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Abstract. This paper introduces a novel subclass of bi-univalent analytic functions by utilizing a
symmetric q-derivative operator in conjunction with Gegenbauer polynomials. Within this newly
defined subclass, we derive bounds for the first two Maclaurin coefficients and address the Fekete-
Szegő problem. By varying the parameters in our results between 0 and 1, we obtain a range of
new insights and rediscover some previously established results. This approach not only broadens
the scope of bi-univalent function theory but also deepens the understanding of coefficient bounds
and extremal problems within this context.
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1. Definitions and Preliminaries

Let A denote the class of all analytic functions f defined in the open unit disk U =
{z ∈ C : |z| < 1} and normalized by the conditions f(0) = 0 and f ′(0) = 1. Thus each
f ∈ A has a Taylor-Maclaurin series expansion of the form:

f(z) = z +
∞∑
n=2

an z
n, (z ∈ U). (1)

Let S denote the class of all functions f ∈ A which are univalent in U. In addition,
Subordination, denoted as f ≺ g, between functions f and g in S occurs when there exists
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an analytic function w(z) such that w(0) = 0, |w(z)| < 1 for z ∈ U, and f(z) = g(w(z)).
The inverse function of the function f ∈ S is given by:

f−1(w) = w − a2w
2 +

(
2a22 − a3

)
w3 −

(
5a32 − 5a2a3 + a4

)
w4 + · · · . (2)

A function f is said to be bi-univalent in U if both f(z) and f−1(z) are univalent in
U. Let Σ denote the class of bi-univalent functions in U given by (1).

Lewin [25], Brannan and Clunie [9], and Netanyahu [28] are known to be the first
researchers who have studied the class Σ. Since then, the class Σ has attracted several
researchers, see [2, 3, 13, 16, 20, 27, 30, 33, 34].

Orthogonal polynomials have been widely studied since their discovery by Legendre in
1784 [24]. They have been used as a mathematical approach to solve ordinary differen-
tial equations associated with model problems under certain conditions. The advantages
of orthogonal polynomials in modern mathematics and their application in physics and
engineering cannot be ignored. Orthogonal polynomials play a key role in approximation
theory, differential integral equations, and mathematical statistics. Additionally, these
polynomials have been instrumental in various applications, such as scattering theory, sig-
nal analysis [1, 5, 8, 10, 12, 14, 15, 17, 18, 31].

Let Cα
n (x) be the Gegenbauer polynomial of degree n defined using the following re-

currence relation

Cα
n (x) =

1

n

[
2x(n+ α− 1)Cα

n−1(x)− (n+ 2α− 2)Cα
n−1(x)

]
,

with
Cα
0 (x) = 1,

Cα
1 (x) = 2αx,

Cα
2 (x) = 2α(1 + α)x2 − α.

(3)

The Gegenbauer polynomials generate Legendre polynomials and Chebyshev polyno-
mials when taking α equaling 1/2 and 1, respectively.

Amourah et al. [6] were the first to investigate the polynomials generated by Hα(x, z),
defining them as follows:

Hα(x, z) =
1

(1− 2xz + z2)α
, (−1 ≤ x ≤ 1, and z ∈ U).

Also, since Hα is an analytic function in U, it can be expressed as follows:

Hα(x, z) =
∞∑
n=0

Cα
n (x)z

n. (4)

The theory of q-calculus operators has many applications in science and engineering.
Notably, several researchers have made significant contributions to the study of q-calculus,
see [4, 7, 23, 26, 29].
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Definition 1. ([22]) Let f ∈ A, the Jackson’s q-derivative is defined by

Dqf(z) =

{
f(z)−f(qz)

(1−q)z for z ̸= 0,

f ′(0) for z = 0
(5)

where 0 < q < 1. From (5), we can write

Dqf(z) = 1 +

∞∑
n=2

[n]qanz
n−1 (6)

where [n]q denotes the basic number and given by

[n]q =
1− qn

1− q
, n ∈ N = {1, 2, . . .}.

