
+

δωθC(t)

N
, J22 =

δωθS(t)

N
− Z1, J23 =

δθS(t)

N
, J24 = 0,

J31 =
δ(I(t) + ωC(t))

N
(1− θ), J32 =

δΩ

N
(1− θ)S(t) + π,

J33 =
δ

N
(1− θ)S(t)− Z2, J34 = 0,

J41 = 0, J42 = β, J43 = τ, J44 = −(µ+ η).

Lemma 2. The trivial disease equilibrium E0 = (0, 0, 0, 0) is locally asymptotically stable
in Ω.

Proof. At E0 = (0, 0, 0, 0), the model (1) has the following Jacobian matrix J(E0):

J(E0) =


−µ 0 0 η
0 −Z1 0 0
0 π −Z2 0
0 β τ −(µ+ η)

 .

Therefore, we can get the eigenvalues as:

J(E0) =

∣∣∣∣∣∣∣∣
λ+ µ 0 0 η
0 λ+ Z1 0 0
0 π λ+ Z2 0
0 β τ λ+ (µ+ η)

∣∣∣∣∣∣∣∣ = 0.

Then,

(λ+ µ)(λ+ µ+ η)
∣∣∣ λ+Z1 0

π λ+Z2

∣∣∣ = 0.

Therefore,

(λ+ µ)(λ+ µ+ η)(λ+ Z1)(λ+ Z2) = 0. (2)

From Equation (2), we have

λ1 = −(λ+ µ), λ2 = −(λ+ µ+ η), λ3 = −Z1, λ4 = −Z2.

Consequently, λ1, λ2, λ3, λ4 are all strictly negative roots of Eq. (2). Thus, as determined
by the Routh-Hurwitz criterion, it follows that E0 = (0, 0, 0, 0) is locally asymptotically
stable.

Lemma 3. The disease-free equilibrium E1 =

(
Λ

µ
, 0, 0, 0

)
is locally asymptotically stable

in Ω if R0 < 1 and is unstable if R0 > 1.



A. Alalyani / Eur. J. Pure Appl. Math, 17 (4) (2024), 2763-2799 2772

Proof. At E1 =

(
Λ

µ
, 0, 0, 0

)
, the model (1) has the following Jacobian matrix J(E1):

J(E1) =

−µ − δωS0
N

− δS0
N

η

0
δωθS0

N
−Z1

δθS0
N

0

0
δω(1−θ)S0

N
+π

δ(1−θ)S0
N

−Z2 0

0 β τ −(µ+η)

 .

Therefore, we can get the eigenvalues as:

J(E1) =

∣∣∣∣∣∣∣
λ+µ − δωS0

N
− δS0

N
η

0 λ− δωθS0
N

+Z1
δθS0
N

0

0
δω(1−θ)S0

N
+π λ− δ(1−θ)S0

N
+Z2 0

0 β τ λ+(µ+η)

∣∣∣∣∣∣∣ = 0.

Then,

(λ+ µ)(λ+ µ+ η)

∣∣∣∣ λ− δωθS0
N

+Z1
δθS0
N

δω(1−θ)S0
N

+π λ− δ(1−θ)S0
N

+Z2

∣∣∣∣ = 0.

Therefore,

(λ+ µ)(λ+ µ+ η) = 0, (3)

or ∣∣∣∣ λ− δωθS0
N +Z1

δθS0
N

δω(1−θ)S0
N +π λ− δ(1−θ)S0

N +Z2

∣∣∣∣ = 0.

From Eq. (3), we have
λ1 = −(λ+ µ), λ2 = −(λ+ µ+ η),

or

λ2 + c1λ+ c2 = 0,

where

c1 = −δωθS0

N
+ Z1 −

δ(1− θ)S0

N
+ Z2,

c2 = −πδθS0

N
− δωθZ2S0

N
− δ(1− θ)Z1S0

N
+ Z1Z2,

c2 = − [θπ + ωθZ2 + (1− θ)Z1]δS0

N
+ Z1Z2,

where

Z1 = µ+ β + π, Z2 = τ + µ+ σ, S0 =
Λ

µ
.

As a result, if c1 > 0 and c2 > 0, the Routh-Hurwitz criteria states that E1 is locally asymptotically
stable when R0 < 1. When R0 < 1 holds, we must demonstrate that c1 > 0 and c2 > 0.

R0 =
(ωθZ2 + (1− θ)(πω + Z1))δS0

NZ1Z2
.
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If R0 < 1, we have

(ωθZ2 + Z1(1− θ))δS0

N
< Z1Z2.

If Γ = min{Z2, Z1}, we have

(ωθ + (1− θ))δS0

N
<

Z1Z2

Γ
.

Thus,

(ωθ + (1− θ))δS0

N
< Z1 + Z2.

Then,

c1 = Z1 + Z2 −
(ωθ + (1− θ))δS0

N
> 0.

