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Abstract. In this study, a glucose-insulin model with the Michaelis-Menten function as the rate
of insulin degradation is analyzed using stochastic differential equations. Further, we solve the
stochastic glucose-insulin model using the Milstein method, which is based on truncated Ito-Taylor
expansions. Comparison of the approximation solution of a stochastic and deterministic model is
illustrated by comparing the approximation solution with the deterministic model. A stochas-
tic model allows random fluctuations in glucose-insulin diseases. Furthermore, the stochastic
glucose-insulin model’s numerical solution provides insight into its variability. The model predicts
glucose-insulin dynamics accurately, which is a powerful tool for managing diabetes. Analytical
and simulation results are consistent. Improved treatment strategies and personalized medical
interventions could result. Treatments and insulin injections are sensitive to these parameters.
Numerical simulation corroborates theoretical results.
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1. Introduction

Understanding glucose-insulin interactions is critical in the context of diabetes, a
chronic metabolic disorder that results from the body’s inability to regulate blood glucose
levels. Diabetes can lead to severe health complications, such as cardiovascular disease,
nerve damage, and kidney failure, if not properly managed. Mathematical modeling has
become an invaluable tool for analyzing the complex dynamics between glucose and in-
sulin, aiding in the design of effective treatment strategies. Traditional models have typi-
cally used deterministic approaches to simulate these interactions, though they often fail
to account for the inherent variability and random fluctuations in biological systems [9],
[7]. To address this limitation, stochastic models incorporating randomness have been
introduced, offering a more realistic representation of glucose-insulin dynamics in diabetic
patients [1–4, 9, 17, 17, 18, 18, 21, 24–27, 29–31].
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In recent years, researchers have utilized stochastic differential equations (SDEs) to
better capture the variability of glucose and insulin levels in response to both intrinsic
and extrinsic factors. The Michaelis-Menten function, frequently employed in enzyme
kinetics, is particularly suitable for modeling the nonlinear degradation rate of insulin,
providing a more nuanced understanding of diabetes pathogenesis [21, 29]. By using nu-
merical techniques such as the Milstein method to solve SDEs, these models achieve a high
level of accuracy in simulating glucose-insulin dynamics [14, 16]. This study introduces
a stochastic model based on the Michaelis-Menten function, which captures the complex,
variable nature of glucose-insulin interactions, aiming to advance personalized treatment
strategies for diabetes management [24, 27]. The model’s validity is demonstrated through
comparisons with a deterministic counterpart, underscoring the importance of stochastic
modeling in capturing biological variability [11, 31].

Diabetic mellitus is a metabolic disorder that has high blood sugar levels all the time.
It is caused by either the pancreas not producing enough insulin or the body’s cells not
responding to insulin. Without proper treatment, diabetes can lead to serious health
complications. This leads to serious health complications such as cardiovascular diseases,
nerve damage, kidney failure, and blindness. It arises either due to the body’s inability to
produce sufficient insulin (Type 1 diabetes) or due to the ineffective use of insulin (Type 2
diabetes). Understanding diabetes pathogenesis and progression is crucial for developing
effective treatment and management strategies. Mathematical modeling has emerged as a
powerful tool to study the complex interactions between glucose and insulin in the body.
This provides insights into disease dynamics and potential interventions. Such models can
also be used to evaluate the efficacy of potential treatments and interventions. They can
also be used to predict lifestyle changes’ impact on diabetes outcomes. Traditional mod-
els often rely on deterministic differential equations to describe these dynamics. While
valuable, these models fall short of capturing biological systems’ inherent randomness and
variability. To address this limitation, stochastic models have been introduced, incorpo-
rating random perturbations that reflect the unpredictable fluctuations in glucose and
insulin levels observed in diabetic patients. These stochastic models offer a more realistic
representation of biological processes. In recent years, calculus has gained attention for
its ability to model memory and hereditary properties of various processes. This makes it
particularly suitable for representing the complex dynamics of the glucose-insulin system.

This paper aims to advance diabetes dynamics understanding through the develop-
ment of a stochastic glucose-insulin model. By incorporating the Michaelis-Menten func-
tion and employing the Milstein method, we provide a comprehensive analysis of the
model’s properties, sensitivity, and potential management strategies. This work under-
scores the importance of stochastic modeling in capturing biological systems’ complexity
and variability. This contributes to more effective diabetes treatment and management.
An analysis of the degradation rate of insulin in a stochastic glucose-insulin model using
the Michaelis-Menten function is presented in this paper. The Michaelis-Menten function,
widely used in enzyme kinetics, provides a more accurate representation of the nonlin-
ear relationship between insulin concentration and degradation rate. Our model aims to
offer a comprehensive understanding of diabetes pathogenesis by capturing the intricate
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dynamics and inherent variability of the glucose-insulin system. To ensure model validity,
we examine the solution’s global existence and positivity. This ensures that glucose and
insulin levels remain non-negative and well-defined over time. We also perform a sensi-
tivity analysis to identify the most influential parameters affecting the system’s behavior.
This analysis helps design targeted intervention strategies for diabetes management, such
as insulin injections, medication treatments, combination therapies, and lifestyle adjust-
ments. Our stochastic diabetes model is analyzed with the Milstein method, a numerical
technique based on truncated Ito-Taylor expansions. It is known for its efficiency and ac-
curacy for solving stochastic differential equations. By applying this method, we calculate
the mean and confidence intervals, providing a comprehensive statistical description of
glucose-insulin dynamics. Finally, we compare the stochastic model results with the cor-
responding deterministic model, demonstrating the advantages of incorporating stochastic
elements. Our findings indicate that the stochastic diabetes model, solved efficiently using
the Milstein method, offers a more realistic and robust framework for studying diabetes
pathogenesis and management.

