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Abstract. This paper deals with dynamical analysis of a food-web including three logistically
growing interaction species, prey, intermediate predators and apex predators. The intermediate
predator species predate the prey species according to the Holling type-II functional response,
while the apex predator species predate both prey species and intermediate predator species ac-
cording to extended Holling type II functional response for two prey species. Firstly, We conduct
a thorough analytical examination of the system, demonstrating the positivity and boundedness
of the solutions criteria for the persistence of the model are founded, four biologically possible
steady states are determined and the local as well as the dynamics around the model’ steady states
based on the parameters are also investigated. The occurrence of Hopf-bifurcation of thee model
near all steady states, are discussed. Finally, with the help of MATLAB program, it is performed
numerical simulations to support the evidence of our analytical results.
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1. Introduction

Mathematical models for the dynamics of interaction between two species of prey and
predator, has been derived by many mathematician author [2, 3, 6, 9]. Food web models are
important conceptual tool for illustrating the feeding relationships among species within
a community, revealing species interactions and community structure, and understanding
the dynamics of energy transfer in an ecosystem, Therefore two-species model has been
extended to the three-species model by many authors [5, 8, 10, 18].

The important element to represent the dynamics relationship between predator pop-
ulation and prey population is the functional response for the predator, which defined as
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the number of consumed prey per predator per unit time [9]. C.S. Holling [12] identi-
fied three types of functional response Type I, Type II and Type- III. The most useful
functional response is the Holling type II functional response, which is characterized by
decelerating intake rate [12]. Many authors used this type of functional response for mod-
eling the dynamics of interactions between predator and prey [4, 14]. Jha and Ghorai
[14] proposed a prey-predator model with selective harvesting between the species using
a Holling-type functional response. Hastings [11, 16] has studied the chaotic behavior of
an ecology model including the three species. Khan et al. [15] investigated bifurcation
analysis of a three-species discrete time. Sk et al. [22] explored the impact of the fear
of predators in prey and shelter in a three-species food chain model with delays in hunt-
ing cooperation. The authors [20, 21] have investigated the dynamic behavior of a three
species system with a scavenger. Diana et al. [7] investigated the three species model’s
dynamic behavior with logistic growth in which disease was included. The behavior of a
three-species model with time delay and noise was analyzed stochastically by Danane and
Torres [13]. Numerous writers have examined the three species model’s dynamics in the
presence of both logistic and non-logistic growth as of now. It has been explored the fear
effect and stability analysis of the food chain model [1, 17, 19].

In nature, there are many predator species that consume more than one species of prey
as well as intermediate predator. For example, lions usually predate a number of large
land-based animals, such as antelopes, buffaloes, crocodiles, giraffes, pigs, zebra, wild dogs
and wildebeest. In 2022, the Holling type II functional response is extended to more than
one prey species [9]. Therefore, this current work is considered and studying the following
food web system with extended Holling type II functional response to two preys.

dX
dt = X

[
r1

(
1− X

K

)
− βY

1+βTX − α1Z
1+α1T1X+α2T2Y

]
,

dY
dt = Y

[
r2

(
1− Y

X

)
− α2Z

1+α1T1X+α2T2Y

]
,

dZ
dt = r3Z

(
1− Z

X+Y

)
,

(1)

where X(t), Y (t) and Z(t) represent the individual numbers of the prey, intermedi-
ate predators and apex predators, respectively. The parameters are positive and their
descriptions are given in Table.

System (1) is derived on the following assumptions

(i) All the species grow logistically.

(ii) The apex predators predate both prey and intermediate predators according to ex-
tended Holling type II functional response [8].

(iii) The prey population predated by intermediate predators according to Holling type
II functional response.

The paper organized as follows: in the next section some preliminaries on the model
solution property, which are also needed in this work, are given. In the third section,
the existence conditions of all feasible and possible steady stat points of system (1) are
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found and their local as well as globally stability are investigated. In section five, the
Hopfbifurcation near to each steady state point is studied. In section six, system (1)
numerically solved to observe the impact of parameters and confirm the analytical results
in this work. Finally in section eight. a brief conclusion on the total work is given. Where,
all other parameter description in Table 1.