Definition 2. For a function f given by (1), the symmetric q-derivative is defined as:(
D̃qf

)
(z) =

{
f(qz)−f(q−1z)

(q−q−1)z
z ̸= 0

f ′(0) z = 0
. (7)

Equation (7) implies D̃qz
n = [̃n]qz

n−1, and D̃qf of a function f given by (1) is defined
as (

D̃qf
)
(z) = 1 +

∞∑
n=2

[̃n]qanz
n−1

where the symbol [̃n]q is defined as

[̃n]q =
qn − q−n

q − q−1
.

Using equations (2) and (7), we obtain(
D̃qg

)
(w) =

g(qw)− g
(
q−1w

)
(q − q−1)w

= 1− [̃2]qa2w + [̃3]q
(
2a22 − a3

)
w2 − [̃4]q

(
5a32–5a2a3 + a4

)
w3 + · · ·

(8)

In recent times, numerous researchers have been investigating the concept of bi-univalent
functions linked to Gegenbour polynomials. Some notable studies in this area include ref-
erences [19] and [21]. In the present work, we propose the following novel subclasses.

2. The class Bα
Σ(t, γ, ν, ϵ)

Definition 3. ([32]) For γ ≥ 1, ν, ϵ ≥ 0, 0 ≤ α ≤ 1, ζ = 2γ+ν
2γ+1 and t ∈ (1/2, 1], a

function f ∈ Σ given by (1) is in Mα
Σ(γ, ν, ϵ) if for all z, w ∈ D, it satisfies the following

subordination:

Re

(
(1− γ)

(
f(z)

z

)ν

+ γf ′(z)

(
f(z)

z

)ν−1

+ ζϵzf ′′(z)

)
> α (9)
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and

Re

(
(1− γ)

(
g(w)

w

)ν

+ γg′(w)

(
g(w)

w

)ν−1

+ ζϵzg′′(w)

)
> α (10)

where f ∈ Σ defined by (1), and g = f−1 given by (2).

Definition 4. Let α > 0, γ ≥ 1, ν ≥ 0, ϵ ≥ 0, ζ = 2γ+ν
2γ+1 , t ∈ (1/2, 1], and f ∈ Σ that is

given by (4) is in B̃q
Σ(t, γ, ν, ϵ) if for all z, w ∈ D, it satisfies the following subordination

(1− γ)

(
f(z)

z

)ν

+ γD̃q (f(z))

(
f(z)

z

)ν−1

+ ζϵzD̃q

(
D̃q (f(z))

)
≺ Hα(t, z) (11)

and

(1− γ)

(
g(w)

w

)ν

+ γD̃q (g(w))

(
g(w)

w

)ν−1

+ ζϵzD̃q

(
D̃q (g(w))

)
≺ Hα(t, w), (12)

where g = f−1(w) is given by (2). given by (4).

Definition 5. The function f ∈ 1B̃q
Σ(t, γ, ν) := B̃q

Σ(t, γ, ν, 0) iff it satisfies the following
subordination

(1− γ)

(
f(z)

z

)ν

+ γD̃q (f(z))

(
f(z)

z

)ν−1

≺ Hα(t, z)

and

(1− γ)

(
g(w)

w

)ν

+ γD̃q (g(w))

(
g(w)

w

)ν−1

≺ Hα(t, w).

Definition 6. The function f ∈ 2B̃q
Σ(t, γ, ϵ) := B̃q

Σ(t, γ, 1, ϵ) iff it satisfies the following
subordination

(1− γ)

(
f(z)

z

)
+ γD̃q (f(z)) + ζϵzD̃q

(
D̃q (f(z))

)
≺ Hα(t, z)

and

(1− γ)

(
g(w)

w

)
+ γD̃q (g(w)) + ζϵzD̃q

(
D̃q (g(w))

)
≺ Hα(t, w).

Definition 7. The function f ∈ 3B̃q
Σ(t, γ) := B̃q

Σ(t, γ, 1, 0) iff it satisfies the following
subordination:

(1− γ)

(
f(z)

z

)
+ γD̃q (f(z)) ≺ Hα(t, z)

and

(1− γ)

(
g(w)

w

)
+ γD̃q (g(w)) ≺ Hα(t, w).
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Definition 8. The function f ∈ 4B̃q
Σ(t) := B̃q

Σ(t, 1, 1, 0) iff it satisfies the following subor-
dination:

D̃q (f(z)) ≺ Hα(t, z)

and (
D̃qg(w)

)
≺ Hα(t, w).