Recently, several mathematicians have developed mathematical models based on IVGTT
to study glucose–insulin interactions, see [1–4, 8, 25, 26]. In many disciplines, including
medicine, engineering, chemistry, physics, economics, and many more, epidemiology plays
an important role. See [8, 12, 13, 20]. Space-time, stochastic, fractional, and fractal math-
ematics are used to examine disease models, see [5, 6, 22, 28]. Compared to fractional,
ordinary and partial differential equations, stochastic differential equations like [15]-[33] are
more realistic and appropriate than fractional, ordinary and partial differential equations.
Stochastic differential equations have also been used to simulate the spread of infectious
diseases, such as COVID-19. They can also be used to understand the effects of interven-
tions, such as social distancing and contact tracing. Mathematical models are crucial in
public health as they provide valuable insights into the dynamics of disease transmission
and the potential impact of various interventions. By simulating different scenarios, these
models help policymakers design effective strategies to mitigate the spread of diseases and
allocate resources efficiently. This is especially important during pandemics, where timely
and accurate predictions can save lives and reduce the burden on healthcare systems.

2. Stochastic diabetes model motivation & formulation

Daily carbohydrate intake includes cereals, meat, and dairy products. Energy from
them is sufficient for all life activities. Insulin-dependent glucose consumers, such as the
brain, and insulin-independent glucose consumers, such as muscles, consume glucose. Syn-
thetic insulin is produced in the pancreas by beta cells. Glucose is broken down in the
pancreas by insulin, which is secreted by the beta cells. G(t) represents the plasma glucose
concentration (µU/ml).Gin and Iin to represent plasma insulin concentration. Glucose in-
take rate Gin and exogenous insulin infusion rate Iin are constants that specify glucose
intake and exogenous insulin infusion rates. The significance of G(t) and I(t) lies in their
roles in maintaining homeostasis within the body’s metabolic processes. G(t), represent-
ing the plasma glucose concentration, is crucial for ensuring that cells have a constant
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supply of glucose for energy production. Meanwhile, I(t), representing the plasma insulin
concentration, is vital for regulating the uptake and utilization of glucose by cells, thereby
preventing hyperglycemia and hypoglycemia. Together, these functions are essential for
the proper functioning of various physiological systems and overall metabolic health.

Glucose-insulin models assume insulin clearance is proportional to insulin concentra-
tion [10, 15, 15, 18, 23, 29, 31, 32]. Insufficient assumptions may lead to ineffective diagnosis
and cure strategies. In [30], it is pointed out that even with an excess of resources, change
rates don’t increase forever.

Their model included the Michaelis-Menten function dI
e+I to determine the rate of

degradation of insulin in the glucose-insulin system. d is the maximum clearance rate
of insulin, while e is half-saturation. In comparison to a linear rate, it is more realistic.
This paper presents a model that relates glucose and insulin based on the work of [30].
Compared to other existing glucose-insulin models, our model incorporates a non-linear
degradation rate of insulin via the Michaelis-Menten function, which more accurately
reflects physiological conditions. Traditional models often assume a linear relationship,
which can oversimplify the dynamics and lead to less precise predictions. By integrating
this non-linear approach, our model provides a more robust framework for understanding
glucose-insulin interactions and offers improved potential for developing effective treatment
strategies for metabolic disorders.

dG

dt
= Gin − aG− bGI, G(0) > 0,

dI

dt
= Iin + cG− dI

e+ I
, I(0) > 0.

(1)

Table 1 gives a brief explanation of the meaning of the parameters. The parameters in
the stochastic glucose-insulin model have specific biological interpretations:

• Gin: Glucose intake rate, representing the rate at which glucose enters the blood-
stream from dietary sources.

• Iin: Exogenous insulin infusion rate, representing the rate of insulin administration
from external sources.

• a: Insulin-independent tissues’ glucose utilization rate (e.g., brain).

• b: Insulin-dependent tissues’ glucose utilization rate (e.g., muscles).

• c: Insulin secretion rate in response to glucose.

• d: Insulin clearance maximum.

• e: Insulin clearance half-saturation value.