Parameters Description

r1, r2, r3 Intrinsic growth rate for prey, intermediate predators and apex predators, respectively

K Carrying capacity for prey species

β by intermediate predators’ predation rate

T the predator’s average handling time of intermediate predators

α1, α2 predator’s search efficiency of prey, intermediate predators, respectively

T1, T2 predator’s average handling time of prey, intermediate predators, respectively

Table 1: Parameter description of system (1).

2. Preliminaries and permanence

In this section, it is proved some lemma on the model solutions, the lemmas are also
needed to obtain the result in this paper. A permanent ecological model, imply that all
the species in an ecosystem continues to exist, therefore, the criteria that make the model
permanent is important, so in this section, the definition of permanence is reviewed and
then it is proved that system (1) is permanent under certain conditions.

Lemma 2.1. System (1), exhibits a unique solution that is non-negative and satisfy the
following inequalities:

lim
t→∞

sup(X(t)) ≤ K (2)

lim
t→∞

sup(Y (t)) ≤ K (3)

lim
t→∞

sup(Z(t)) ≤ 2 K (4)

Proof. Right side of system (1), are continuous and has partial derivatives on the space
R3, and hence, system (1) satisfies the Lipschitzian condition. Therefore, by uniqueness
Theorem, it has unique solution. Further, the time derivative of X,Y and Z are zero in
Y Z - Plane, XZ - Plane and XY - plane, respectively.
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Therefore, if the solution initiates at a non-negative point, then the component X,Y
and Z of the solution points of system (1), cannot cross any coordinates of the solution
points. Hence components X,Y and Z of solution points is always non negative. The first
equation in system (1) gives that

dX

dt
≤ r1X

(
1− X

K

)
.

Solving above differential inequality, it gets

lim
t→∞

sup(X(t)) ≤ K.

Apply above inequality at the second equation of system (1), it gets

dY

dt
≤ r2Y

(
1− X

K

)
.

Again Solving above differential inequality, it gets

lim
t→∞

sup(Y (t)) ≤ K.

So, inequalities (2) and (3) are guaranteed.
Apply inequalities (2, 3) in the third equation of system (1) , it gets

dZ

dt
≤ r1Z

(
1− Z

2K

)
So,

lim
t→∞

sup(Z(t)) ≤ 2K.

This completes the proof.

Lemma 2.2. (i) limt→∞ infX(t) ≥ K1, if

r1 > (β + 2α1)K (5)

(ii) limt→∞ inf Y (t) ≥ K2, if Inq.(5) and the following inequality are satisfied

r2 >
2α2

(1 + α1T1K1)
K (6)

(iii) limt→∞ inf Z(t) ≥ K1 +K2, if both conditions (5) and (6) are provided.
where, K1 and K2 are positive number to be determined in the proof.

Proof. Suppose t approaches infinity, then
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(i) Apply inequalities (2)–(4) in Lemma 2.1, at the first equation of system (1), it gets

dX(t)

dt
≥ X

[
r1

(
1− X

K

)
− (β + 2α1)K

]
.

Therefore under condition (5), it gets

lim
t→∞

infX(t) ≥ .
[r1 − (β + 2α1)K]K

r1
= K1 > 0

(ii) From condition(4) in Lemma 2.1 and inequality (7), it follows

dY

dt
≥ Y

[
r2

(
1− Y

K1

)
− 2α2K

1 + α1T1K1

]
,

so under condition (6), it is concluded that:

lim
t→∞

inf Y (t) ≥
[
1− 2α2K

r2 (1 + α1T1K1)

]
K1 = K2 > 0

(iii) From (7) and (8), it follows

dZ

dt
≥ r3Z

(
1− Z

K1 +K2

)
,

and hence

lim
t→∞

inf Z(t) ≥ K1 +K2.

