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Abstract. Let G be a pair of two sets (V,E) with vertex set V and edge set E. A proper coloring
of a graph G is a vertex coloring of it such that no two adjacent vertices in G have the same color.
By b−Coloring, we define a coloring of the vertex of G such that each color class has at least one
vertex that adjacent with all other color classes. The b− chromatic number of graph G, denoted
by φ(G), is the largest integer k such that graph G has b−Coloring with k colors. In this paper,
we will explore some new lemmas or theorems regarding to φ(G). Furthermore, to see the robust
application of b−Coloring of graph, at the end of this paper we will illustrate the implementation of
b−Coloring on spatial temporal graph neural networks (STGNN) multi-step time series forecasting
on soil moisture and pH of companion farming.
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1. Introduction

A classic and well-known graph theory problem is graph coloring. Graph coloring is one
of the important branches in graph theory that has been the focus of intensive research
in recent years. A graph coloring is considered to be an assignment of colours, labels
or weights to the elements of the graphs. For several decades, graph coloring problems
have become an extremely useful models for many theoretical and practical problems

∗Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v17i4.5409

Email addresses: arika.fkip@unej.ac.id (A. I. Kristiana), d.dafik@unej.ac.id (Dafik),
alfarisi.fkip@unej.ac.id (R. Alfarisi), robiatul@unej.ac.id (R. Adawiyah)

https://www.ejpam.com 3356 Copyright: © 2024 The Author(s). (CC BY-NC 4.0)



A. I. Kristiana et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 3356-3369 3357

[11]. Some types of graph coloring are vertex coloring, total coloring, edge coloring, map
coloring, interval coloring, clique coloring, and bipartite graph coloring. Vertex coloring
refers to the process of assigning colors to vertices in G so that no two adjacent vertices
have the same color. The following are a formal definition of k− coloring of graph.

1.1. Basic Definitions

Definition 1. [6] The minimum number of colors required to properly color a graph G is
its chromatic number G, denoted by χ(G).

Based on these concepts, Irving and Manlove [7] introduced a new concept namely
b−Coloring. Kouider and Maheo [8] provided some upper and lower bound of the b-
chromatic number on b−Coloring of graph. Here is the definition of b−Coloring mentioned
in [5, 7, 8].

Definition 2. [7] A b−Coloring of a graph G is a proper vertex coloring in a way that
each color class has a at least one vertex that is adjacent to every other color class.

Definition 3. [7] The b−chromatic number of graph G is the highest integer k such that
G has a b−Coloring, denoted by φ(G).

Lemma 1. [8] For any graph G, χ(G) ≤ φ(G) ≤ ∆(G) + 1, where ∆(G) is the highest
degree of vertices in G.

Definition 4. [5] Let G and H be two connected graphs. Let o be a vertex of H. The
comb product between G and H, denoted by G▷oH, is a graph obtained by taking one copy
of G and |V (G)| copies of H and grafting the i− th copy of H at the vertex o to the i− th
vertex of G.

Vivin and Venkatachalam [12] determined b−Coloring of sun let graph dan wheel
graph families, Chandel et al., determined b−Coloring of ladder graph [4], Ansari et al.,
determined b-coloring of helm graph and prism graph families [2] [3], Akalyadevi and
Ramaswamy determined b−Coloring of net graph families [1], and Nagarathinam dan
Parvathi determined b−Coloring of line, middle and total graph of tadpole graph, and
operator graph of tadpole and wheel graph [9] [10]. Determining the b−Coloring is consid-
ered to be NP problem, thus finding the exact value of b−chromatic number is still open
for any or specific graphs. Thus, in this study aims to analyze the new results obtained
b-chromatic number of Pn ▷v1 Pm graph for n,m ≥ 8 and Ln ▷v1 Pm graph for n,m ≥ 5.