If R0 < 1, we have

(ωθZ2 + (πω + Z1)(1− θ))δS0

NZ1Z2
< 1,

which implies

(ωθZ2 + (πω + Z1)(1− θ))δS0 < NZ1Z2.

That is,

NZ1Z2 − [ωθZ2 + (πω + Z1)(1− θ)]δS0 > 0.

That is,

Z1Z2 −
[πω(1− θ) + ωθZ2 + Z1(1− θ)]δS0

N
> 0,

where

Z1 = µ+ β + π, Z2 = τ + µ+ σ, S0 =
Λ

µ
.

Thus, c2 > 0. For this reason, when R0 < 1, E1 is locally asymptotically stable and unstable when
R0 > 1.

Lemma 4. If R0 > 1, the pneumonia endemic equilibrium E2 = (S∗, C∗, I∗, R∗) is locally
asymptotically stable in Ω.

Proof. At E2 = (S∗, C∗, I∗, R∗), the model (1) has the following Jacobian matrix
J(E2):

J(E2) =


−f1 − µ −f2 −f3 η

f1θ f2θ − Z1 f3θ 0
f1(1− θ) f2(1− θ) + π f3(1− θ)− Z2 0

0 β τ −(µ+ η)

 ,
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where f1 =
δI∗

N
+

δωC∗

N
, f2 =

δωS∗

N
, f3 =

δS∗

N
, and its characteristic equation is given

by:
|J(E2)− λI| = 0.

That is, 
−f1 − µ− λ −f2 −f3 η

f1θ f2θ − Z1 − λ f3θ 0
f1(1− θ) f2(1− θ) + π f3(1− θ)− Z2 − λ 0

0 β τ −(µ+ η)− λ


= η


f1θ f2θ − Z1 − λ f3θ

f1(1− θ) f2(1− θ) + π f3(1− θ)− Z2 − λ
0 β τ


− (µ+ η + λ)


−f1 − µ− λ −f2 −f3

f1θ f2θ − Z1 − λ f3θ
f1(1− θ) f2(1− θ) + π f3(1− θ)− Z2 − λ

 = 0.

Thus, the characteristic values are given by:

λ4 + ξ1λ
3 + ξ2λ

2 + ξ3λ+ ξ4 = 0,

where

ξ1 = Z1 + Z2 − f2θ − f3(1− θ) + 2µ+ η + f1,

ξ2 = Z1Z2 − f2Z2θ − f3Z1(1− θ)− f3πθ + (f1 + µ)(µ+ η) + f1f2θ + f1f3(1− θ),

ξ3 = (2µ+ η + f1)(Z1Z2 − f2Z2θ − f3Z1(1− θ)− f3πθ) + (µ+ f1)(µ+ η)(Z1 + Z2 − f2θ)

+ (µ+ η)f1f2θ + f1f2θZ2 + (µ+ η)(f1f3(1− θ) + f1f3πθ + f1f3Z1(1− θ)),

ξ4 = (µ+ f1)(µ+ η)(Z1Z2 − f2Z2θ − f3Z1(1− θ)− f3πθ) + f1f2θ(µ+ η)Z2

+ (µ+ η)(f1f3πθ + f1f3Z1(1− θ)).

According to the Routh-Hurwitz criterion for the fourth-degree polynomial, the provided
constraint has been verified if R0 > 1.

3.4. Global Stability

Theorem 4. The disease-free equilibrium E1 =

(
Λ

µ
, 0, 0, 0

)
is globally asymptotically

stable in Ω.

Proof. Take the Lyapunov function with positive definiteness

L2(S,C, I,R) =
(
S − S0 − S0 ln

S

S0

)
.
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From [58], we have

DαL2(S,C, I,R) ≤
(S − S0

S

)
DαS =

(S − S0

S

)(
Λ− δI(t)S(t)

N
− δωC(t)S(t)

N
− µS(t) + ηR(t)

)
.

At E1 =

(
Λ

µ
, 0, 0, 0

)
, we have

DαL2(S, V, C, I, R) ≤
(S − S0

S

)
DαS =

(S − S0

S

)(
Λ− δ(I(t) + ωC(t))

N
S(t)− µS(t) + ηR(t)

)
=

(
S − S0

)(Λ
S

− δ(I(t) + ωC(t))

N
− µ+

ηR(t)

S

)
=

(
S − S0

)(Λ
S

+
ηR(t)

S
− Λ

S0
− ηR(t)

S0

)
=

(
S − S0

)(
− Λ

SS0

(
S − S0

)
− ηR(t)

SS0

(
S − S0

))
= − Λ

SS0

(
S − S0

)2
− ηR

SS0

(
S − S0

)2
.

Thus, for all (S,C, I,R) ∈ Ω, DαL2(S,C, I,R) < 0. Therefore, it follows from [30] that
E1 is globally asymptotically stable in Ω.

Theorem 5. The pneumonia endemic equilibrium E2 = (S∗, C∗, I∗, R∗) is globally asymp-
totically stable in Ω.