Definition 2.1. [5] System (1) is said to be permanent if there exist positive constants a
and b such that

b ≥ max
{
lim
t→∞

sup(X(t)), lim
t→∞

sup(Y (t)), lim
t→∞

sup(Z(t))
}

≥ min
{
lim
t→∞

inf(X(t)), lim
t→∞

inf(Y (t)), lim
t→∞

inf(Z(t))
}
≥ a.

Theorem 2.1. If the following conditions (5) and (6) in Lemma 2.2 are provided, then
system (1), is permanent.
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Proof. From Lemma 2.1, it is obtained that

min
{
lim
t→∞

inf(X(t)), lim
t→∞

inf(Y (t)), lim
t→∞

inf(Z(t))
}
≥ min {K1,K2} .

From Lemma 2.2, it follows

2K ≥ max
{
lim
t→∞

sup(X(t)), lim
t→∞

sup(Y (t)), lim
t→∞

sup(Z(t))
}
.

The proof is completed.

3. Stability analysis

This section including three subsections. In the first subsection, the existence condi-
tions of all feasible and possible steady stat points of system (1) are determined and their
local and globally stability are investigated in the second and third subsection, respectively.

3.1. Existence of steady states

System (1) has at most four steady states, they are the only prey existence steady state
S1 = (K, 0, 0), apex predatorfree steady state S2 = (S̄, S̄, 0), intermediate predators-free

steady state S3 = (S̄, 0, S̄) and coexistence steady state is S4 = (X∗, Y ∗, Z∗) always exist,
where

S̄ =
r1βTK − r1 − βK +

√
(r1βTK − r1 − βK)2 + 4r21βTK

2r1βT
,

S̄ =
r1α1T1K − r1 − α1K +

√
(r1α1T1K − r1 − α1K)2 + 4r21α1T1K

2r1α1T1
, Z∗ = X∗ + Y ∗,

Y ∗ = a1X
∗ + a2X

∗2 + a3X
∗3 and X∗ is root for the following function

F (X) = r1

(
1− X

K

)
− βY (X)

1 + βTX
− α1(X + Y (X))

1 + α1T1X + α2T2Y (X)
, (10)

with a1 = r1α2βT
r2α1K

, a2 = r1α2
r2α1K

− r1α2βT
r2α1

and a3 = r2β
r2α1

+ 1 − r1α2
r2α1

and Y (X) = a1X +

a2X
2 + a3X

3.

Note the steady states S1, S2 and S3 are always uniquely exists. But the existence
criteria for the coexistence steady state S4 is determined in the following Theorem

Theorem 3.1. The coexistence steady state S4 = (X∗, Y ∗, Z∗) exist uniquely, if

ai ≥ 0, i = 2, 3 (11)
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Proof. From (10), it gets F (0) = r1 > 0 and

F (K) = − βY (K)

1 + βTK
− α1(K + Y (K))

1 + α1T1K + α2T2Y (K)
< 0.

Intermediate value Theorem, guarantees that F (X) has a root, namely X∗ in (0,K).

Further dF (X)
dX < 0, for all x ≥ 0, due to condition (11), that is F (X) is decreasing on the

positive real line, and hence X∗ is unique root of F (X), and this completes the proof.

3.2. Local stability

Here, local asymptotical stability (LAS) of all the steady states of system (1) is studied.
Suppose λiX , λiY and λiZ represent the eigenvalues of the Variational matrix at Si, in the
X-, Y -, and Z-directions, respectively; i = 1, 2, 3, 4. Then,

(i) λ1X = −r1, λ0Y = r2 and λ1Z = r3

(ii) λ2Z = r3 and λ2X and λ2X are roots of the equation λ2 +A1λ+B1 = 0, where,

A1 =
r1
K

S̄ + r2 −
(
β2T S̄2

)
/(1 + βT S̄)2 and B1 =

r2r1
K

S̄ +
(
r2βS̄

)
/(1 + βT S̄)2

(iii) λ3X , λ3Y and λ3Z are roots of the equation λ3 +A2λ
2 +B2λ+ r3C2 = 0, where,