Furthermore, to see the robust application of b−Coloring of graph, at the end of this
paper we will illustrate the implementation of b−Coloring on Spatial Temporal Graph
Neural Networks (STGNN) multi-step time series forecasting on soil moisture and pH
of companion farming. Companion farming is a system where two or more crops are
grown simultaneously on the same farm. Plants are planted alternately in straight rows to
create a regular cropping pattern. The use of companion farming aims to minimize crop
pests. The b−Coloring analysis on companion farming is used to determine the number
of plant species, so that in the same land can be planted various types of plants. There
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are factors that affect the growth and yield of companion plants, namely soil moisture
and pH. Both of these factors can have an impact on productivity and plant health in
companion farming.

To predict the soil moisture and pH is very important, since predicting soil moisture
and pH is crucial for successful agricultural management and environmental monitoring.
Both soil moisture and pH levels play significant roles in determining the health and
productivity of plants. The best tool for predicting them is using machine learning, Spatial-
Temporal Graph Neural Network (STGNN). A Spatial-Temporal Graph Neural Network
(STGNN) is a type of neural network architecture designed to model and analyze data
that has both spatial and temporal dependencies, particularly in the context of graphs. It
combines concepts from Graph Neural Networks (GNNs) and Temporal models to handle
data with both spatial and temporal dimensions. Thus, in this study, we will implement
STGNN multi-step time series forecasting for soil moisture and pH.

2. The Methods

The research methods used in this research are pattern recognition method, axiomatic
deductive method, and application research method. In this study, it explains related to
the application scheme of the Spatial-Temporal Graph Neural Network on the problem
of forecasting soil moisture and pH in companion plants with a multi-step time series
forecasting. The numerical simulation used to run the programming uses Google Collab-
orator. Furthermore, STGNN programming will be developed, training the model using
60% input data obtained from the vertex embedding process, testing and finally forecast-
ing soil moisture and pH. Soil moisture and pH are two important factors and affect plant
growth conditions and the balance of the soil ecosystem. We use the following algorithm
for studying companion planting distribution by using STGNN combined by b−Coloring.

Single Layer STGNN Algorithm

Step 0. Considering a graph G(V,E) of order n with n vertices and m features,

a and feature matrix Hn×m from certain companion plantations, and provide a

tolerance ϵ.
Step 1. Construct the matrix adjacency A of graph G arising from spatial of

companion plantations and set a matrix B = A+I, where I is an identity matrix.

Step 2. Set weights W to start, bias β, learning rate α. (For ease of understanding,

set Wm×1 = [w1 w2 . . . wm], where 0 < wj < 1, bias β = 0 and 0 < α < 1)
Step 3. Set a message function mu

l = MSGl(hl−1
u ) for the linear layer mu

l =
W l(hl−1

u ) to multiply the weight matrix with vertex features.

Step 4. Combine the signals from the neighbors of vertex v by setting function

hlv = AGGl{ml−1
u , u ∈ N(v)}, and by utilizing the sum(·) function hlv = SUM l{ml−1

u , u ∈
N(v)} in connection with matrix B.

Step 5. Construct the error, by setting errorl =
||hvi−hvj ||2

|E| , where vi, vj are vertices
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that are next to one other.

Step 6. Check if error ≤ ϵ or not. If yes end the process, if not proceed

to refresh the learning weight matrix W in step 7.

Step 7. Set W l+1 = W l
j − α × zj × el for updating the learning weight matrix

where the total of each column in the H l
vi is denoted by zj and then split by

the total number of nodes.

Step 8. If the data is a time series, save the results of the embedding in

a vector and repeat the process for the subsequent time data observation.

Step 9. After loading the vector data, perform multi-step time series forecasting,

testing, and training using the time series machine learning.

Step 10. Is RMSE ≤ ϵ? If YES then STOP. If No then improve W, do Step 2-9.

3. Main Result

3.1. b−Coloring

In this paper, we will analyze the new result of the b-chromatic number of Pn ▷v1 Pm

graph for n,m ≥ 8 and Ln ▷v1 Pm graph for n,m ≥ 5.

Theorem 1. Let Pn ▷v1 Pm be a comb product of graphs for n ≥ 6, m ≥ 2. We have
φ(Pn ▷v1 Pm) = 4.

