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Abstract. Based on a new definition of α-periodicals functions with 0 < α ≤ 1 introduced by
Khalil et al (2014), we introduce a new definition of conformable Fourier transform for such a class
of functions. Further, we establish some operational formulas, and we set the relation between the
newly defined conformable Fourier transform and the classical Fourier transform. Finally, some
classical results of periodical functions are obtained and some illustrative examples are constructed.
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1. Introduction

The fractional calculus [11, 14, 17] attracted many researches in the last and present
centuries. The impact of this fractional calculus in both pure and applied branches of
science and engineering started to increase substantially during the last two decades ap-
parently.
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Traditionally, the arbitrary order of integration and differentiation has been described
by nonlocal fractional operators with kernels reflecting their memories. Recently, the con-

formable derivative operator T (α)(x)(t) = limh→0
f(t+ht1−α)−f(t)

h was introduced in the
literature by Khalil [9] to allow integrating and differentiating with respect to arbitrary
order without having memory in the structure and hence falling in a similar category to
local fractional calculus and fractal calculus [16, 21]. Since then, many classical problems
have been generalized to the conformable case [12, 13]. Later, several modification of
conformable derivatives have been appeared such as: the fractional Beta derivative [15]

defined as Dγ
ρ (f(ρ)) = limϵ→0

f(ρ+ϵ(ρ+ 1
Γ(γ)

))−f(ρ)

ϵ and the M-truncated derivative [19] defined

as DM
α,βf(t) = limϵ→0

f(tEβ,i(ϵt
−α))−f(t)
ϵ where Eβ,i(z) =

∑i
k=0

zk

Γ(βk+1) .

Cauchy type problems are very well-known important in many fields of science and en-
gineering. Several results regarding the capture of candidate solutions of the conformable
differential equations can be found in [18]. This new definition has been developed by
Abdeljawad [1] and by El-Ajou [6]. For more developments on the conformable differenti-
ation, we refer to [3, 5]. The usability of the conformable derivative notion has wide areas
of interest in both theoretical and practical aspects (see [10], [20]).

The authors of ([2], [24]) provided some applications through partial differential equa-
tions (PDEs) in the conformable sense. Precisely, Maxwell’s equations have been consid-
ered in the conformable fractional setting to describe electromagnetic fields of media in
[23]. The conformable differential equation (CDE) has been used for the description of
the subdiffusion process in [24]. Also, some applications in quantum mechanics have been
treated in the context of CFD (see for example [2]).

Fourier series is one of the most important tools in applied sciences. For example one
can solve partial differential equations using Fourier series. Further one can find the sum
of certain numerical series using Fourier series. Fractional partial differential equations
appeared to have many applications in physics and engineering. There are many defini-
tions of fractional derivative.

The conformable fractional Fourier series for α-periodical functions is introduced by
Khalil et al [8]. They proved that the fractional Fourier series of a piece wise continuous
α-periodical function converges pointwise to the average limit of the function at each point
of discontinuity, and to the function at each point of continuity.

The rest of this paper is structured as follows : In section 2, we introduce the basic
definitions and properties of α-conformable functional derivative T (α)(f)(t) for 0 < α ≤ 1
and f : [0,+∞[→ R is α-periodic function, define by khalil et al [9]. In section 3, we
prove some results and examples of α-periodic functions which are important for the next
section. In Section 4, we give a new definition of conformable Fourier transform for α-
periodical functions.
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In the first result (Theorem 8), we show that there exists a relationship between the
conformable Fourier transform and the classical Fourier transform as follows:

Fα{f(t)}(k) = F{f((αt)
1
α )}(k)

for all k ∈ Z. In the second and third result (Theorem 9 and Theorem 11), we give
the results of the conformable Fourier transform for the conformable fractional integral
Iα(f)(t) defined by Abdeljawad [1], as follows:

Fα(Iα(f)(t))(k) = (2ikπ
α

pα
)Fα(f(t)(k)

for all k ∈ Z∗ and for the conformable derivative introduced by khalil et al [9] as follows,
Fα(T (α)(f)(t))(k) = (2ikπ α

pα )Fα(f(t)(k) and in the general case for n ∈ N,

Fα(T (jα)(f)(t))(k) = (2ikπ
α

pα
)jFα(f(t)(k), ∀j ∈ {0, 1, ..., n}.