A2 = − (R1 +R5) , B2 = R1R5−R2R4−r3 (R1 +R3 +R5) and C2 = R1R5−R2R4−R3R4+R3R5

with

R1 = −r1
K

S̄ +
(
α2
1T1S̄

2
)
/
(
1 + α1T1S̄

)2
,

R2 = − βS̄

(1 + βT s̄)
− α1S̄/

(
1 + α1T1S̄

)
,

R3 = −α2S̄/
(
1 + α1T1S̄

)
,

R4 = −α2S̄/
(
1 + α1T1S̄

)2
and

R5 = r2 −
(
α2S̄

)
/
(
1 + α1T1S̄

)
(iv) λ4X , λ4Y and λ4Z are roots of the equation λ3 +A3λ

2 +B3λ+ r3C3 = 0, where

A3 = − (E1 + E5) , B2 = E1E5 − E2E4 − r3 (E1 + E3 + E5 + E6) and

C3 = E1E5 + E1E6 − E2E4 − E2E6 − E3E4 + E3E5
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with

E1 = r1 − 2
r1
K

X∗ − βY ∗

(1 + βTX∗)2
− α1 (1 + α2T2Y

∗)Z∗

(1 + α1T1X∗ + α2T2Y ∗)2
,

E2 = − βx∗

1 + βTx∗
− α1 (1 + α1T1X

∗)Z∗

(1 + α1T1X∗ + α2T2Y ∗)2
,

E3 = − α1x
∗

1 + α1T1X∗ + α2T2Y ∗

E4 = r2

(
Y ∗

X∗

)2

− α2 (1 + α2T2Y
∗)Z∗

(1 + α1T1X∗ + α2T2Y ∗)2
,

E5 = r2 − 2r2
Y ∗

X∗ − α2 (1 + a1T1X
∗)Z∗

(1 + α1T1X∗ + α2T2Y ∗)2
and

E6 = − α2Y
∗

1 + α1T1X∗ + α2T2Y ∗

Therefore, the following Theorem can be derived based on the above argument.

Theorem 3.2. (i) The only prey existence steady state and the apex predator-free steady
state are unstable.

(ii) The intermediate predators-free steady state is LAS if and only if, all the following
Routh-Hurwize criteria hold.

A2 > 0, C2 > 0 and A2B2 > r3C2 (12)

(iii) The coexistence steady state it is LAS if and only if, all the following Routh-Hurwize
criteria hold.

A3 > 0, C3 > 0 and A3B3 > r3C3 (13)

3.3. Global stability

Global stability (or globally asymptotically stable GAS) means that any trajectories
finally tend to the attractor of the system, regardless of initial conditions. Therefore, Most
of biological systems, especially prey predator system, are needed to be globally stable.
Since S1 and S2 are not LAS, so they cannot be GAS. However GAS for both S3 and S4

of the system (1) is established in Theorem 3.3 and Theorem 3.4, respectively.

Theorem 3.3. Suppose that condition 5 holds, and then S3 = (S̄, 0, S̄) is GAS, if the
following inequality holds:

r2 <
α2K1

1 + α1T1K + α2T2K
(14)

r1 + r3
K2

>
α1

(1 + α1T1K1)
2 (15)



B. B. Kamal, A. N. Mustafa / Eur. J. Pure Appl. Math, 18 (1) (2025), 5397 9 of 21

Proof. From Lemma 2.1, limt→∞ supX(t) ≤ K and limt→∞ supY (t) ≤ K. From
Lemma 2.2 limt→∞ infX(t) ≥ K1, if condition 5 , holds. Therefore, the third equation f
system (1) gives that

lim
t→∞

infX(t) ≥ K1 and lim
t→∞

inf Y (t) ≥ K1.

And hence, from the second equation of system (1), it is obtained that

dY

dt
≤ Y

[
r2 −

α2K1

1 + α1T1K + α2T2K
− r2Y

K

]
.