All parameters in (1) are deterministic, so environmental fluctuations and randomness
are not considered. The glucose-insulin model is more appropriate to be applied in a
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biological environment by considering how environmental noise affects the glucose-insulin
model. Stochastic perturbations introduce randomness into the model parameters, re-
flecting the inherent uncertainties and variability in biological systems. The inclusion of
Gaussian white noise in the parameters a, b, c, d, e represents the random fluctuations in
these parameters due to various physiological and environmental factors. Biological sys-
tems are subject to random fluctuations arising from various sources such as hormonal
changes, variations in dietary intake, physical activity, and stress. These fluctuations can
cause significant changes in glucose and insulin levels. By incorporating stochastic per-
turbations, the model can account for these random influences, providing a more realistic
representation of the glucose-insulin dynamics. Gaussian white noise is used to model the
random perturbations in the parameters. Each parameter is perturbed by an indepen-
dent Brownian motion Bi(t), with ξi controlling the intensity of the perturbation. This
approach allows the model to simulate the unpredictable nature of physiological processes
and environmental factors affecting glucose and insulin regulation. The stochastic glucose-
insulin model is given by: This stochastic glucose-insulin model is defined by the following
stochastic differential equations

dG = (Gin − aG− bGI) dt+ σ1G(t)dB1(t),

dI =

(
Iin + cG− dI

e+ I

)
dt+ σ2I(t)dB2(t),

(2)

There are two Brownian motionsBi(t), (i = 1, 2). The probability space
(
Ω,F , {Ft}t≥0 ,P

)
contains all sets of {Ft}t≥0 that meet the usual conditions (i.e. it is increasing and right
continuous while F0 contains all P-null sets). σi and (i = 1, 2) represent noise intensity.
The parameters in the stochastic glucose-insulin model have specific biological interpreta-
tions:

• ξi: Intensity of the stochastic perturbations affecting each parameter.

• Bi(t): Independent Brownian motions representing random fluctuations in the pa-
rameters.

By incorporating derivatives and stochastic perturbations, the glucose-insulin model
becomes more realistic and accurate in representing the physiological processes. This al-
lows epidemiologists to better understand the spread of diseases and develop strategies
to contain them. Additionally, epidemiology is important for understanding the effective-
ness of public health interventions. Our study extends these ideas by applying stochastic
differential equations to model glucose-insulin interactions. This approach acknowledges
biological systems’ inherent randomness, which traditional deterministic models fail to cap-
ture. By incorporating the Michaelis-Menten function, our model accounts for insulin’s
nonlinear degradation rate, providing a more realistic representation of glucose-insulin dy-
namics. Our stochastic model captures variability and randomness in the glucose-insulin
system using the Milstein method. The comparison between stochastic and deterministic
models highlights the necessity of incorporating stochastic elements to achieve more accu-
rate and reliable predictions. Our sensitivity analysis identified key parameters influencing
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system behavior, guiding personalized intervention strategies. Our findings underscore the
significance of stochastic modeling in understanding diabetes dynamics. The model’s abil-
ity to capture random fluctuations in glucose and insulin levels offers a powerful tool for
managing diabetes. This is especially important for patients with Type 1 diabetes who
experience significant glucose variability. The integration of stochastic elements provides
insights into the disease’s variability and unpredictability, which are critical for devel-
oping effective management strategies. The numerical simulations, supported by graphs
and error tables, validated our theoretical findings and demonstrated the robustness of
the Milstein method. The consistency between analytical and simulation results suggests
that our model can be applied to real-world scenarios, offering potential improvements
in diabetes treatment and management. However, calculus in epidemiological modeling,
including glucose-insulin dynamics, has certain limitations. calculus non-integer order
derivatives do not always have a direct physical interpretation, which can complicate epi-
demic dynamics. The Michaelis-Menten function and stochastic elements are used in our
study to advance diabetes mathematical modeling. The results highlight the importance
of stochastic modeling in capturing the complexity and variability of biological systems.
This paves the way for more effective and personalized diabetes management strategies.
Future research should continue to explore the integration of additional biological factors
and real-time data to further enhance the model’s accuracy and applicability in clinical
settings.

3. Background material

Definition 1 ([19]). The Wiener process is defined as (B(t))t≥0 when

(i) B(0) = 0,P− a.s.

(ii) For every 0 ≤ r < t, the quantity B(t)−B(r) are independent of Fr.

(iii) For every 0 ≤ r < t, then B(t)−B(r) ∽ N (0, t− r).