Let P = {p : U → C | p(z) = 1 +
∞∑
n=1

pn z
n, is analytic function, and Re(p) > 0}. The

following lemma will be used when proofing our main results.

Lemma 1. ([11]) If p ∈ P, then

|pn| ≤ 2, n ∈ N. (13)

Throughout the rest of the paper, we assume that 0 < q < 1, x ∈
(
1
2 , 1
]
and α is a

nonzero real constant.

3. Main Results

Theorem 1. Let f ∈ B̃q
Σ(t, γ, ν, ϵ). Then

|a2| ≤
2αx

√
x√√√√√√√

∣∣∣∣x2 [α(2[̃2]qγ (ν − 1) + 2[̃3]qγ + ν (ν − 2γ + 1) + 2[̃2]q [̃3]qζϵ
)
− 2 (1 + α)Υ

]
+(1 + 2x)Υ

∣∣∣∣
and

|a3| ≤
2
[
[̃3]qγ − [̃2]qζϵ

]
x2α2

Υ
− 4αx[

γ
(
[̃3]q + ν − 1

)
+ (1− γ) ν + [̃2]q [̃3]qζϵ

] ,
where

Υ :=
(
ν − γ + [̃2]q(γ + ζϵ)

)2
.

Proof. Let f ∈ B̃q
Σ(t, γ, ν, ϵ). By Definition 4, there exist u, v such that u(0) = v(0) = 0

and |u(z)| < 1, |v(w)| < 1 where z, w ∈ U, then

(1− γ)

(
f(z)

z

)ν

+ γD̃q (f(z))

(
f(z)

z

)ν−1

+ ζϵzD̃q

(
D̃q (f(z))

)
= Hα(x, u(z)) (14)



M. Illafe et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 2467-2480 2472

and

(1− γ)

(
g(w)

w

)ν

+ γD̃q (g(w))

(
g(w)

w

)ν−1

+ ζϵzD̃q

(
D̃q (g(w))

)
= Hα(x, v(w)) (15)

Now, let p, q ∈ P given by

p(z) =
1 + u(z)

1− u(z)
= 1 + c1z + c2z

2 + · · ·

and

q(w) =
1 + v(w)

1− v(w)
= 1 + d1w + d2w

2 + · · · .

Hence, we can write

u(z) =
p(z)− 1

p(z) + 1
=

1

2
c1z +

1

2

(
c2 −

1

2
c21

)
z2 + · · · (16)

and

v(w) =
q(w)− 1

q(w) + 1
=

1

2
d1w +

1

2

(
d2 −

1

2
d21

)
w2 + · · · . (17)

Now, using equations (14), (15), (16) and (17), we can write

Hα(x, u(z)) = 1 +
1

2
Cα
1 (x)c1z +

[
1

4
Cα
2 (x)c

2
1 +

1

2
Cα
1 (x)

(
c2 −

1

2
c21

)]
z2 + · · · , (18)

and

Hα(x, v(w)) = 1 +
1

2
Cα
1 (x)d1w +

[
1

4
Cα
2 (x)d

2
1 +

1

2
Cα
1 (x)

(
d2 −

1

2
d21

)]
w2 + · · · . (19)

Also, from equations (18) and (19), we get(
ν − γ + [̃2]q(γ + ζϵ)

)
a2 =

1

2
Cα
1 (x)c1, (20)

(ν − 1)

[
γ [̃2]q +

γ (ν − 2)

2
+

(1− γ) ν

2

]
a22+

[
γ
(
[̃3]q + ν − 1

)
+ (1− γ) ν + [̃2]q [̃3]qζϵ

]
a3

=
1

2
Cα
1 (x)

(
c2 −

c21
2

)
+

1

4
Cα
2 (x) c21,

(21)

−
(
ν − γ + [̃2]q(γ + ζϵ)