So, dY
dt is negative due to condition 14 , consequently limt→∞ Y (t) = 0.

Therefore as time approaches infinity, system (1) reduced to the following subsystem{
dX
dt = X

[
r1

(
1− X

K

)
− α1Z

1+α1T1X

]
= F (X,Z)

dZ
dt = r3Z

(
1− Z

X

)
= G(X,Z)

(16)

Consider now the function H(X,Z) = 1/XZ, clearly H is a continuously differentiable
function. Further,

∂(HF )

∂X
+

∂(HG)

∂Z
= − r1

KZ
+

α1

(1 + α1T1X)2
− r3

X2
<

α1

(1 + α1T1K1)
2 − r1 + r3

K2
.

Under the condition (15), it is clear that ∂(HF )
∂X + ∂(HG)

∂Z does not change sign and is
not identically zero. So, by BendixsonDulac criterion, there is no periodic curve in of the
XZ-plane. Since (S̄, S̄) represent unique positive equilibrium point of the subsystem (16),
so

lim
t→∞

X(t) = lim
t→∞

Z(t) = S̄.

This completes the proof.

Theorem 3.4. Suppose that S4 = (X∗, Y ∗, Z∗) is exist, then it is GAS, if in addition of
conditions (5), (6), the following inequalities hold:

[
2α1α2Z

∗ (T2 + T1)

G2(X,Y )
+
2r2Y

∗

XX∗ −
2
(
β + β2TX∗)
F2(X)

]2

< 4

[
r1
K

− β2TY ∗

F2 (K1)
− α2

1T1Z
∗

G2 (K1,K2)

] [
r2
K

− α2
2T2Z

∗

G2 (K1,K2)

]
(17)

[
2
(
α1 + α2

1T1X
∗ + α1α2T2Y

∗)
G2(X,Y )

− 2r3
(X + Y )

]2

<
2r3
K

[
r1
K

− β2TY ∗

F2 (K1)
− α2

1T1Z
∗

G2 (K1,K2)

]
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[
2
(
α2 + α1α2T1X

∗ + α2
2T2Y

∗)
G2(X,Y )

− 2r3
(X + Y )

]2

<
2r3
K

[
r2
K

− α2
2T2Z

∗

G2 (K1,K2)

]
,

where, F2(X) = (1 + βTX) (1 + βTX∗) and

G2(X,Y ) = (1 + α1T1X + α2T2Y ) (1 + α1T1X
∗ + α2T2Y

∗) (19)

Proof. Consider the function

L(X,Y, Z) = 2

[
X −X∗ −X∗ ln

(
X

X∗

)]
+ 2

[
Y − Y ∗ − Y ∗ ln

(
Y

Y ∗

)]
+ 2

[
Z − Z∗ − Z∗ ln

(
Y

Z∗

)]
.

Clearly, L(X,Y, Z) ∈ C1
(
R3

+, R
)
With L (X∗, Y6, Z6) = 0 and L(X,Y, Z) > 0,for all

(X,Y, Z) ∈ R3
+ with (X,Y, Z) ̸= (X∗, Y6, Z6). Further,

dL

dt
=−

[
r1
K

− β2TY ∗

F2(X)
− α2

1T1Z
∗

G2(X,Y )

]
(X −X∗)2 −

[
r2
X

− α2
2T2Z

∗

G2(X,Y )

]
(Y − Y ∗)2

+

[
221α2Z

∗ (T2 + T1)

G2(X,Y )
+

2r2Y
∗

XX∗ −
2
(
β + β2TX∗)
F2(X)

]
(Y − Y ∗) (X −X∗)

−
[
r1
K

− β2TY ∗

F2(X)
− α2

1T1Z
∗

G2(X,Y )

]
(X −X∗)2 − r3

(X + Y )
(Z − Z∗)2

−

[
2
(
α1 + α2

1T1X
∗ + α1α2T2Y

∗)
G2(X,Y )

− 2r3
(X + Y )

]
(X −X∗) (Z − Z∗)

−
[
r2
X

− α2
2T2Z

∗

G2(X,Y )

]
(Y − Y ∗)2 − r3

(X + Y )
(Z − Z∗)2

−

[
2
(
α2 + α1α2T1X

∗ + α2
2T2Y

∗)
G2(X,Y )

− 2r3
(X + Y )

]
(Y − Y ∗) (Z − Z∗) .