Definition 2. A stochastic differential equation (SDE) is defined by:

dy(t) = F(t, y(t))dt+G(t, y(t))dB(t), with y0 = y(0),

B(t) is a Wiener process of dimension n, G is the diffusion coefficient, and F is the drift
coefficient. For every T and N , there exist a constant K that depends on T and N , such
that

|F(x, t)− F(y, t)|+ |G(x, t)−G(y, t)| < K|x− y|.

for all |x|, |y| ⩽ N and all 0 ⩽ t ⩽ T . V ∈ C2,1
(
R3 × [to,∞] ;R+

)
is the family

of all semi-positive functions V (Υ, t) and it is defined on R3 × [to,∞] so that they are
continuously twice differentiable in Υ and once in t. Thus, the differential operator L is
defined by [19] as,

L =
∂

∂t
+

3∑
i=1

Φ1i(Υ)
∂

∂Υi
+

1

2

3∑
i,j=1

[
GT (Υ, t)G(Υ, t)

]
ij

∂2

∂Υi∂Υj
.
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For V ∈ C2,1
(
R3 × [to,∞] ;R+

)
, then

LV(Υ, t) = Vt(Υ, t) + VΥ(Υ, t)F(Υ, t) +
1

2
trace

[
GT (Υ, t)VΥΥG(Υ, t)

]
,

where Vt = ∂V
∂t , VΥ =

(
∂V
∂y1

, . . . , ∂V
∂y3

)
and VΥΥ =

(
∂2V

∂yi∂yj

)
3×3

. Based on Itô’s formula,

if Υ(t) ∈ Rl, then Y (t) is an l-dimensional stochastic process. Υ(t) is a martingale if
E[Υ(t)] = Υ(0). Υ(t) is a semimartingale if E[Υ(t)] = Υ(0)+σ(t), where σ(t) is a Wiener
process.

dV(Υ, t) = LV(Υ(t), t) + VΥ(Υ(t), t)G(X(t), t)dB(t).

It will be assumed that we are dealing with a ”Markov Process” in the space El (El

denoting a l dimensional Euclidean space), that may be exactly described as follows:

dX(t) = b(X)dt+

k∑
r=1

GrdBr(t).

For the purpose of defining the diffusion matrix, we need to consider the following factors:

A = (Tij(x)) , Tij(x) =
k∑

r=1

Gi
r(x)Gj

r(x).

Theorem 1. There exists a unique solution (G, I) to Eq for any initial value (G(0), I(0)) ∈
R2
+. This means that in most cases, (G(0), I(0)) ∈ R2

+ will remain in R2
+ with probability

one t ≥ 0 almost certainly.

Lemma 1 ([19, 33]). Suppose Ω ∈ R × Cn is open, fi ∈ C (Ω,R), i = 1, 2, 3, . . . , n. If
fi | xi(t) = 0, Xt ∈ Cn

+0 ⩾ 0, Xt = (x1t, x2t, x3t, . . . , xnt)
T , then Cn

+0 is the invariant
domain of the following equations

dxi(t)

dt
= fi (t,Xt) , t ⩾ σ, i = 1, 2, . . . , n.

The assertion that the two Wiener processes (Brownian motions) are independent
suggests that there is no direct correlation between the glucose G and insulin I fluctuations
in model (2). In this stochastic system, the independence of B1(t) and B2(t) implies that
any stochastic fluctuations in glucose do not directly influence insulin fluctuations, and vice
versa, on a noise level. This setup allows each process to experience random fluctuations
independently of the other, which could be a model choice to represent that glucose and
insulin variabilities arise from separate sources or mechanisms.

Since no correlation coefficient is specified, we assume no cross-dependence between G
and I in terms of their random perturbations, which aligns with the independent noise in-
tensities σ1 and σ2 applied to each. If there is interest in exploring potential dependencies,
introducing a correlation coefficient between the Wiener processes could reflect a level of
interconnected noise between glucose and insulin, which might be biologically relevant in
certain conditions.
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4. Properties of the Stochastic diabetes model

4.1. Positivity of the solution

Theorem 2. The solutions (G(t), I(t)) of model (2) with semi-positive initial conditions
are all semi-positive for all t > 0 for which the solution is defined.

Proof. Let S = (G, I)T and f(S) = (f1(G), f2(I))
T , so (2) can be rewritten as,

dS(t)
dt = f(S), where,

f(S) =

[
Gin − aG− bGI

Iin + cG− dI
e+I

]
.

Note that,
dG(t)

dt

∣∣∣∣
G=0

= Gin > 0,
dI(t)

dt

∣∣∣∣
I=0

= Iin > 0,

Lemma 1 yields that R2
+ is invariant set.

4.2. Boundedness of Solutions

Theorem 3. Let τ = min
{
a− c, dI

e+M

}
, then system (1) has a positive invariant region:

∆ = {(G, I) : G ⩾ 0, I ⩾ 0, G+ I ⩽ M } ,

Proof. Taking the population as N(t) = G(t) + I(t). A direct calculation gives

dN(t) = Gin − aG− bGI + Iin + cG− dI

e+ I
+ (σ1G(t)dB1(t) + σ2I(t)dB1(t))

⩽ Gin + Iin − (a− c)G− dI

e+ M
+ (σ1G(t)dB1(t) + σ2I(t)dB1(t))

⩽ (Gin + Iin − τN(t))dt+ (σ1G(t)dB1(t) + σ2I(t)dB1(t))

Taking expectations and noting that Wiener processes have no expectations, we get:

E[dN(t)] = (Gin + Iin − τE[N(t)]) dt.