)
a2 =

1

2
Cα
1 (x)d1, (22)

and

(ν − 1)

[
[̃2]qγ + 2[̃3]qγ +

(ν + 2) γ

2
+

ν (ν + 3) (1− γ)

2 (ν − 1)
+

2[̃2]q [̃3]qζϵ

(ν − 1)

]
a22

−

[
γ
(
[̃3]q + ν − 1

)
+ (1− γ) ν + [̃2]q [̃3]qζϵ

]
a3 =

1

2
Cα
1 (x)

(
d2 −

d21
2

)
+

1

4
Cα
2 (x) d21.

(23)
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Equations (20) and (22) implies
c1 = −d1 (24)

and

8
(
ν − γ + [̃2]q(γ + ζϵ)

)2
a22 = (Cα

1 (x))
2 (c21 + d21

)
. (25)

Adding (21) and (23), we deduce[
2[̃2]qγ (ν − 1) + 2[̃3]qγ + ν (ν − 2γ + 1) + 2[̃2]q [̃3]qζϵ

]
a22 =

1

2
Cα
1 (x) (c2 + d2)+

1

4
(Cα

2 (x)− Cα
1 (x))

(
c21 + d21

)
.

(26)

Plugging
(
c21 + d21

)
obtained from (25) into (26) yield

[
2[̃2]qγ (ν − 1) + 2[̃3]qγ + ν (ν − 2γ + 1) + 2[̃2]q [̃3]qζϵ−

2Υ [Cα
2 (x)− Cα

1 (x)]

[Cα
1 (x)]

2

]
a22

=
1

2
Cα
1 (x) (c2 + d2) ,

(27)

where

Υ :=
(
ν − γ + [̃2]q(γ + ζϵ)

)2
.

Furthermore, from (13), (19) and (27), it follows that

|a2| ≤
2αx

√
x√√√√√√√

∣∣∣∣x2 [α(2[̃2]qγ (ν − 1) + 2[̃3]qγ + ν (ν − 2γ + 1) + 2[̃2]q [̃3]qζϵ
)
− 2 (1 + α)Υ

]
+(1 + 2x)Υ

∣∣∣∣
Subtracting (21) from (23), we have

2
[
γ
(
[̃3]q + ν − 1

)
+ (1− γ) ν + [̃2]q [̃3]qζϵ

]
(a3 − a22) =

1

2
Cα
1 (x) (c2 − d2)+

1

4
(Cα

2 (x)− Cα
1 (x))

(
c21 − d21

)
.

(28)

Utilizing equations (3) and (25), we can write (28) as

a3 = a22 +
Cα
1 (x)

4
[
γ [̃3]q − (γ − ν) + [̃2]q [̃3]qζϵ

] (c2 − d2) . (29)

Now, using equations (3) and (13), we can write
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a3 =
2α2x3 (c2 + d2)

x2
[
4γ [̃2]q(ν − 1) + 4γ [̃3]q + 2ν(ν − 2γ + 1) + 4[̃2]q [̃3]qζϵ− 2(1 + α)Υ

]
+ (1 + 2x)Υ

+
αx (c2 − d2)

2
[
γ [̃3]q − (γ − ν) + [̃2]q [̃3]qζϵ

] .
(30)

This concludes the proof of Theorem 1.

4. The Fekete-Szegö Inequality |a3 − φa22|

Theorem 2. If f ∈ B̃q
Σ(t, γ, ν, ϵ), then

∣∣a3 − φa22
∣∣ ≤


αx

γ [̃3]q−(γ−ν)+[̃2]q [̃3]qζϵ
if 0 ≤ |h(φ)| ≤ 1

2
[
γ [̃3]q−(γ−ν)+[̃2]q [̃3]qζϵ

] ,
2αx |h(φ)| if |h(φ)| ≥ 1

2
[
γ [̃3]q−(γ−ν)+[̃2]q [̃3]qζϵ

] ,
where

h(φ) =
2(1− φ)αx2

αx2
[
4γ [̃2]q(ν − 1) + 4γ [̃3]q + 2ν(ν − 2γ + 1) + 4[̃2]q [̃3]qζϵ− 2(1 + (1/α))Υ

]
+ (1 + 2x)Υ

,

and

Υ :=
(
ν − γ + [̃2]q(γ + ζϵ)

)2
.