Proof. Take the Lyapunov function with positive definiteness

L2(S,C, I,R) =
(
S − S∗ − S∗ ln

S

S∗

)
+
(
C − C∗ − C∗ ln

C

C∗

)
+
(
I − I∗ − I∗ ln

I

I∗

)
+
(
R−R∗ −R∗ ln

R

R∗

)
.

From [58], we have

DαL2(S, V, C, I, R) ≤
(S − S∗

S

)
DαS +

(C − C∗

C

)
DαC +

(I − I∗

I

)
DαI +

(R−R∗

R

)
DαR

=
(S − S∗

S

)(
Λ− δ(I + ωC)

N
S − µS + ηR

)
+
(C − C∗

C

)(δ(I(t) + ωC)

N
θS − Z1C

)
+
(I − I∗

I

)(δ(I + ωC)

N
(1− θ)S + πC − Z2I

)
+
(R−R∗

R

)(
βC + τI − (µ+ η)R

)
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=
(
S − S∗

)(Λ
S

− δ(I + ωC)

N
− µ+

ηR

S

)
+
(
C − C∗

)(δ(IS)
NC

θ +
δωS

N
θ − Z1

)
+

(
I − I∗

)(δS
N

(1− θ) +
δΩSC

NI
(1− θ) +

πC

I
− Z2

)
+

(
R−R∗

)(βC
R

+
τI(t)

R
− (µ+ η)

)
=

(
S − S∗

)( Λ

NS
+

ηR

NS
− Λ

NS∗ − ηR

NS∗

)
+
(
C − C∗

)(δ(IS)
NC

θ − δ(IS)

NC∗ θ
)

+
(
I − I∗

)(δΩSC

NI
(1− θ) +

πC

I
− δΩSC

NI∗
(1− θ)− πC

I∗

)
+

(
R−R∗

)(βC
R

+
τI

R
− βC

R∗ − τI

R∗

)
=

(
S − S∗

)(
− Λ

NSS∗

(
S − S∗

)
− ηR

NSS∗

(
S − S∗

))
+

(
C − C∗

)(
− δ(ISθ)

NCC∗

(
C − C∗

))
+

(
I − I∗

)(
− δω(1− θ)SC

NII∗

(
I − I∗

)
− πC

II∗

(
I − I∗

))
+

(
R−R∗

)(
− βC

NRR∗

(
R−R∗

)
− τI

NRR∗

(
R−R∗

))
= − Λ

NSS∗

(
S − S∗

)2
− ηR

NSS∗

(
S − S∗

)2
− δ(ISθ)

NCC∗

(
C − C∗

)2

− δω(1− θ)SC

NII∗

(
I − I∗

)2
− πC

II∗

(
I − I∗

)2

− βC

RR∗

(
R−R∗

)2
− τI

RR∗

(
R−R∗

)2
.

Thus, for all (S,C, I,R) ∈ Ω, DαL2(S,C, I,R) < 0. Therefore, it follows from [30] that
E2 is globally asymptotically stable in Ω.

4. Numerical Computational Methods of Solution

In this section, we describe an implementation of the numerical methods we will apply
for solving the proposed model (1). The fractional integral Jα

mf(t) of the function f :
R+ −→ R is defined as:

Jα
mf(t) =

1

Γ(α)

∫ t

m
(t− θ)α−1f(θ)dθ, t ≥ m,
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where α ∈ R+ is a non-integer order and Γ(z) =

∫ ∞

0
e−ttz−1dt is the Euler Gamma

function.
It follows from [48] that the Caputo fractional derivative Dαf(t) of order α > 0,

n− 1 < α < n, n ∈ N is defined as:

c
mDαf(t) =

1

Γ(n− α)

∫ t

m

f (n)(θ)

(t− θ)α+1−n
dθ, t ≥ m.

4.1. The Adams-Bashforth-Moulton Method (ABMM)

We consider the problem,

Dα x(t) = f(t, x(t)), t ∈ [0, T ], 0 < α ≤ 1,

x(j)(0) = x
(j)
0 , j = 0, 1, 2, ...., n− 1.

(4)

Let h =
T

k
be the step size, where k is a positive integer and T > 0, and xj be the

approximate solution of x(tj) at t = tj , where tj = jh, j = 0, 1, ..., k.
Take into consideration this integral part,

In+1 =

∫ tn+1

0
(tn+1 − θ)α−1g(θ) dθ, n = 0, 1, 2, ..., k − 1.