Condition (5, 6) guaranteeing that: limt→∞ infX(t) ≥ K1 and limt→∞ inf Y (t) ≥ K2.
Therfore,
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dL

dt
<−

[
r1
K

− β2TY ∗

F2 (K1)
− α2

1T1Z
∗

G2 (K1,K2)

]
(X −X∗)2 −

[
r2
K

− α2
2T2Z

∗

G2 (K1,K2)

]
(Y − Y ∗)2

+

[
2α1α2Z

∗ (T2 + T1)

G2(X,Y )
+

2r2Y
∗

XX∗ −
2
(
β + β2TX∗)
F2(X)

]
(Y − Y ∗) (X −X∗)

−
[
r1
K

− β2TY ∗

F2 (K1)
− α2

1T1Z
∗

G2 (K1,K2)

]
(X −X∗)2 − r3

2K
(Z − Z∗)2

−

[
2
(
α1 + α2

1T1X
∗ + α1α2T2Y

∗)
G2(XY )

− 2r3
(X + Y )

]
(X −X∗) (Z − Z∗)

−
[
r2
K

− α2
2T2Z

∗

G2 (K1,K2)

]
(Y − Y ∗)2 − r3

2K
(Z − Z∗)2

−

[
2
(
α2 + α1α2T1X

∗ + α2
2T2Y

∗)
G2(X,Y )

− 2r3
(X + Y )

]
(Y − Y ∗) (Z − Z∗) .

Provide both inequalities (17-19), it gets

dL

dt
<−

[√
r1
K

− β2TY ∗

F2 (K1)
− α2

1T1Z∗

G2 (K1,K2)
+

√
r2
K

− α2
2T2Z∗

G2 (K1,K2)

]2

−

[√
r3
2K

−

√
r2
K

− α2
2T2Z∗

G2 (K1,K2)

]2

−

[√
r1
K

− β2TY ∗

F2 (K1)
− α2

1T1Z∗

G2 (K1,K2)
−
√

r3
2K

]2

.

So, dL
dt is negative, and hence L2 is Lyapunov function with respect to S4 = (X∗, Y ∗, Z∗),

this proves the Theorem.

4. Hopf-bifurcation

Here, the occurrence of Hopf bifurcation in system1 near all steady states, are discussed
as follows:

From Theorem (3) it is observed that the only prey existence steady state S1 =
(K, 0, 0), apex predator-free steady state S2 = (S̄, S̄, 0), are not LAS, Therefore there
is no possibility to have a Hopf bifurcation near S1 and S2. The conditions that guaran-
tee the occurring of Hopf bifurcation near, intermediate predators-free steady state S3 =(
S̄, 0, S̄ ) and coexistence steady state S4 = (X∗, Y ∗, Z∗) are established in Theorem 4.1

and Theorem 4.2, respectively.

Theorem 4.1. System (1) exhibits a Hopf bifurcation near intermediate predators-free
steady state as the parameter r3 passes through the value.
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r3 =
A2 (R1R5 −R2R4)

C2 +A2 (R1 +R3 +R5)
. (20)

If one of the following conditions holds
R1 +R5 < 0, R1R5 > R2R4 and R1 +R3 +R5 > −C2

A2
, R1 +R5 < 0, R1R5 <

R2R4 and R1+R3+R5 < −C2
A2

, where A2, C2 and Ri; i = 1, 2, 3, 4, 5 are given in previous
section.