Proof. The graph Pn ▷v1 Pm is a connected graph with vertex set V (Pn ▷v1 Pm) =
{xi,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ m} and edge set E(Pn ▷v1 Pm) = {xi,1xi+1,1; 1 ≤ i ≤ n− 1} ∪
{xi,jxi,j+1; 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1} . Thus |V (Pn ▷v1 Pm)| = nm and |E(Pn ▷v1 Pm)| =
nm−1. The chromatic number γ(Pn ▷v1 Pm) = 2 and maximum degree ∆(Pn ▷v1 Pm) = 3.

To obtain the b-chromatic number φ(Pn ▷v1 Pm) for n ≥ 6,m ≥ 2, we will analyze
the upper bound of Pn ▷v1 Pm. Based on Definition 2 and Lemma 1, we have χ(Pn ▷v1
Pm) ≤ φ(Pn ▷v1 Pm) ≤ ∆(Pn ▷v1 Pm) + 1 = 4 ←→ φ(Pn ▷v1 Pm) ≤ 4. Furthermore, we
need to find the exact value of φ(Pn ▷v1 Pm) by defining the coloring function as follows
f : V (Pn ▷v1 Pm)→ {1, 2, 3, . . . , k} as follows

f(xi,j)=



1, if i ≡ 2 mod 4, j ≡ 1 mod 2

if i ≡ 0 mod 4, j ≡ 0 mod 2

2, if i ≡ 1 mod 4, j ≡ 1 mod 2

if i ≡ 3 mod 4, j ≡ 0 mod 2

3, if i ≡ 0 mod 4, j ≡ 1 mod 2

if i ≡ 2 mod 4, j ≡ 0 mod 2

4, if i ≡ 3 mod 4, j ≡ 1 mod 2

if i ≡ 1 mod 4, j ≡ 0 mod 2

Based on the function above, we have f : V (Pn ▷v1 Pm) → {1, 2, 3, 4}. Thus, we have
k = 4. It implies that φ(Pn ▷v1 Pm) = 4. The last, we need to show that each color class
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has at least one vertex that adjacent with all other color classes. According to the coloring
function, the b−chromatic number of graph Pn ▷v1 Pm is 4, thus we have four color classes,
namely C1 = {xi,j |i ≡ 2mod 4, j ≡ 1mod 2; i ≡ 0mod 4, j ≡ 0mod 2}, C2 = {xi,j |i ≡
1mod 4, j ≡ 1mod 2; i ≡ 3mod 4, j ≡ 0mod 2}, C3 = {xi,j |i ≡ 0mod 4, j ≡ 1mod 2; i ≡
2mod 4, j ≡ 0mod 2}, C4 = {xi,j |i ≡ 1mod 4, j ≡ 0mod 2; i ≡ 3mod 4, j ≡ 1mod 2}.
Based on the four color classes, we can show that each color class has at least one vertex
that is adjacent to all other color classes. We can show it by depicting the methane-like
structure, see Figure 1. Thus, it proves that φ(Pn ▷v1 Pm) = 4 for n ≥ 6, m ≥ 2.

Figure 1: b-chromatic number of b−Coloring φ(Pn ▷v1 Pm) = 4

To have more detail illustration of b−Coloring of Pn ▷v1 Pm, we depict the picture, see
Figure 2.

Figure 2: representation of each color class

Theorem 2. Let Ln ▷v1 Pm be a comb product of graphs for n ≥ 5, m ≥ 2. We have
φ(Pn ▷v1 Pm) = 5.

Proof. The graph Ln ▷v1 Pm is a connected graph with vertex set V (Ln ▷v1 Pm) =
{xi,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {yi,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ m} and edge set E(Ln ▷v1 Pm) =
{xi,1xi+1,1; 1 ≤ i ≤ n− 1}∪{xi,jxi,j+1; 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1}∪{yi,1yi+1,1; 1 ≤ i ≤ n− 1}∪
{yi,jyi,j+1; 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1} ∪ {xi,1yi,1; 1 ≤ i ≤ n} . Thus |V (Ln ▷v1 Pm)| = 2nm
and |E(Ln▷v1Pm)| = 2nm+n−2. The chromatic number γ(Ln▷v1Pm) = 2 and maximum
degree ∆(Ln ▷v1 Pm) = 4.