This can be approximately estimated using the following method

In+1 ≈
∫ tn+1

0
(tn+1 − θ)α−1g̃n+1(θ) dθ, n = 0, 1, 2, ..., k − 1,

where g̃n+1(θ) is the approximation of g(θ) on the interval [0, tn+1].
Diethelm et al. [20] carried out the preliminary study on the fractional Adams tech-

nique for (1), which may be formulated in the following way:

xpn+1 =
k−1∑
j=0

tjn+1

j!
x
(j)
0 +

hα

Γ(α+ 2)

n∑
j=0

ℓj,n+1f(tj , xj).

xn+1 =
k−1∑
j=0

tjn+1

j!
y
(j)
0 +

hα

Γ(α+ 2)

 n∑
j=0

ℓj,n+1f(tj , xj) + ℓn+1,n+1f(tn+1, x
p
n+1)

 . (5)

Here ℓj,n+1 are given by

ℓj,n+1 =


nα+1 − (n− α)(n+ 1)α, if j = 0,

(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1, if 1 ≤ j ≤ n,

1, if j = n+ 1.
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By taking
Z1 = µ+ β + π, Z2 = τ + µ+ σ, (6)

the model (1) may be reformulated in the sense of the ABMM, according to Eq. (5), as
follows:

Sn+1 = S0 +
hα

Γ(α+ 2)

(
Λ−

δ(Ipn+1 + ωCp
n+1)

N
Sp
n+1 − µSp

n+1 + ηRp
n+1

)
+

hα

Γ(α+ 2)

n∑
j=0

Ψj,n+1

(
Λ− δ(I(tj) + ωC(tj))

N
S(tj)− µS(tj) + ηR(tj)

)
,

Cn+1 = C0 +
hα

Γ(α+ 2)

(δ(Ipn+1 + ωCp
n+1)

N
θSp

n+1 − Z1C
p
n+1

)
+

hα

Γ(α+ 2)

n∑
j=0

Ψj,n+1

(δ(I(tj) + ωC(tj))

N
θS(tj)− Z1C(tj)

)
,

In+1 = I0 +
hα

Γ(α+ 2)

(δ(Ipn+1 + ωCp
n+1)

N
(1− θ)Sp

n+1 + πCp
n+1 − Z2I

p
n+1

)
+

hα

Γ(α+ 2)

n∑
j=0

Ψj,n+1

(δ(I(tj) + ωC(tj))

N
(1− θ)S(tj) + πC(tj)− Z2I(tj)

)
,

Rn+1 = R0 +
hα

Γ(α+ 2)

(
βCp

n+1 + τIpn+1 − (µ+ η)Rp
n+1

)
+

hα

Γ(α+ 2)

n∑
j=0

Ψj,n+1

(
βC(tj) + τI(tj)− (µ+ η)R(tj)

)
,

where Sp
n+1, C

p
n+1, I

p
n+1, and Rp

n+1 are given below:

Sp
n+1 = S0 +

hα

Γ(α+ 2)

n∑
j=0

Ψj,n+1

(
Λ− δ(I(tj) + ωC(tj))

N
S(tj)− µS(tj) + ηR(tj)

)
,

Cp
n+1 = C0 +

hα

Γ(α+ 2)

n∑
j=0

Ψj,n+1

(δ(I(tj) + ωC(tj))

N
θS(tj)− Z1C(tj)

)
,

Ipn+1 = I0 +
hα

Γ(α+ 2)

n∑
j=0

Ψj,n+1

(δ(I(tj) + ωC(tj))

N
(1− θ)S(tj) + πC(tj)− Z2I(tj)

)
,

Rp
n+1 = R0 +

hα

Γ(α+ 2)

n∑
j=0

Ψj,n+1

(
βC(tj) + τI(tj)− (µ+ η)R(tj)

)
.
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4.2. The Generalized Euler Method (GEM)

The extended Euler’s method for numerically solving the initial value problem (4) with
the Caputo derivatives was derived by Odibat and Momani [43]. First, let’s look at the
starting value problem. If x, Dαx, and D2αx are continuous on [0, b] and a1, . . . , an are
positive integer constants, then it follows from (4) that for each value of t, there is a value
a1, which implies

x(t) = x(t0) + (Dα x(t))(t0)
tα

Γ(α+ 1)
+ (D2α x(t))(a1)

t2α

Γ(2α+ 1)
. (7)

Substituting (Dα x(t))(t0) = f(t0, x(t0)) and h = t1 into Eq. (7) yields an equation for
x(t1):

x(t1) = x(t0) + f(t0, x(t0))
hα

Γ(α+ 1)
+ (D2α x(t))(a1)

h2α

Γ(2α+ 1)
.

If the step size h is sufficiently small, the second-order term (involving h2α) may be
neglected, allowing us to get

x(t1) = x(t0) +
hα

Γ(α+ 1)
f(t0, x(t0)).

Repeating this procedure yields a sequence of points that estimates the solution x(t). This
iterative general formula for the GEM when tj+1 = tj + h is

x(tj+1) = x(tj) +
hα

Γ(α+ 1)
f(tj , x(tj)), (8)

for j = 0, 1, ..., k− 1. The model (1) may be reformulated in the sense of GEM, according
to Eq. (8), as follows:

S(tj+1) = S(tj) +
hα

Γ(α+ 1)

(
Λ− δ(I(tj) + ωC(tj))

N
S(tj)− µS(tj) + ηR(tj)

)
,

C(tj+1) = C(tj) +
hα

Γ(α+ 1)

(δ(I(tj) + ωC(tj))

N
θS(tj)− Z1C(tj)

)
,

I(tj+1) = I(tj) +
hα

Γ(α+ 1)

(δ(I(tj) + ωC(tj))

N
(1− θ)S(tj) + πC(tj)− Z2I(tj)

)
,

R(tj+1) = R(tj) +
hα

Γ(α+ 1)

(
βC(tj) + τI(tj)− (µ+ η)R(tj)

)
.