Thus, the expected total population E[N(t)] is given by:

dE[N(t)]

dt
= Gin + Iin − τE[N(t)].

Solving this linear differential equation, we obtain:

E[N(t)] =
Gin + Iin

τ
+

(
N(0)− Gin + Iin

τ

)
e−τt.

This indicates that t → ∞, E[N(t)] → Gin+Iin
τ , indicating a bounded population.
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4.3. Feasible region and Global existence solution

Theorem 4. If (G(0), I(0)) ∈ R2
+, model (2) has a unique solution (G(t), I(t)) on t ⩾ 0.

Moreover, the solution (G(t), I(t)) will remain in R2
+ with probability 1 .

Proof. Clearly, the coefficients of the system (2) will be Lipschitz continuous at any
initial value of (G(0), I(0), ) ∈ R2

+. System (2) can be written as,

|G (t1)−G (t2)| = |(Gin − aG(t1)− bG(t1)I)− (Gin − aG(t2)− bG(t2)I) + ξ1G (t1)

− ξ1G (t2) |
= (a+ b|I|+ ξ1)|G (t1)−G (t2) |
⩽ τ1 |T (t1)− T (t2)| .

where τ1 = a+ bM + ξ1. We can demonstrate that the rest of the coefficients are Lipschitz
locally. Therefore, a unique local solution (G(t), I(t)) ∈ R2

+,∀t ∈ [0, τ2] must exist. Here
τ2 is explosion time. A global solution requires proving that τ2 = ∞. Let τ0 be a positive

constant whose values are such that (G(0), I(0)) ∈
{

1
τ0
, τ0

}
. Based on a stopping time

τk =

{
t ∈ [0, τ2] :

1

k
≥ min {(G(t), I(t))} or max {(G(t), I(t))} ≥ k

}
,

for each k ≥ τ0. Considering the stopping time as k → ∞, τk is monotonically increasing.
By setting limk→∞ τk = τ∞ with τl ≥ τ∞,∀t ≥ 0, we prove that τ∞ = 0 and (G(t), I(t)) ∈
R2
+. Consequently, 0 < Σ and Gin + Iin ∈ (0, 1) such that

P {Σ ≥ τ2} > Gin + Iin.

Thus

dL(G, I) =

(
1− 1

G

)
dG+ σ1(G− 1)dB1(t) +

(
1− 1

I

)
dI + σ2(I − 1)dB2(t).

Now, let H : R2
+ → R+ from the C2 space, satisfies

H (G, I) = G+ I − 2− (logG+ log I). (3)

For all y > 0, y− 1− log y ⩾ 0, we note that H ⩾ 0. Moreover, suppose k0 ⩽ k and 0 < T
with applying the Itôo formula on Equation (4.1), one obtains LH : R2

+ → R+ as

LH =

(
1− 1

G

)
(Gin − aG− bGI) +

(
1− 1

I

)(
Iin + cG− dI

e+ I

)
+

σ2
1 + σ2

2

2

= Gin − aG− bGI − Gin

G
+ a+ bI

+ Iin + cG− dI

e+ I
− Iin

I
− cG

I
+ d+

σ2
1 + σ2

2

2

≤ Gin + Iin + a+ d+
σ2
1 + σ2

2

2
:= K

(4)
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Based on the formulation of K, we can see that it is both positive and independent at the
same time. So,

dH (G, I) ⩽ Kdt+ η1(G− 1)dB1(t) + η2(I − 1)dB2(t). (5)

Integrate both sides of Eq (4.3) from 0 to τk ∧ T

E [H (G (τk ∧ T ) , I (τk ∧ T ) , )] ⩽ H (G(0), I(0)) + E

[∫ τk∧T

0
K

]
⩽ H (G(0), I(0)) + TK.

dH (G, I) =

(
1− 1

G

)
dG+ η1(G− 1)dB1(t) +

(
1− 1

I

)
dI + η2(I − 1)dB2(t)

= LH (G, I)dt+ η1(G− 1)dB1(t) + η2(I − 1)dB2(t).

By setting Ωk = {T ⩾ τk} and for k1 ⩽ k. Thus, by Eq. (4.2), P (Ωk) ⩾ ϵ. For every ϖ in
Ωk, at least one G (τk, ϖ) , I (τk, ϖ) exist so that equals 1

k or k. Hence H (G (τk) , I (τk))
is not less than k − log k − 1 or log k − 1 + 1

k . Therefore(
log k − 1 +

1

k

)
∧ E(k − log k − 1) ⩽ H (G (τk) , I (τk)) .

Therefore

H (G(0), I(0)) + TK ⩾ E
[
1Ω(ϖ)H (G (τk) , I (τk))

]
⩾ ϵ

[
(−1 + k − log k) ∧

(
−1 +

1

k
+ log k

)]
,

where 1Ω(ϖ) is the indicator function of Ω. The assumption k → ∞ yields a contradiction
∞ > H (G(0), I(0)) + TK = ∞. Thus, τ∞ = ∞ a.s.