To obtain the b-chromatic number φ(Ln ▷v1 Pm) for n ≥ 7,m ≥ 3, we will analyze
the upper bound of Ln ▷v1 Pm. Based on Definition 2 and Lemma 1, we have χ(Ln ▷v1
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Pm) ≤ φ(Ln ▷v2 Pm) ≤ ∆(Ln ▷v2 Pm) + 1 = 5 ←→ φ(Ln ▷v1 Pm) ≤ 5. Furthermore, we
need to find the exact value of φ(Ln ▷v1 Pm) by defining the coloring function as follows
f : V (Ln ▷v2 Pm)→ {1, 2, 3, . . . , k} as follows

f(xi,j)=



1, if i ≡ 1 mod 5, j ≡ 1 mod 2

if i ≡ 3 mod 5, j ≡ 0 mod 2

2, if i ≡ 2 mod 5, j ≡ 1 mod 2

if i ≡ 0 mod 5, j ≡ 0 mod 2

3, if i ≡ 3 mod 5, j ≡ 1 mod 2

if i ≡ 4 mod 5, j ≡ 0 mod 2

4, if i ≡ 4 mod 5, j ≡ 1 mod 2

if i ≡ 1 mod 5, j ≡ 0 mod 2

5, if i ≡ 0 mod 5, j ≡ 1 mod 2

if i ≡ 2 mod 5, j ≡ 0 mod 2

f(yi,j)=



1, if i ≡ 4 mod 5, j ≡ 1 mod 2

if i ≡ 2 mod 5, j ≡ 0 mod 2

2, if i ≡ 0 mod 5, j ≡ 1 mod 2

if i ≡ 3 mod 5, j ≡ 0 mod 2

3, if i ≡ 1 mod 5, j ≡ 1 mod 2

if i ≡ 4 mod 5, j ≡ 0 mod 2

4, if i ≡ 2 mod 5, j ≡ 1 mod 2

if i ≡ 0 mod 5, j ≡ 0 mod 2

5, if i ≡ 3 mod 5, j ≡ 1 mod 2

if i ≡ 1 mod 5, j ≡ 0 mod 2

Based on the function above, we have f : V (Ln ▷v1 Pm)→ {1, 2, 3, 4, 5}. Thus, we have
k = 5. It implies that φ(Ln▷v1Pm) = 5. The last, we need to show that each color class has
at least one vertex that adjacent with all other color classes. According to the labeling, the
b−chromatic number of graph Ln ▷v1 Pm is five, thus we have C1 = {xi,j |i ≡ 1mod 5, j ≡
1mod 2; i ≡ 3mod 5, j ≡ 0mod 2}, C2 = {xi,j |i ≡ 2mod 5, j ≡ 1mod 2; i ≡ 0mod 5, j ≡
0mod 2}, C3 = {xi,j |i ≡ 3mod 5, j ≡ 1mod 2; i ≡ 4mod 5, j ≡ 0mod 2}, C4 = {xi,j |i ≡
4mod 5, j ≡ 1mod 2; i ≡ 1mod 5, j ≡ 0mod 2}, C5 = {xi,j |i ≡ 0mod 5, j ≡ 1mod 2; i ≡
2mod 5, j ≡ 0mod 2} and C1 = {yi,j |i ≡ 4mod 5, j ≡ 1mod 2; i ≡ 2mod 5, j ≡ 0mod 2},
C2 = {yi,j |i ≡ 0mod 5, j ≡ 1mod 2; i ≡ 3mod 5, j ≡ 0mod 2}, C3 = {yi,j |i ≡ 1mod 5, j ≡
1mod 2; i ≡ 4mod 5, j ≡ 0mod 2}, C4 = {yi,j |i ≡ 2mod 5, j ≡ 1mod 2; i ≡ 0mod 5, j ≡
0mod 2}, C5 = {yi,j |i ≡ 3mod 5, j ≡ 1mod 2; i ≡ 1mod 5, j ≡ 0mod 2}. Based on the five
color classes, we can show that each color class has at least one vertex that is adjacent to
all other color classes. We can show it by depicting the methane-like structure, see Figure
3. Thus, it proves that φ(Pn ▷v1 Pm) = 5 for n ≥ 5,m ≥ 2.