Through this, we have

Sn+1 = Sn +
hα

Γ(α+ 1)

hα

Γ(α+ 1)

(
Λ− δ(In + ωCn)

N
Sn − µSn + ηRn

)
,

Cn+1 = Cn +
hα

Γ(α+ 1)

(δ(In + ωCn)

N
θSn − Z1Cn

)
,

In+1 = In +
hα

Γ(α+ 1)

(δ(In + ωCn)

N
(1− θ)Sn + πCn − Z2In

)
,

Rn+1 = Rn +
hα

Γ(α+ 1)

(
βCn + τIn − (µ+ η)Rn

)
,
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where 0 < hα

Γ(α+1) < 1 is the step size and subject to the initial conditions, S(0) = S0,

C(0) = C0, I(0) = I0, R(0) = R0. We have Sn+1 = Sn = S, Cn+1 = Cn = C, In+1 = In =
I, and Rn+1 = Rn = R at a fixed point.

4.3. The Generalized Runge-Kutta Method (GRKM)

The numerical scheme of Equation (4) of the GRKM takes the following form:

xn+1 = xn +
1

6

(
K1 + 2K2 + 2K3 +K4

)
, (9)

K1 = ℏf(tn, xn),

K2 = ℏf(tn +
1

2
ℏ, xn +

1

2
K1),

K3 = ℏf(tn +
1

2
ℏ, xn +

1

2
K2),

K4 = ℏf(tn + ℏ, xn +K3),

where h̄ =
hα

Γ(α+ 1)
.

In the sense of (9), the numerical scheme of (1) of the GRKM takes the following form:

Sn+1 = Sn +
1

6

(
K1 + 2K2 + 2K3 +K4

)
,

Cn+1 = Cn +
1

6

(
Q1 + 2Q2 + 2Q3 +Q4

)
,

In+1 = In +
1

6

(
O1 + 2O2 + 2O3 +O4

)
,

Rn+1 = Rn +
1

6

(
P1 + 2P2 + 2P3 + P4

)
,

where K1, Q1, O1, P1,K2, Q2, O2, P2,K3, Q3, O3, P3,K4, Q4, O4, and P4 are given below:

K1 = h̄f1(tn, Sn, Cn, In, Rn) = h̄
(
Λ− δ(In + ωCn)

N
Sn − µSn + ηRn

)
,

Q1 = h̄f2(tn, Sn, Cn, In, Rn) = h̄
(δ(In + ωCn)

N
θSn − Z1Cn

)
,

O1 = h̄f3(tn, Sn, Cn, In, Rn) = h̄
(δ(In + ωCn)

N
(1− θ)Sn + πCn − Z2In

)
,

P1 = h̄f4(tn, Sn, Cn, In, Rn) = h̄
(
βCn + τIn − (µ+ η)Rn

)
,

K2 = h̄f1

(
tn +

1

2
h̄, Sn +

1

2
K1, Cn +

1

2
Q1, In +

1

2
O1, Rn +

1

2
P1

)
,

Q2 = h̄f2

(
tn +

1

2
h̄, Sn +

1

2
K1, Cn +

1

2
Q1, In +

1

2
O1, Rn +

1

2
P1

)
,

O2 = h̄f3

(
tn +

1

2
h̄, Sn +

1

2
K1, Cn +

1

2
Q1, In +

1

2
O1, Rn +

1

2
P1

)
,

P2 = h̄f4

(
tn +

1

2
h̄, Sn +

1

2
K1, Cn +

1

2
Q1, In +

1

2
O1, Rn +

1

2
P1

)
,
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K3 = h̄f1

(
tn +

1

2
h̄, Sn +

1

2
K2, Cn +

1

2
Q2, In +

1

2
O2, Rn +

1

2
P2

)
,

Q3 = h̄f2

(
tn +

1

2
h̄, Sn +

1

2
K2, Cn +

1

2
Q2, In +

1

2
O2, Rn +

1

2
P2

)
,

O3 = h̄f3

(
tn +

1

2
h̄, Sn +

1

2
K2, Cn +

1

2
Q2, In +

1

2
O2, Rn +

1

2
P2

)
,

P3 = h̄f4

(
tn +

1

2
h̄, Sn +

1

2
K2, Cn +

1

2
Q2, In +

1

2
O2, Rn +

1

2
P2

)
,

K4 = h̄f1(tn + h̄, Sn +K3, Cn +Q3, In +O3, Rn + P3),

Q4 = h̄f2(tn + h̄, Sn +K3, Cn +Q3, In +O3, Rn + P3),

O4 = h̄f3(tn + h̄, Sn +K3, Cn +Q3, In +O3, Rn + P3),

P4 = h̄f4(tn + h̄, Sn +K3, Cn +Q3, In +O3, Rn + P3).