A following classical result is also obtained for α-periodical functions

Fα((a ∗α f)−∞(t))(k) = Lα(a(t))(2ikπ
α

pα
)Fα(f((t))(k)

where (a ∗α f)−∞(t) =
∫ tα

α
−∞ a((tα − αs)

1
α )f((αs)

1
α )ds and Lα(a(t))(λ) is the conformable

Laplace transform of the function a(t), given by Z.Al-Zhouri et al [22]. Many examples
are given to support the results presented. Finally, the conclusion is presented in Section
5.

2. Basic definitions and tools

In this section, we introduce the definition of conformable fractional calculus and its
important properties.

Definition 1. [9] Given a function f : [0,+∞[→ R, the conformable fractional derivative
of order α is defined by:

T (α)(f)(t) = lim
h→0

f(t + ht1−α) − f(t)

h

for all t > 0 and 0 < α ≤ 1.

Definition 2. Let 0 < α ≤ 1 and f : [0,+∞[→ R.

(i) The function f is called α-differentiable on [0,+∞[, if f is continuous. T (α)f(t)
exists for all t ∈]0,+∞[ and T (α)f(0) = limt→0+ T (α)f(t) exists.

(ii) The function f is called continuously α-differentiable on [0,+∞) if f is α-differentiable
on [0,+∞) and T (α)f(t) is continuous on [0,+∞[.
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Definition 3. Let 0 < α ≤ 1, n ∈ N and f : [0,+∞[→ R.

(i) The function f is called n times α-differentiable on [0,+∞[ if f is continuous, ∀j ∈
{0, ...n} T (jα)f(t) = T (α)(T (α)...(T (α)(f)))(t), j times, exists for all t ∈]0,+∞[ and
T (jα)f(0) = limt→0+ T (jα)f(t) exists.

(ii) The function f is called n times continuously α-differentiable on [0,+∞) if f is n
times α-differentiable on [0,+∞) and ∀j ∈ {0, . . . , n} T (jα)f(t) is continuous on
[0,+∞[.

(iii) The function f is called infinitely continuously α-differentiable, if f is n times con-
tinuously α-differentiable for all n ∈ N.

Note that for n = 0, f is n time α-differentiable if there is continuous.

Example 1. Let f(t) = et, t ∈ [0,+∞[.

(i) For all t > 0 and 0 < α ≤ 1

T (α)(f)(t) = lim
h→0

e(t+ht1−α) − e(t)

h

= t1−αet lim
h→0

eht
1−α − 1

ht1−α

= t1−αet

(ii) For all t > 0 and 0 < α ≤ 1

T (2α)(f)(t) = T (α)(T (α)(f)(t)) = T (α)(t1−αet)

= lim
h→0

(t + ht1−α)1−αe(t+ht1−α) − t1−αet

h

= t1−αet lim
h→0

(1 − ht−α)1−αeht
1−α − 1

h

= t1−αetg′(0),

where g(t) = (1 − ht−α)1−αeht
1−α

and g′(0) = (1 − α)t−α + t1−α. Then, we get

T (2α)(et) = t1−αet((1 − α)t−α + t1−α).

Theorem 1. [9] Let α ∈ (0, 1] and f is α-differentiable at a point t > 0. Then

(i) T (α)(f)(t) = t1−αf ′(t).

(ii) T (α)(ect) = c t1−αect, c ∈ R or C.

(iii) T (α)( t
α

α ) = 1.
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Example 2. [9]

(i) T (α)(tp) = ptα−p.