Proof. Recall that the eigenvalues of Variational matrix at S3 = (S̄, 0, S̄) satisfy

λ3 +A2λ
2 +B2λ+ r3C2 = 0. (22)

The Hopf bifurcation near intermediate predators-free steady state of system (1) occurs
if and only if two roots of Eq. (22) have two complex conjugate eigenvalues with the third
eigenvalue real and negative such that there exists a constant parameter value, say r3
satisfying:

Ree (λ (r3))r3=r3
= 0 and

[
dRe e (λ (r3))

dr3

]
r3=r3

̸= 0

where λ is a complex root of Eq. (22) if r3 = r̄3, then A2B2 = r3C2 and hence equation
() can be written (

λ2 +B2

)
(λ+A2) = 0 (23)

Clearly, equation (23) has the following three roots:

λ1 = i
√

B2, λ2 = −i
√

B2 and dλ3 = −A2.

However, for all values of r3 in the neighborhood of r3, these roots can be written in
general as

λ1 = a (r3) + ib (r3) , λ2 = a (r3)− ib (r3) and λ3 = −A2 (r3) .

Clearly, a (r3) = 0 which means that the first condition of Hopf bifurcation holds. Now,
the proof will follows, if we can verify the above second condition (known as transversality
condition) of Hopf bifurcation when Ree (λ (r3)) = a (r3).

Thus, by substituting λ1 = a (r3) + ib (r3) in (22) and calculating the derivative with
respect to the r3, it is obtained that{

D1 (r3)
da(r3)
dr3

−D2 (r3)
db(r3)
dr3

+D3 (r3) = 0

D1 (r3)
db(r3)
dr3

+D2 (r3)
da(r3)
dr3

+D4 (r3) = 0
(24)

where

D1 (r3) = 3 [a (r3)]
2 + 2A2 (r3) a (r3) +B2 (r3)− 3 [b (r3)]

2
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D2 (r3) = 6a (r3) b (r3) + 2A2 (r3) b (r3)

D3 (r3) = a (r3)
dB2 (r3)

dr3
+ C2

D4 (r3) = b (r3)
dB2 (r3)

dr3

Thus, by solving the linear system (24) for the unknown da(r3)
dr3

,it gets

da (r3)

dr3
=

dRee (λ (r3))

dr3
= −D2 (r3)D4 (r3) +D1 (r3)D3 (r3)

[D1 (r3)]
2 + [D2 (r3)]

2

So for r3 = r3, it is easy to verify that[
dRee (λ (r3))

dr3

]
r3=r3

̸= 0

Also, condition (20) or (21) guarantee that A2 is positive for all values of r3, and hence
λ3 = −A2 (r3) < 0. The proof is completed.

In similar ways of proving above theorem we can get the following theorem.

Theorem 4.2. System (1) exhibits a Hopf bifurcation coexistence steady state as the
parameter r3 passes through the value

r3 =
A3 (E1E5 − E2E4)

C3 +A3 (E1 + E3 + E5)
(25)

If one of the following condition holds

E1 + E5 < 0, E1E5 > E2E4 and E1 + E3 + E5 + E6 > −C3

A3
E1 + E5 < 0,

E1E5 < E2E4 and E1 + E3 + E5 + E6 < −C3

A3

where A3, C3 and Ei; i = 1, 2, 3, 4, 5, 6 are given in previous section

5. Numerical simulation

In order to support the analytical finding in this paper via the phase portrait and time
series[22] , some numerical simulations are performed; all the simulations are carried out
through runga kutta method of order six method, using MATLAB. First, we assume two
set of parameter values as given in (27) and (28).

r1 = 0.5, r2 = 0.3, r3 = 0.15, K = 1000, β = 0.001

T = 1, α1 = 0.005, α2 = 0.004, T1 = 1 and T2 = 1
(27)
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r1 = 1.2, r2 = 0.9, r3 = 0.15, K = 1000, β = 0.001

T = 1, α1 = 0.005, α2 = 0.004, T1 = 1 and T2 = 1
(28)

The parameter values in (27) and (28), satisfy the condition for global stability of the
intermediate predator-free steady state and coexistence steady state, respectively.