4.4. The Multistep Generalized Differential TransformMethod (MSGDTM)

To illustrate the MSGDTM following ([42], [24], [22], [25]), we consider the following
initial value problem for systems of fractional differential equations:

Dα
1 x1(t) = f1(t, x1, x2, ..., xn),

Dα
2 x1(t) = f2(t, x1, x2, ..., xn),

...

Dα
n x1(t) = fn(t, x1, x2, ..., xn),

(10)

subject to the initial conditions:

xi(t0) = ci, i = 1, 2, ..., n, (11)

where Dα is the Caputo fractional derivative of order αi, i = 1, 2, ..., n. The initial value
problem solution (10), (11) is looked in the range [t0, T ]. In real-world applications of the
extended differential transform technique, the finite series defines the kth order approxi-
mation solution of (4)

xi(t) =
K∑
i=0

Li(k)(t− t0)
kαi , t ∈ [t0, T ],

where Li(k) satisfied the (recurrence relation):

Γ((k + 1)αi + 1)

Γ(kαi + 1)
Li(k + 1) = Fi(k,L1,L2, ...,Ln),

Li(0) = ci, and Fi(k,L1,L2, ...,Ln) is the differential transform of function fit, fi(t, x1, x2, ..., xn)
for i = 1, 2, ..., n. The basic steps of the GDTM can be found in ([41], [37], [40], [23]).
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Assume that [t0, T ] is partitioned into M subintervals [tm−1, tm], m = 1, 2, ...,M , with

steps h =
T − t0
M

using the nodes tm = t0 + mh. The MSGDTM principles are listed

below.
First, the GDTM solves (10), (11) throughout the interval [t0, t1]. We get the approxi-

mate solution by beginning with xi,1(t), t ∈ [t0, t1], for i = 1, 2, ..., n. For m ≥ 2, applying
the GDTM to (10), (11) across the interval [tm−1, tm] will employ the IC xi,m(tm−1) =
xi,m−1(tm−1). Repeating the technique yields approximations for xi,m(t), m = 1, 2, ...,M ,
for i = 1, 2, ..., n. The MSGDTM concludes:

xi(t) =


xi,1(t), for t ∈ [t0, t1],

xi,2(t), for t ∈ [t1, t2],
...

xi,M (t), for t ∈ [tM−1, tM ].

The MSGDTM is efficient for all values of h. The new algorithm’s key benefit is that the
solution converges over vast time periods, as we shall show in the following section.

Regarding (1), the MSGDTM algorithm produces

S(k + 1) =
Γ(q1k + 1)

Γ(q1(k + 1) + 1)

(
Λ− δ(I(k) + ωC(k))

N
S(k)− µS(k) + ηR(k)

)
,

C(k + 1) =
Γ(q2k + 1)

Γ(q2(k + 1) + 1)

(δ(I(k) + ωC(k))
N

θS(k)− Z1C(k)
)
,

I(k + 1) =
Γ(q3k + 1)

Γ(q3(k + 1) + 1)

(δ(I(k) + ωC(k))
N

(1− θ)S(k) + πC(k)− Z2I(k)
)
,

R(k + 1) =
Γ(q4k + 1)

Γ(q4(k + 1) + 1)

(
βC(k) + τI(k)− (µ+ η)R(k)

)
,

where S(k), C(k), I(k), and R(k) are the differential transformations of S(k), C(k), I(k),
and R(k), respectively. The differential transform of the starting conditions is provided
by the formulas S(0) = c1, C(0) = c2, I(0) = c3, and R(0) = c4, respectively. Through the
differential inverse transform, we may find the differential transform series solution for the
problem (1):

S(t) =

K∑
n=0

S(n)tq1n,

C(t) =

K∑
n=0

C(n)tq2n,

I(t) =

K∑
n=0

I(n)tq3n,

R(t) =

K∑
n=0

R(n)tq4n.
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For the MSGDTM, the proposed series solution of (1) is:

S(t) =



∑K
n=0 S1(n)tq1n, for t ∈ [0, t1]∑K
n=0 S2(n)(t− t1)

q1n, for t ∈ [t1, t2]
...∑K

n=0 SM (n)(t− tM−1)
q1n, for t ∈ [tM−1, tM ]

(12)

C(t) =



∑K
n=0C1(n)t

q2n, for t ∈ [0, t1]∑K
n=0C2(n)(t− t1)

q2n, for t ∈ [t1, t2]
...∑K

n=0CM (n)(t− tM−1)
q2n, for t ∈ [tM−1, tM ]

(13)

I(t) =



∑K
n=0 I1(n)tq3n, for t ∈ [0, t1]∑K
n=0 I2(n)(t− t1)

q3n, for t ∈ [t1, t2]
...∑K

n=0 IM (n)(t− tM−1)
q3n, for t ∈ [tM−1, tM ]