Figure 3: b-chromatic number of b−Coloring φ(Ln ▷v1 Pm) = 5

To have more detail illustration of b−Coloring of Ln ▷v1 Pm, we depict the picture, see
Figure 4.
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Figure 4: representation of each color class

3.2. The Application of b−Coloring

The next research result is the implementation of b−Coloring on precision agriculture
companion farming. In this research, time series forecasting will be performed on precision
agriculture datasets, namely soil moisture and pH. The datasets are obtained from simu-
lating the placement of soil moisture and pH sensors. The placement of these sensors takes
into account the planting topology derived from Theorem 1. The number of plantations
is respected to the obtained b-chromatic number φ(G).

Based on the Pn ▷v1 Pm graph we can make into a planting layout adapted to the
shape of the land. In each vertex, the coloring obtained represents a type of plant. Since
φ(Pn▷v1Pm) = 4, there are four types of plants studied. In this study, the color 1 represents
cucumbers, the color 2 represents carrots, the color 3 represents tomatoes, and the color
4 represents eggplants. Furthermore, the sensor is placed at the vertex of dominance on
the planting layout created. The companion farming layout based on b−Coloring theorem
can be seen in Figure 5 and Figure 6.

3.3. Numerical Analysis

Hereafter, we discuss the research results and provide an overview to perform time
series forecasting in companion farming. First, we show analytically how to embed node
features and how b−Coloring works on graphs. We use soil moisture and pH data to derive
the STGNN model.

Observation 1. Given that there is a n-order graph G. Assume that the set of vertex
V (G)={v1, v2, ..., vn−1, vn} and and edge of vertex E(G) = {vivj |vi, vj ∈ V (G)}, respec-



A. I. Kristiana et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 3356-3369 3363

Table 1: The prediction results of STGNN model for dataset-1

T Matric HA ARIMA SVR GCN GRU STGNN

RMSE 9.4546 10.6872 9.7862 11.1382 7.5492 6.2187
6 days MAE 8.7113 8.9815 9.4121 10.6702 7.6615 6.4357

Accuracy 5.5673 6.7890 9.3423 8.2732 8.4351 10.1431
R2 4.28512 4.3482 7.9563 8.0321 8.4321 9.1452

RMSE 8.5702 8.6054 8.9434 10.1524 7.1243 6.4368
12 days MAE 8.3872 8.7682 8.4326 9.8170 5.6710 4.7166

Accuracy 4.2830 4.8920 8.2192 8.5742 8.7246 9.1527
R2 3.7581 4.1268 7.3734 8.1289 8.4430 9.2721

RMSE 8.2301 8.3436 8.5293 9.8425 6.2882 5.4397
18 days MAE 8.3487 8.4018 7.7845 9.4696 4.4520 4.1625

Accuracy 4.7557 4.8361 8.1395 8.5729 8.8314 9.0765
R2 3.3912 3.8852 8.3254 8.8772 8.7431 9.0293

RMSE 8.2568 8.2578 8.2456 9.5742 4.5890 4.5174
24 days MAE 8.1863 8.2146 7.6781 7.5682 4.1379 4.0764

Accuracy 4.1732 4.5185 8.8563 8.9567 9.0137 9.2738
R2 3.2754 3.8571 8.3264 9.0753 8.1432 9.1432

tively. Considering that vertex features as follows.

hvi =


s1,1 s1,2 · · · s1,m
s2,1 s2,2 · · · s2,m
...

...
. . .