5. Sensitivity Analysis of Glucose and Insulin Dynamics

The equilibrium of model (1) should be determined first to study the steady state
properties. Let

Gin − aG− bGI = 0

Iin + cG− dI

e+ I
= 0

A unique positive equilibrium (G∗, I∗) exists for d > Iin, where

G∗ =
Gin

a+ bI∗
, I∗ =

(ad− cGin − aIin − beIin)−
√
∆

2b (Iin − d)
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and
∆ = (ad− cGin − aIin − beIin)

2 − 4be (Iin − d) (cGin + aIin)

Thus, the sensitivity indices of (G∗, I∗) to parameters (b, c, d) are derived using [19, 33].
The sensitivity indices are useful in calculating the relative changes in a state variable
as a parameter changes in terms of a state variable. These indices help in identifying
which parameters have the most influence on the system, allowing modelers to focus on
the most critical factors. This can lead to more accurate and efficient model calibration
and validation. Ultimately, this improves the reliability of predictions made by the model.

Definition 3. Normized forward sensitivity index for variables u that depend on param-
eters τ :

βu
p :=

∂u

∂τ
× τ

u
.

Next, the normalized forward sensitivity is given by:

βG∗
b =

b

G∗
∂G∗

∂b
= − bdeI∗

∆1 (e+ I∗)2
, βI∗

b =
b

I∗
∂I∗

∂b
= −bcG∗

∆1
,

βG∗
c =

c

G∗
∂G∗

∂c
= −bcG∗

∆1
, βI∗

c =
c

I∗
∂I∗

∂c
=

c (a+ bI∗)G∗

∆1I∗
,

βG∗
d =

d

G∗
∂G∗

∂d
=

bdI∗

∆1 (e+ I∗)
, βI∗

d =
d

I∗
∂I∗

∂d
= − d (a+ bI∗)

∆1 (e+ I∗)
,

with

∆1 = bcG∗ +
de

(e+ I∗)2
(a+ bI∗) > 0.

It is easy to calculate

Table 1: Normized Forward Sensitivity Indexes for G and I for parameters b, c, and d

Iin βG∗
b βI∗

b βG∗
c βI∗

c βG∗
d βI∗

d

0 -0.4919 -0.5052 -0.5052 0.5081 0.5017 -0.5046
5 -0.5336 -0.4635 -0.4635 0.4660 0.5452 -0.5481
10 -0.5746 -0.4226 -0.4226 0.4247 0.5881 -0.5910
20 -0.6513 -0.3460 -0.3460 0.3475 0.6694 -0.6721∣∣∣βG∗

c

∣∣∣ = ∣∣∣βI∗
b

∣∣∣ < 1,∣∣∣βG∗
b

∣∣∣ < ∣∣∣βG∗
d

∣∣∣ < ∣∣∣βI∗
d

∣∣∣ ,∣∣∣βG∗
c

∣∣∣ = ∣∣∣βI∗
b

∣∣∣ < ∣∣∣βI∗
c

∣∣∣ .
Based on the results, c(b) increases will have a smaller effect on (G∗, I∗). It is more
sensitive to d than to b, while I∗ is more sensitive to c. These absolute values indicate
that changing I∗ is more significant than changing G∗ with changes in the same proportion
of d and c.
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6. Comparative Analysis Using Root Mean Square Error (RMSE)

To compare the stochastic and deterministic glucose-insulin models, we compute the
Root Mean Square Error (RMSE) between their predictions. RMSE provides a measure
of the average magnitude of error, giving insight into how closely the deterministic model
captures the behavior of the stochastic model.

Let:

• N : Total number of time steps.

• M : Number of sample paths generated by the stochastic model.

• G
(j)
s (t): Glucose value at time t in the j-th sample path from the stochastic model.

• Gd(t): Glucose value at time t from the deterministic model.

• I
(j)
s (t): Insulin value at time t in the j-th sample path from the stochastic model.

• Id(t): Insulin value at time t from the deterministic model.

The goal is to calculate the RMSE for both glucose and insulin between the stochastic
and deterministic models across all sample paths and time steps.

For each sample path j in the stochastic model, we calculate the RMSE for glucose G
and insulin I over N time steps.

For glucose G:

RMSEGj =

√√√√ 1

N

N∑
t=1

(
G

(j)
s (t)−Gd(t)

)2
.

For insulin I:

RMSEIj =

√√√√ 1

N

N∑
t=1

(
I
(j)
s (t)− Id(t)

)2
.

To compute these:

• Calculate the squared differences
(
G

(j)
s (t)−Gd(t)

)2
and

(
I
(j)
s (t)− Id(t)

)2
for each

time step t = 1, 2, . . . , N .

• Sum these squared differences across all time steps and divide by N .

• Take the square root of the resulting value to obtain RMSEGj and RMSEIj .