Figure 1: Both the time series and the phase portrait shows that model 1 approaches intermediate predator free
Steady state, when the parameter values are as given in (27).
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Figure 2: Both the time series and the phase portrait shows that model 1 approaches coexistence Steady state,
when the parameter values are as given in (28)

Therefore, Fig. 1 and Fig. 2 confirm the analytical results regarding to global stability
of intermediate predator-free steady state and coexistence steady state, respectively.

The critical values r3 ≈ 0.11 and r3 ≈ 0.95 for the parameters given in (27) and (28),
respectively.

First let decrease the value of r3 to 0.1 and fixed another parameter as given in (27),
then it is observed that, the dynamics of the system (1) induced a transition from the a
stability situation to the state where the prey species and apex predators oscillate peri-
odically oscillate periodically as illustrated in Fig.3. Further, for a range of values r3 ∈
[004,0.12], in Fig.4, bifurcation diagram with respect to r3 is drawn. From Fig. 4, the
prey and apex predator populations show oscillatory for the further smaller values of r3;
This indicates that decreasing r3 may induce a transition from the a stability situation to
the state where the populations oscillate periodically.
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Figure 3: Both the time series and the phase portrait show periodic oscillations around intermediate predators-
free steady state, when r3 = 0.1 and other parameter values are as given in (27).
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Figure 4: The figure shows the bifurcation diagrams of system (1), which indicates the emergence of Hopf
bifurcations as parameter r3 decreases, and other parameters are fixed as in(27).

Again let further decrease the value of r3 to 0.07 and fixed other parameters given in
(28), then it is observed that, the dynamics of the system (1) induced a transition from
the a stability situation to the state where the population oscillate periodically oscillate
periodically as illustrated in Fig.5. Further, for a range of values r3 ∈ [0, 0.2], in Fig.6,
bifurcation diagram with respect to r3 is drawn. From Fig. 6, all the species show
oscillatory for the further smaller values of r3; This indicates that decreasing r3 may
induce a transition from the a stability situation to the state where the populations oscillate
periodically.
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Figure 5: Both the time series and the phase portrait shows periodic oscillations around coexistence Steady
state, when r3 = 0.07 and other parameter values are as given in (28).

Note that Fig. 3 and Fig. 5 confirms the analytical finding in Theorem 6 and Theorem
7, respectively.
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Figure 6: The figure shows the bifurcation diagrams of system (1), which indicates the emergence of Hopf
bifurcations as parameter r3 decreases, and other parameters are fixed as in(28).

6. Conclusion

A three species food-web is considered in this paper, the species are, prey, interme-
diate predators and apex predators, the intermediate predators predating the prey with
the Holling type-II functional response, while the apex predators predating both prey
and intermediate predators according to extended Holling type II functional response
for two prey species. it is proved that under condition (5)and(6), the model is per-
manent, it is explored that the model has biologically possible steady states, they are
S1 = (K, 0, 0), S2 = (S̄, S̄, 0), S3 = (S̄, 0, S̄) and S4 = (X∗, Y ∗, Z∗), and also it is discov-
ered that both S1 = (K, 0, 0), S2 = (S̄, S̄, 0) are unstable, but stability as well as global

stability for both S3 = (S̄, 0, S̄) and S4 = (X∗, Y ∗, Z∗) based on the sample parameters
are given. And also it is proved that critical values r3 and r3, make the occurrence of
Hopf-bifurcation of thee model near S3 = (S̄, 0, S̄) and S4 = (X∗, Y ∗, Z∗), respectively.
The model solved numerically by choosing suitable value of the model parameters as given
in (27) and (28), the numerical solutions insulated in Fig. 1 and Fig.2, it is explained that

both figures confirms analytical results regarding to the stability of both S3 = (S̄, 0, S̄)
and S4 = (X∗, Y ∗, Z∗), respectively. Also we have shown that Fig 3, and Fig.4, confirm

analytical results regard to Hopf-bifurcation near S3 = (S̄, 0, S̄) and S4 = (X∗, Y ∗, Z∗),
respectively. Because they show periodic solution of the model.
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