Proof: Consider f in Bα
Σ(x, τ, γ, ν, ϵ), then by (29) we obtain

a3 − φa22 = a22 +
Cα
1 (x)

4
[
γ [̃3]q − (γ − ν) + [̃2]q [̃3]qζϵ

] (c2 − d2)− φa22

= (1− φ)a22 +
Cα
1 (x)

4
[
γ [̃3]q − (γ − ν) + [̃2]q [̃3]qζϵ

] (c2 − d2) .
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Then, in view of (3), and the value of a2 in equation (27), we have

a3 − φa22 =
2(1− φ)α2x3(c2 + d2)

αx2
[
4γ [̃2]q(ν − 1) + 4γ [̃3]q + 2ν(ν − 2γ + 1) + 4[̃2]q [̃3]qζϵ− 2(1 + (1/α))Υ

]
+(1 + 2x)Υ

+
αx

2
[
γ [̃3]q − (γ − ν) + [̃2]q [̃3]qζϵ

] (c2 − d2)

= αx

([
h(φ) +

1

2
[
γ [̃3]q − (γ − ν) + [̃2]q [̃3]qζϵ

]]c2
+

[
h(φ)− 1

2
[
γ [̃3]q − (γ − ν) + [̃2]q [̃3]qζϵ

]]d2),
where

Υ :=
(
ν − γ + [̃2]q(γ + ζϵ)

)2
,

and

h(φ) =
2(1− φ)αx2

αx2
[
4γ [̃2]q(ν − 1) + 4γ [̃3]q + 2ν(ν − 2γ + 1) + 4[̃2]q [̃3]qζϵ− 2(1 + (1/α))Υ

]
+ (1 + 2x)Υ

.

This completes the proof of Theorem 2.

5. Consequences and Corollaries

Corollary 1. If f ∈ 1B̃q
Σ(t, γ, ν), then

|a2| ≤
2αx

√
x√√√√√√√

∣∣∣∣x2[α(2[̃2]qγ (ν − 1) + 2[̃3]qγ + ν (ν − 2γ + 1)
)
− 2 (1 + α)

(
ν − γ + [̃2]qγ

)2 ]
+(1 + 2x)

(
ν − γ + [̃2]qγ

)2 ∣∣∣∣
,

|a3| ≤
2[̃3]qγx

2α2(
ν − γ + [̃2]qγ

)2 − 4xα[
γ
(
[̃3]q + ν − 1

)
+ (1− γ) ν

]
and ∣∣a3 − φa22

∣∣ ≤


αx

γ [̃3]q−(γ−ν)
if 0 ≤ |h(φ)| ≤ 1

2
[
γ [̃3]q−(γ−ν)

] ,
2αx |h(φ)| if |h(φ)| ≥ 1

2
[
γ [̃3]q−(γ−ν)

] ,
where



M. Illafe et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 2467-2480 2476

h(φ) =
2(1− φ)αx2

αx2
[
4γ [̃2]q(ν − 1) + 4γ [̃3]q + 2ν(ν − 2γ + 1)− 2(1 + (1/α))

(
ν − γ + [̃2]qγ

)2]
+(1 + 2x)

(
ν − γ + [̃2]qγ

)2
.

Next, making ν = 1, yields.

Corollary 2. If f ∈ 2B̃q
Σ(t, γ, ϵ), then

|a2| ≤
2αx

√
x√√√√√√√

∣∣∣∣x2[α(2[̃3]qγ + 2 (1− γ) + 2[̃2]q [̃3]qζϵ
)
− 2 (1 + α)

(
1− γ + [̃2]q(γ + ζϵ)

)2 ]
+(1 + 2x)

(
1− γ + [̃2]q(γ + ζϵ)