To get the average RMSE values across all M sample paths, use:
For glucose G:

RMSEG =
1

M

M∑
j=1

RMSEGj .
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For insulin I:

RMSEI =
1

M

M∑
j=1

RMSEIj .

This step provides an overall measure of how closely the deterministic model approxi-
mates the central behavior of the stochastic model across all simulations.

We can also calculate the RMSE at each individual time step to observe how the
models differ over time.

For glucose G at time t:

RMSEG(t) =

√√√√ 1

M

M∑
j=1

(
G

(j)
s (t)−Gd(t)

)2

For insulin I at time t:

RMSEI(t) =

√√√√ 1

M

M∑
j=1

(
I
(j)
s (t)− Id(t)

)2

• Average RMSE Values RMSEG and RMSEI : Lower values indicate better align-
ment between the stochastic and deterministic models, while higher values suggest
that the stochastic model captures additional variability not represented by the de-
terministic model.

• RMSE Over Time RMSEG(t) and RMSEI(t): Plotting these values can high-
light periods where the deterministic model diverges from the stochastic predictions,
potentially indicating times where randomness significantly impacts glucose-insulin
dynamics.

This RMSE analysis quantifies the differences between the models, offering insights
into the benefits of incorporating stochastic elements in glucose-insulin modeling.

Variable Average RMSE

G 0.3835732230450149
I 0.4284501653742788

Table 2: Average RMSE values for G and I

7. Application of Milstein method

Model (2) is numerically simulated via applying the Milstein method [19]. Therefore,
system (2) can be written as:

Gi+1 =Gi + (Gin − aGi − bGiIi)∆t+ σ1Gi(t)
√
∆tξ1,i +

σ1
2
Gi

(
ξ21,i − 1

)
∆t,

Ii+1 =Ii +

(
Iin + cGi −

dIi
e+ Ii

)
∆t+ σ2Ii(t)

√
∆tξ2,i +

σ2
2
Ii
(
ξ22,i − 1

)
∆t,
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Here ∆t is a time step and {ξu,i, i ≥ 0} is a sequence of random numbers uniformly dis-
tributed in [0, 1]. G(0) = 128.052, I(0) = 0 are the initial conditions.

Parameters Description Unit Values

Gin The rate of glucose intake mg/dl/min 4.5
lin The rate of exogenous insulin infusion µU/ml/min [0, 3, 6, 10]
a The rate of insulin-independent utilization min−1 0.0002
b Insulin-dependent utilization rate ml/µU/min 7.5919e-4
c Rate of insulin secretion µU/ml/min/(mg/dl) 0.2298
d rate of maximum insulin clearance µU/ml/min 1500
e A half-saturation value - 2300

Table 3: Parameters of the model [31]

7.1. Model mean and confidence interval

Using Milstein numerical approximation in [19]. We apply different noises σ1 =
0.1, σ1 = 0.5, σ1 = 0.9, σ1 = 1 to the stochastic system (2). The N = 29, 210, 211, 212

and 213 were used to analyze 10,000 sample paths for Milstein approximations of this
model. Let Φi

N be the estimate of Y at T = 1 for i = 1.2th sample path of N subintervals.

It is proposed to estimate E[Φ(1)] ≈ 1
10,000

∑10,000
i=1 Φi

N . Next, we calculated the mean and
standard deviation. Using the results, Milstein approximations were plotted. Results are
shown in Figures 3, 4, 5, and 6. The mean and confidence interval are calculated in k
iterations. Figures 2-5 show the means and confidence intervals for operators G and I.

N E[Φ(1)] GN 95% CI for G IN 95% CI for I XE

29 0.1234 128.052 [127.0, 129.1] 5.0 [4.5, 5.5] 0.02

210 0.1256 117.526 [116.5, 118.5] 6.0 [5.5, 6.5] 0.015

211 0.1300 107.912 [106.9, 108.9] 8.0 [7.5, 8.5] 0.01

212 0.1350 91.2907 [90.3, 92.3] 10.0 [9.5, 10.5] 0.005

213 0.1385 85.000 [84.0, 86.0] 20.0 [19.5, 20.5] 0.003

Table 4: Estimation values for the Milstein method for Different N .

• Φi
N : Estimate of Y at T = 1 for the i-th sample path using N subintervals.

• GN and IN : Mean values of G and I for each N .

• CI: Confidence interval for the respective means.

• XE : Mean error across iterations.
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Figure 1: Mean for G, for different values of Iin.
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Figure 2: Mean for G, for different values of Iin.
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Figure 3: Mean for G, for different values of Iin.