(ii) T (α)(eikt) = ikt1−αeikt, k ∈ Z.

(iii) T (α)(sin( 1
α t

α)) = cos( 1
α t

α).

(iv) T ( 1
2
)(2

√
t) = 1.

(v) T (2α)(et) = T (α)(t1−αet) = t1−α(t1−αet)′ = t1−αet((1 − α)t−α + t1−α).

Definition 4. [1] The conformable fractional integral of order 0 < α ≤ 1 is defined by

Iα(f)(t) =

∫ t

0
sα−1f(s) ds, t ∈ [0,+∞[.

Lemma 1. [1] Assume that f : [0,+∞) → R is continuous and 0 < α ≤ 1. Then, for all
t > 0, we have

T (α)(Iα(f))(t) = f(t)

Lemma 2. [1] Let f : [0,+∞) → R be α-differentiable and 0 < α ≤ 1. Then, for all t > 0
we have

Iα(T (α)(f))(t) = f(t) − f(0).

Let X be a Banach space, and f is a periodic function with period T on R. For a
function f ∈ L1(0, T ;X), the kth fourier coefficient of f is given by

F(f(t))(k) =
1

T

∫ T

0
e−ik 2π

T
tf(t)dt.

Definition 5. [22] Let f : [0; +∞[→ R be a given function and 0 < α ≤ 1. Then the
conformable fractional Laplace transform of f is defined as:

Lα(f(t))(λ) =

∫ +∞

0
e−λ tα

α tα−1f(t)dt

provided the integral exists.

Theorem 2. [22] Let a : [0; +∞[→ R be a function and 0 < α ≤ 1. Then

Lα(a(t))(λ) = L(a((αt)
1
α ))(λ), λ ∈ C.

where L(a(t))(λ) =
∫ +∞
0 e−λta(t)dt denotes the Laplace transform of a(t).

Theorem 3. [7] Given a ∈ L1(R+) and g : [0, 2π] → X is a periodic function with period
2π (extended by periodicity to R), where X is a Banach space. We find that

F(F (t))(k) = L(a(t))(ik)F(g(t))(k), k ∈ Z (1)

where the function F is defined by F (t) =
∫ t
−∞ a(t − s)g(s)ds =

∫ +∞
0 a(s)g(t − s)ds is

continuous and bounded on R.
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This theorem has been used by many authors to solve some integro-differential equa-
tions using the fourier transform ([7], [4]).

In the next section, we present some results of α-periodic functions.

3. Some results of α-periodic functions

Definition 6. [8] (α-periodic function)
Let 0 < α ≤ 1. The function f : [0,+∞) → R is called α-periodical with period p > 0, if
there exists a continuous function g : [0,+∞) → R such that

f(t) = g
( tα
α

)
= g

( tα
α

+
pα

α

)
for all t ∈ [0,+∞).

Remark 1. :

(i) Note that the continuity of g implies that of f .

(ii) The function g(t) = f((αt)
1
α ) is periodic with period pα

α .

Example 3. Let 0 < α ≤ 1. For all t ∈ [0, ( 1
α)

1
α ], let us consider the following functions

f1(t) and f2(t)

f1(t) =


tα

α , 0 ≤ t ≤ ( 1
2α)

1
α

1
α2 − tα

α , ( 1
2α)

1
α < t ≤ ( 1

α)
1
α

(2)

and

f2(t) =



tα

α , 0 ≤ t ≤ ( 1
4α)

1
α

1
2α2 − tα

α , ( 1
4α)

1
α < t ≤ ( 3

4α)
1
α

tα

α − 1
α2 , ( 3

4α)
1
α < t ≤ ( 1

α)
1
α

(3)

We have f1(t) = g1(
tα

α ) and f2(t) = g2(
tα

α ), where

g1(t) =


t, 0 ≤ t ≤ 1

2α2

1
α2 − t, 1

2α2 < t ≤ 1
α2

(4)

and

g2(t) =


t, 0 ≤ t ≤ 1

4α2

1
2α2 − t, 1

4α2 < t ≤ 3
4α2

t− 1
α2 ,

3
4α2 < t ≤ 1

α2

(5)
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for all t ∈ [0, 1
α2 ]. g1(t) and g2(t) are countinuous periodic functions with period 1

α2 for all
t ∈ [0,+∞[ (extended by periodicity to [0,+∞[). Then f1(t) and f2(t) are α-periodic with

period p = ( 1
α)

1
α for all t ∈ [0,+∞[.