(14)

R(t) =



∑K
n=0R1(n)t

q4n, for t ∈ [0, t1]∑K
n=0R2(n)(t− t1)

q4n, for t ∈ [t1, t2]
...∑K

n=0RM (n)(t− tM−1)
q4n, for t ∈ [tM−1, tM ],

(15)

where Si(n), Ci(n), Ii(n), and Ri(n) for i = 1, 2, ...,M satisfy the following (recurrence
relations):

Si(k + 1) =
Γ(q1k + 1)

Γ(q1(k + 1) + 1)

(
Λ− δ(Ii(k) + ωCi(k))

N
Si(k)− µSi(k) + ηRi(k)

)
,

Ci(k + 1) =
Γ(q2k + 1)

Γ(q2(k + 1) + 1)

(δ(Ii(k) + ωCi(k))

N
θSi(k)− Z1Ci(k)

)
,

Ii(k + 1) =
Γ(q3k + 1)

Γ(q3(k + 1) + 1)

(δ(Ii(k) + ωCi(k))

N
(1− θ)Si(k) + πCi(k)− Z2Ii(k)

)
,

Ri(k + 1) =
Γ(q4k + 1)

Γ(q4(k + 1) + 1)

(
βCi(k) + τIi(k)− (µ+ η)Ri(k)

)
,

(16)

with Si(0) = Si(ti−1) = Si−1(ti−1), Ci(0) = Ci(ti−1) = Ci−1(ti−1), Ii(0) = Ii(ti−1) =
Ii−1(ti−1), and Ri(0) = Ri(ti−1) = Ri−1(ti−1). Finally, we start with S0(0) = c1, C0(0) =
c2, I0(0) = c3, and R0(0) = c4, using the (recurrence relations) (16), then we can get the
multistep solution (12)-(15).
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5. Numerical Simulations and Results

Using the mathematical software programs: MATLAB and Mathematica and the pa-
rameter values listed in Table 1, which are taken from [1], we present numerical simulations
and results in this section.

Table 1: The Parameter Values

Parameter Value / Source [1]
Λ 0.5
δ 2 (DFE) 2.5 (EE)
ω 0.1124
µ 0.5
η 0.00641
β 0.515
π 0.7096
θ 0.563
τ 0.641
σ 0.53

5.1. Numerical Simulations and Results of the ABMM Method

In this subsection, we present numerical simulations and results for the model (1)
solution applying the ABMM method.

The solution to the proposed model (1) using the Adams-Bashforth-Moulton Method
appears in Figures 1(a, b, c, d) and Figures 2(a, b, c, d, e). According to these figures,
we observe that S(t) increases at α = 1 than in the case where α is a fractional variant.
We also note that C(t), I(t), and R(t) decrease at α = 1 than in the case where α is a
fractional variant.
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Figure 1: The ABMM method for the behavior of S(t), C(t), I(t), and R(t) at various values of α =
0.65, 0.75, 0.85, 0.95, 1.
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Figure 2: Combined graphical behaviors of the ABMM method for S(t), C(t), I(t), and R(t) at various values
of α = 0.65, 0.75, 0.85, 0.95, 1.
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5.2. Numerical Simulations and Results of the GEM Method

In this subsection, we present numerical simulations and results for the model (1)
solution applying the GEM method.

The solution to the proposed model (1) using the Generalized Euler Method appears
in Figures 3(a, b, c, d) and Figures 4(a, b, c, d, e). According to these figures, we observe
that S(t) increases at α = 1 than in the case where α is a fractional variant. We also note
that C(t) and I(t) decrease at α = 1 than in the case where α is a fractional variant. For
R(t), the dynamical behavior increases at α = 1 in the first days and then gets remarkably
decreased, as well as in the case where α is a fractional variant.
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Figure 3: The GEM method for the behavior of S(t), C(t), I(t), and R(t) at various values of α =
0.65, 0.75, 0.85, 0.95, 1.
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Figure 4: Combined graphical behaviors of the GEM method for S(t), C(t), I(t), and R(t) at various values of
α = 0.65, 0.75, 0.85, 0.95, 1.
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5.3. Numerical Simulations and Results of the GRKM Method

In this subsection, we present numerical simulations and results for the model (1)
solution applying the GRKM method.

In Figures 5(a, b, c, d) and Figures 6(a, b, c, d, e), we present the solution to the
proposed model (1) using the Generalized Runge-Kutta Method. According to these
figures, we observe that S(t) increases more in the case where α is a fractional variant
than in the case where α = 1. We also note that C(t), I(t), and R(t) decrease more in the
case where α is a fractional variant than in the case where α = 1.

(a) (b)

(c) (d)

Figure 5: The GRKM method for the behavior of S(t), C(t), I(t), and R(t) at various values of α =
0.65, 0.75, 0.85, 0.95, 1.
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(a) (b)

(c) (d)

(e)

Figure 6: Combined graphical behaviors of the GRKM method for S(t), C(t), I(t), and R(t) at various values
of α = 0.65, 0.75, 0.85, 0.95, 1.
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5.4. Numerical Simulations and Results of the MSGDTM Method

In this subsection, we present numerical simulations and results for the model (1)
solution applying the MSGDTM method.