...
sn,1 sn,2 · · · sn,m


Vertex v’s neighbors hl+1

v = AGG{ml+1
u , u ∈ N(v)} can be used to calculate the vertex em-

bedding under the aggregation sum(.), where l = 0, 1, 2, 3, ..., k. hl+1
v = SUM{ml+1

u , u ∈
N(v)}, therefore, with regard to the matrix B = A + 1, where A, I denote the adjacency
matrix and the identity matrix, respectively.

Proof. We can find the matrix adjacency A by graph G. Given that each vertex in G
needs to consider the self adjacency, we must add A by the identity matrix I in order to
get matrix B as follow.

B = A+ I =


b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n
...

...
. . .

...
bn,1 bn,2 · · · bn,n


The single layer STGNN technique requires that the learning weight matrix be initial-
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Table 2: The prediction results of STGNN model for dataset-2

T Matric HA ARIMA SVR GCN GRU STGNN

RMSE 10.7632 12.6281 10.8932 12.2971 13.8912 9.1378
6 days MAE 10.4632 11.8714 10.1252 11.5318 11.6219 9.0374

Accuracy 8.4778 9.6425 9.8687 10.3562 8.6315 10.6574
R2 7.0246 7.3526 9.3829 8.4912 7.0541 10.8831

RMSE 10.4516 11.4354 9.8931 11.4871 11.2673 8.8576
12 days MAE 9.7320 11.9034 9.4965 11.2765 10.6490 8.6970

Accuracy 8.1754 9.3292 9.8286 9.7605 9.0794 9.9521
R2 8.1642 7.3759 9.8342 8.7524 9.0836 9.9536

RMSE 9.1765 11.5443 9.4870 10.8290 10.1230 8.9860
18 days MAE 8.7662 10.2872 8.8267 10.6390 8.5503 8.0346

Accuracy 8.2280 9.4782 9.1678 9.0894 7.1190 9.8570
R2 7.4581 7.3467 9.0340 8.4890 7.3095 9.3271

RMSE 8.3604 10.5849 9.3235 10.7590 9.7208 8.2987
24 days MAE 8.0045 10.2348 8.6903 10.6537 8.2782 7.5048

Accuracy 8.1372 9.4573 9.2675 9.8362 7.7832 9.8653
R2 7.2670 7.4563 9.1703 8.2467 7.4561 9.5672

ized in the way that is described below.

W =


w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m
...

...
. . .

...
wm,1 wm,2 · · · wm,m


The value of mvi will be determined using this weight, and the new weight will be

updated in the following iteration. There are two phases to the STGNN vertex embedding
process: message passing and aggregation. First, we perform massage passing mu =
MSG(hu). For linear layer we have ml+1

u = W l.hlu, where l = 0, 1, 2, ...k. The calculation
can be started in an iterative manner as follows.

m1
vi = H0

vi ·W
0 =


s1,1 s1,2 · · · s1,m
s2,1 s2,2 · · · s2,m
...

...
. . .

...
sn,1 sn,2 · · · sn,m

×

w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m
...

...
. . .

...
wm,1 wm,2 · · · wm,m



=


s1,1 × w1,1 + . . .+ s1,m × wm,1 . . . s1,1 × w1,m + . . .+ s1,m × wm,m

s2,1 × w1,1 + . . .+ s2,m × wm,1 . . . s2,1 × w1,m + . . .+ s2,m × wm,m
...

. . .
...

sn,1 × w1,1 + . . .+ sn,m × wm,1 . . . sn,1 × w1,m + . . .+ sn,m × wm,m


Following completion of the aforementioned process, we go on to the second phase,

which is aggregation in regrads with v’s neighbors. By ultilizing the aggregation sum(.),
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Figure 5: The companion farming layout based on b−Coloring theorem

Figure 6: The illustration of companion farming using b−Coloring

for hl+1
v = AGG{ml+1

u , u ∈ N(v)} we have hl+1
v = SUM{ml+1

u , u ∈ N(v)} in regrads to
the matrix B = A+ 1, the embedding vector h1vi can compose as follows.

hl+1
vi =


ml+1

v1,1 ml+1
v1,2 · · · ml+1

v1,m

ml+1
v2,1 ml+1

v2,2 · · · ml+1
v2,m

...
...