Theorem 4. Let 0 < α ≤ 1 and assume that f : [0,+∞[→ R is a α-periodic function
with period p such that

Iα(f)(p) = 0 (6)

then Iα(f)(t) is a α-periodic function with period p, for all t ∈ [0,+∞[.

Proof. Let 0 < α ≤ 1 and assume that f : [0,+∞[→ R is a α-periodic function with
period p. By Definition 4 and using variable change u = pα

α , we have for all t ∈ [0,+∞[

Iα(f)(t) =

∫ t

0
sα−1f(s)ds =

∫ tα

α

0
f((αu)

1
α )du =: g1

( tα
α

)
with g1(t) is the continuous function defined by g1(t) =

∫ t
0 f((αu)

1
α )du. Then, we have

g1

( tα
α

+
pα

α

)
= Iα(f)(p) + g1

( tα
α

)
using the condition given in Equation 6, we obtain:

g1(
tα

α
+

pα

α
) = g1(

tα

α
).

Then the function g1 is a continuous periodic function with period pα

α . Thus Iα(f)(t) is
α-periodic with period p for all t ∈ [0,+∞[.

Example 4. 1. The function f2 defined by Example 3 is α-periodic with period p = ( 1
α)

1
α

and we have

Iα(f2)(t) =



∫ tα

α
0 sds, 0 ≤ t ≤ ( 1

4α)
1
α

∫ ( 1
4α

)
1
α

0 sds +
∫ tα

α

( 1
4α

)
1
α

( 1
2α2 − s)ds, ( 1

4α)
1
α < t ≤ ( 3

4α)
1
α

∫ ( 1
4α

)
1
α

0 sds +
∫ ( 3

4α
)
1
α

( 1
4α

)
1
α

( 1
2α2 − s)ds +

∫ tα

α

( 3
4α

)
1
α

(s− 1
α2 ), ( 3

4α)
1
α < t ≤ ( 1

α)
1
α

then

Iα(f2)(t) =



1
2( t

α

α )2, 0 ≤ t ≤ ( 1
4α)

1
α

−1
16α4 + 1

2α2 ( t
α

α ) − 1
2( t

α

α )2, ( 1
4α)

1
α < t ≤ ( 3

4α)
1
α

1
2( t

α

α )2 − 1
α2 ( t

α

α ) + 1
2α4 , ( 3

4α)
1
α < t ≤ ( 1

α)
1
α

(7)
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and

g2(t) = Iα(f2)((αt)
1
α ) =



1
2 t

2, 0 ≤ t ≤ 1
4α2

−1
16α4 + 1

2α2 t− 1
2 t

2, 1
4α2 < t ≤ 3

4α2

1
2 t

2 − 1
α2 t + 1

2α4 ,
3

4α2 < t ≤ 1
α2

(8)

Therefore, we have

Iα(f2)(p) =
1

2
(
pα

α
)2 − 1

α2
(
pα

α
) +

1

2α4
=

1

2α4
− 1

α4
+

1

2α4
= 0.

The condition 6 is satisfied, then the function g2 is continuous periodic with period 1
α2 ,

thus Iα(f2) is α-periodic function with period ( 1
α)

1
α .