The solution to the proposed model (1) using the Multistep Generalized Differential
TransformMethod appears in Figures 7(a, b, c, d) and Figures 8(a, b, c, d, e). According to
these figures, we observe that S(t) remarkably increases in the case where α is a fractional
variant than in the case where α = 1. We also note that C(t), I(t), and R(t) remarkably
decrease in a similar way for both cases where α is a fractional variant and α = 1.

(a) (b)

(c) (d)

Figure 7: The MSGDTM method for the behavior of S(t), C(t), I(t), and R(t) at various values of α =
0.65, 0.75, 0.85, 0.95, 1.
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(a) (b)

(c) (d)

(e)

Figure 8: Combined graphical behaviors of the MSGDTM method for S(t), C(t), I(t), and R(t) at various
values of α = 0.65, 0.75, 0.85, 0.95, 1.
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6. Discussion of the Results

We present the solution to the proposed model (1) using four different numerical meth-
ods. From the numerical simulations and results in Section 5, we observe that the solution
to the proposed model (1) gets stable faster using the ABMM and the MSGDTM methods
than using the GEM and the GRKM methods. The solution to the proposed model (1)
using the ABMM method gets stable faster in the case where α = 1 than in the case where
α is a fractional variant. On the other hand, the solution to the proposed model (1) using
the MSGDTM method gets stable faster in the case where α is a fractional variant than
in the case where α = 1. From numerical simulations and results, we can say that the
numerical methods we used are efficient computational methods. The ABMM, the GEM,
the GRKM, and the MSGDTM exhibit greater flexibility and applicability across a diverse
spectrum of problems, with a specific emphasis on initial value problems and systems of
ordinary differential equations (ODEs). The improved shooting method, specialized for
boundary value problems (BVPs), exhibits high accuracy, stability, and robustness when
applied to coupled nonlinear higher-order systems. It is generally the preferred method
for dealing with BVPs, particularly in complex nonlinear intricate.

7. Conclusion

In this work, we investigated the solution and the dynamics of the pneumonia fractional-
order mathematical model (1) using numerical techniques including the Adams-Bashforth-
Moulton method, the generalized Euler method, the generalized Runge-Kutta method, and
the multistep generalized differential transform method. For the sake of the analysis of
the proposed model (1), we discussed positivity, boundedness, equilibria, local and global
stability, and the basic reproductive number R0. Based on the numerical simulations,
we observed that there is a convergence in results between the proposed fractional-order
mathematical model (1) and its integer-order form. The aim of using the fractional-order
mathematical model (1) is to investigate the memory of the model for a long time period;
that is, at any time t, the fractional-order mathematical model investigates the behavior
of the variables S(t), C(t), I(t), and R(t) during the period [0, 1] as a result of changing
the values of α, while the integer-order form investigates the behavior of the variables
only at α = 1. This was useful in investigating the stability of the model during the
period [0, 1] as a result of changing the values of α and gaining a better understanding
of the disease’s dynamics. This work will also be a valuable tool for different types of
disease modeling. The figures presented in this paper illustrate the dynamic behavior of
the system variables S(t), C(t), I(t), and R(t) under various fractional orders α using
four different numerical methods: the Adams-Bashforth-Moulton Method (ABMM), the
Generalized Euler Method (GEM), the Generalized Runge-Kutta Method (GRKM), and
the Multistep Generalized Differential Transform Method (MSGDTM).

The main contribution of these figures lies in conducting a comparative analysis of
the four different methods used to approximate solutions for the proposed fractional-order
mathematical model. Specifically, Figures 1 and 2, obtained using the ABMM method,
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and Figures 3 and 4, obtained employing the GEM method, illustrate that S(t) exhibits an
increase, while C(t), I(t), and R(t) all decrease as the fractional order α approaches 1. This
observation indicates that the behavior of integer-order dynamics diverges notably from
that of fractional-order dynamics, and the depicted figures highlight the model’s sensitivity
to fractional variations. Figures 5 and 6, obtained using the GRKM method, illustrate
a reverse trend where S(t) increases more for fractional values of α compared to α = 1,
while C(t), I(t), and R(t) decrease, emphasizing the impact of employing a fractional
order in the model. Figures 7 and 8, obtained using the MSGDTM method, demonstrate
a remarkable increase in S(t) for fractional values of α compared to α = 1, while C(t), I(t),
and R(t) consistently decrease, reinforcing the consistent behavior observed across various
methods. The collective results indicate that fractional-order models offer a more nuanced
and accurate representation of system dynamics when compared to integer-order models.
Additionally, the selection of a numerical method significantly impacts the accuracy and
stability of the solutions. The visual comparisons presented in the figures play a pivotal role
in comprehending distinctions and in choosing suitable numerical techniques for fractional-
order differential equations.
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