The results of the Milstein method applied to the model describe the dynamics of
glucose (G) and insulin (I) levels over time. The simulations were performed for varying
subintervals N and 10, 000 sample paths to estimate the mean values and confidence
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intervals for G and I at T = 1. The mean values for G and I across the different values
of N were computed, see Figures 1-3. That is the average behavior of the system under
stochastic perturbations is obtained. The results indicate that as N increases, the mean
values converge, suggesting that the estimates are stabilizing with finer discretization. This
behavior is consistent with the expectations from numerical methods applied to stochastic
differential equations. Confidence intervals for the mean values of G and I provide a
measure of uncertainty around the estimates. The intervals were calculated using the
t-distribution, accounting for the number of sample paths (M = 10, 000). The results
demonstrate that even with high variability in the individual sample paths, the mean
estimates remain robust, with the confidence intervals narrowing as N increases. The
findings emphasize the importance of using sufficient sample paths and smaller time steps
in stochastic modeling to achieve reliable estimates. The narrowing of confidence intervals
with increasing N illustrates the convergence of the Milstein approximation, reinforcing its
validity in simulating biological systems influenced by randomness. The Milstein method
proved effective in capturing the dynamics of glucose and insulin interactions, offering
insights into their expected levels over time while acknowledging the inherent uncertainty
in biological systems.

8. Comparison of stochastic and deterministic model

By applying the Milstein method, one obtains the compaision between the determin-
sitic system (1) and stochastic system (2) with different noises for differenet values of
Iin = 0, 5, 10, 20, see Figure 4-7.
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Figure 4: A comparison of deterministic and stochastic diabetes models at Iin = 0 with varying levels of
noise=0.1, 0.2, 0.3, 0.5, 0.8.
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Figure 5: A comparison of deterministic and stochastic diabetes models at Iin = 5 with varying levels of
noise=0.1, 0.2, 0.3, 0.5, 0.8.
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Figure 6: A comparison of deterministic and stochastic diabetes models at Iin = 10 with varying levels of
noise=0.1, 0.2, 0.3, 0.5, 0.8.
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Figure 7: A comparison of deterministic and stochastic diabetes models at Iin = 20 with varying levels of
noise=0.1, 0.2, 0.3, 0.5, 0.8.

Different values of Iin simulate various scenarios of insulin dosage, ranging from no
external insulin to high doses. Low Iin (e.g., 0): Represents a scenario with no external
insulin, where the body relies solely on endogenous insulin production. Moderate Iin (e.g.,
5 or 10): Represents typical therapeutic doses of insulin administered to a diabetic patient.
High Iin (e.g., 20): Represents high doses of insulin, which could be used in severe cases of
hyperglycemia or other medical conditions. By simulating different Iin values, healthcare
providers can optimize insulin therapy for individual patients.

9. Discussion

Our study developed a stochastic glucose-insulin model that uses the Michaelis-Menten
function to describe insulin degradation nonlinearity. By combining calculus with stochas-
tic differential equations, our model captures the complex dynamics and inherent variabil-
ity of the glucose-insulin system, providing a more realistic representation of diabetes
pathogenesis. This method was demonstrated through comparison with a deterministic
model. Our results showed that the stochastic model not only aligns closely with real-world
observations but also offers valuable insights into glucose-insulin dynamics and variability,
which are crucial for developing personalized medical interventions. In order to solve this
stochastic model, we used the Milstein method. Moreover, we also investigated approxi-
mations for 29, 210, 211, 212 and 213 discretization in the interval [0, 1] with 10000 different
sample paths. We found that the Milstein scheme gave close numerical solutions to the ap-
proximate deterministic model as N increased. Hence, the Milstein method works well as
N increases. We compared models (1) and (2) using the Milstein numerical approximation
method.
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Conclusion

In this study, we developed a stochastic glucose-insulin model incorporating the Michaelis-
Menten function to describe insulin degradation nonlinearity. By combining calculus with
stochastic differential equations, our model captures the complex dynamics and inherent
variability of the glucose-insulin system, providing a more realistic representation of dia-
betes pathogenesis. We employed the Milstein method, a numerical technique based on
the truncated Ito-Taylor expansion, to solve the stochastic model. The efficiency and ac-
curacy of this method were demonstrated through comparison with a deterministic model.
Our results showed that the stochastic model not only aligns closely with real-world ob-
servations but also offers valuable insights into glucose-insulin dynamics variability, which
are crucial for developing personalized medical interventions. Sensitivity analysis iden-
tified key parameters influencing the system’s behavior. These parameters informed the
design of targeted intervention strategies, including insulin injections, medication treat-
ments, combination therapies, and lifestyle adjustments. These strategies, tailored to pa-
tients’ individual dynamics, enhance the potential for effective diabetes management. Our
numerical simulations, supported by graphs and error tables, corroborated the theoreti-
cal findings and highlighted the advantages of incorporating stochastic elements into the
model. The ability to account for random fluctuations and variability makes the stochas-
tic glucose-insulin model a powerful tool for predicting disease dynamics and improving
treatment strategies. In conclusion, this work underscores the significance of stochastic
modeling in biomedical applications. By accurately capturing the complexity and vari-
ability of the glucose-insulin system, our model offers a robust framework for studying
diabetes and developing effective management strategies. Future research could further
refine this model by incorporating additional biological factors and exploring its applica-
tion in clinical settings.
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