. . .
...

ml+1
vn,1

ml+1
vn,2

· · · ml+1
vn,m


The next step is to determine the error value, which shows how near two neighboring

vertices are to one another in the embedding space. The separation of the two vertices
gets smaller as the error value decreases. One can formulate the error as follows: errorl =
h(vi)−h(vj)inf

|E(G)| where i, j ∈ {1, 2, ..., n}. We need to check whether error ≤ ϵ. If no, we need

to update new W l using the obtained hlvi in the previous iteration. We revise the matrix
of learning weights by using W l+1 = W l + α× errorl × (hlvi)

T × hl+1
vi until error ≤ ϵ.
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3.4. The Performance of STGNN Training and Testing

Furthermore, a computer simulation of the STGNN architecture will be carried out
for training, testing, and forecasting companion farming data using the one-layer STGNN
algorithm. Then analyzed soil moisture and pH at 64 planting vertex on the graph Pn ▷v1
Pm. The first stage of this research performs the process of vertex embedding of single
layer STGNN on the given graph with 2 data features, namely soil moisture and pH data
for 30 days of observation. Overall, the data consists of 64×2×30 = 3840, which consists
of 64 planting vertex, two features and 30 days of observation. The data is obtained from
several soil sensors placed in one of the companion planting.

After performing the algorithm above, the adjacency matrix of the graph Pn ▷v1 Pm

can be seen in Figure 7. Furthermore, the distribution graph of soil moisture and pH with
64 planting vertex for 30 days is shown in Figure 8. The results of training and testing of
companion farming at 64 planting vertex are shown in Figure 9. After that, the results of
the multi-step time series forecasting graph for the next 6 days are shown in Figure 10.

Figure 7: Pn ▷v1 Pm graph with 64 vertices and companion farming adjacency matrix

Figure 8: The distribution of soil moisture, temperature and pH with 64 companion farming vertex on 30 days
to training and testing dataset

Based on the previously described algorithm, an vertex embedding with 64 planting
vertices is required. In the process of message passing, it assumes that each vertex has some
information and sends the information to its neighbours. With the above algorithm steps,
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Figure 9: The result of training and testing data of companion farming

Figure 10: The result of multi-step time series forecasting of companion farming

time series data is obtained to be analyzed using STGNN. To consider how effective the
result of vertex embedding is, next determine the error by considering every two adjacent
vertices. Then, a multi-step time series prediction algorithm is developed. STGNN to
train 60% of the data and obtain the smallest Root Mean Square Error (RMSE) and
Mean Square Error (MSE) of the test data. After the algorithm of soil moisture and pH
data, the MSE value obtained on the planting layout Pn ▷v1 Pm is 0.0267. To convince the
robustness of the STGNN model, we compare six models, namely historical average (HA),
auto regressive integrated moving average (ARIMA), support vector regression (SVR),
graph convolutions networks (GCN), gated recurrent unit (GRU), spatial temporal graph
neural networks (STGNN) can be seen in Table 1 and Table 2. The STGNN model
also shows that time series forecasting for 6, 12, 18, 24 days ahead, either RMSE, MAE,
Accuracy and R2 show the best values compare with other models. The STGNN model
shows the best forecasting for 6, 12, 18, 24, days ahead, both RMSE, MAE, Accuracy and
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R2. It also shows the best value of STGNN compared to other models. Thus, it can be
concluded that the STGNN model can be used to perform forecasting and monitoring at
64 planting vertices using b−Coloring.

4. Concluding Remarks

In this research, we have studied b−Coloring of graphs. We have determined the exact
value of the b-chromatic number of Pn ▷v1 Pm graph for n,m ≥ 8 and Ln ▷v1 Pm graph
for n,m ≥ 5. We found the b-chromatic numbers attain the best upper bound. However,
since there is currently little research on the topic of b−Coloring, we propose the open
problem. Find the exact values of b−Coloring on other graphs and apply the obtained
results in STGNN time series forecasting.
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