)2 ∣∣∣∣
,

|a3| ≤
2
[
[̃3]qγ − [̃2]qζϵ

]
x2α2(

1− γ + [̃2]q(γ + ζϵ)
)2 − 4αx[

[̃3]qγ + 1− γ + [̃2]q [̃3]qζϵ
]

and

∣∣a3 − φa22
∣∣ ≤


αx

γ [̃3]q−(γ−1)+[̃2]q [̃3]qζϵ
if 0 ≤ |h(φ)| ≤ 1

2
[
γ [̃3]q−(γ−1)+[̃2]q [̃3]qζϵ

] ,
2αx |h(φ)| if |h(φ)| ≥ 1

2
[
γ [̃3]q−(γ−1)+[̃2]q [̃3]qζϵ

] ,
where

h(φ) =
2(1− φ)αx2

αx2
[
4γ [̃3]q + 4(1− γ) + 4[̃2]q [̃3]qζϵ− 2(1 + (1/α))

(
1− γ + [̃2]q(γ + ζϵ)

)2]
+(1 + 2x)

(
1− γ + [̃2]q(γ + ζϵ)

)2
.

Setting ν = 1 and ϵ = 0, we obtain the following corollary.

Corollary 3. If f ∈ 3B̃q
Σ(t, γ), then

|a2| ≤
2αx

√
x√∣∣∣∣x2 [α(2[̃3]qγ + 2 (1− γ)

)
− 2 (1 + α)

(
1− γ + [̃2]qγ

)2]
+ (1 + 2x)

(
1− γ + [̃2]qγ

)2∣∣∣∣
,
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|a3| ≤
2[̃3]qγx

2α2(
1− γ + [̃2]qγ

)2 − 4αx[
[̃3]qγ + 1− γ

]
and ∣∣a3 − φa22

∣∣ ≤


αx

γ [̃3]q−(γ−1)
if 0 ≤ |h(φ)| ≤ 1

2
[
γ [̃3]q−(γ−1)

] ,
2αx |h(φ)| if |h(φ)| ≥ 1

2
[
γ [̃3]q−(γ−1)

] ,
where

h(φ) =
2(1− φ)αx2

αx2
[
4γ [̃3]q + 4(1− γ)− 2(1 + (1/α))

(
1− γ + [̃2]qγ

)2]
+ (1 + 2x)

(
1− γ + [̃2]qγ

)2 .
Next, letting γ = ν = 1 and ϵ = 0, yields.

Corollary 4. If f ∈ 4B̃q
Σ(t), then

|a2| ≤
2αx

√
x√∣∣∣∣x2 [2α[̃3]q − 2 (1 + α)

(
[̃2]q

)2]
+ (1 + 2x)

(
[̃2]q

)2∣∣∣∣
,

|a3| ≤
2[̃3]qx

2α2(
[̃2]q

)2 − 4αx

[̃3]q

and ∣∣a3 − φa22
∣∣ ≤


αx

[̃3]q
if 0 ≤ |h(φ)| ≤ 1

2[̃3]q
,

2αx |h(φ)| if |h(φ)| ≥ 1

2[̃3]q
,

where

h(φ) =
2(1− φ)αx2

αx2
[
4[̃3]q − 2(1 + (1/α))

(
[̃2]q

)2]
+ (1 + 2x)

(
[̃2]q

)2 .
6. Conclusion

In our current investigation, a novel subclass B̃q
Σ(t, γ, ν, ϵ) of normalized bi-univalent

analytic functions has been delineated. This subclass integrates Gegenbauer polynomials
and a symmetric q-derivative operator series. Initially, we have furnished an estimate for
the primary Taylor-Maclaurin coefficients, |a2| and |a3|. Subsequently, we have success-
fully addressed the Fekete-Szegö inequality problem.
Furthermore, through substituting some values for the parameters ϵ, ν, and γ,we derived
analogous outcomes for the following subclasses: 1B̃q

Σ(t, γ, ν) := B̃q
Σ(t, γ, ν, 0),

2B̃q
Σ(t, γ, ϵ) :=

B̃q
Σ(t, γ, 1, ϵ),

3B̃q
Σ(t, γ) := B̃q

Σ(t, γ, 1, 0), and
4B̃q

Σ(t) := B̃q
Σ(t, 1, 1, 0).
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