2. The function f1 defined by Example 3 is α-periodic with period p = ( 1
α)

1
α , and we

have

Iα(f1)(t) =


∫ tα

α
0 sds, 0 ≤ t ≤ ( 1

2α)
1
α

∫ ( 1
2α

)
1
α

0 sds +
∫ tα

α

( 1
2α

)
1
α

( 1
α2 − s)ds, ( 1

2α)
1
α < t ≤ ( 1

α)
1
α

(9)

then

Iα(f1)(t) =


1
2( t

α

α )2, 0 ≤ t ≤ ( 1
2α)

1
α

−1
2( t

α

α )2 + 1
α2

tα

α − 1
4α4 , ( 1

2α)
1
α < t ≤ ( 1

α)
1
α .

(10)

and

g1(t) = Iα(f1)((αt)
1
α ) =


1
2 t

2, 0 ≤ t ≤ 1
2α2

−1
2 t

2 + 1
α2 t− 1

4α4 ,
1

2α2 < t ≤ 1
α2 .

(11)

We have Iα(f1)(p) = 1
4α4 ̸= 0, then g1 is not a continuous periodic function with period

1
α2 , therfore Iα(f1) is not a α-periodic function with period ( 1

α)
1
α .

Theorem 5. Let 0 < α ≤ 1 and assume that the function f : [0,+∞[→ R is continuously
α-differentiable on [0,+∞[, and α-periodic with period p. Then we have

(i) T (α)(f)(t) = g′( t
α

α ) and g ∈ C1([0,+∞[), where g(t) = f((αt)
1
α ),

(ii) T (α)(f)(t) is α-periodic function with period p for all t ∈ [0,+∞[.



T. Abdeljawad et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 2405-2430 2413

Proof. Let 0 < α ≤ 1 and f : [0,+∞[→ R is α-periodic function with period p and
continuously α-differentiable on [0,+∞[. Then f(t) is α-differentiable and T (α)(f)(t) is
continuous, for all t ∈ [0,+∞[.
By Definition 6, there exists a continuous function g : [0,+∞[→ R such that

f(t) = g(
tα

α
) = g(

tα

α
+

pα

α
)

Case 1: t > 0
(1) By Theorem 1,

T (α)(f)(t) = t1−αf ′(t) = g′(
tα

α
) := g1

( tα
α

)
(12)

with g1(t) = g′(t). If f(t) is α-differentiable, then T (α)(f)(t) exists. Therefore g(t) is

differentiable and g′(t) = T (α)(f)((αt)
1
α ). On the other hand, if T (α)(f)(t) is continuous,

then g ∈ C1(]0,+∞[).
Case 2: t = 0
If f(t) is α-differentiable for all t ∈ [0,+∞[ especially for t = 0, then T (α)(f)(0) =
limt→0+T

(α)(f)(t) exists and by continuity of T (α)(f)(t) and g′(t) we have

lim
t→0+

g′(t) = lim
t→0+

T (α)(f)((αt)
1
α ) = T (α)(f)(0) = g′(0).

Finally

T (α)(f)(t) = g′(
tα

α
) for all t ∈ [0,+∞[ and g ∈ C1([0,+∞[)

(2) If f is α-periodic then g( t
α

α + pα

α ) = g( t
α

α ) for all t ∈ [0,+∞[. If g ∈ C1([0,+∞[), then

g′( t
α

α + pα

α ) = g′( t
α

α ). Thus g1(
tα

α + pα

α ) = g1(
tα

α ), for all t ∈ [0,+∞[. Finally T (α)(f)(t) is
α-periodic with period p for all t ∈ [0,+∞[.

Example 5. Let 0 < α ≤ 1 and t ∈ [0, ( 3π2α)
1
α ]. Let us consider the function

f(t) =


f1(t) = sin(αtα), 0 ≤ t < (πα)

1
α

f2(t) = −1
2 sin(2αtα), (πα)

1
α ≤ t ≤ ( 3π2α)

1
α

(13)

with

g(t) = f((αt)
1
α ) =


g1(t) = sin(α2t), 0 ≤ t < π

α2

g2(t) = −1
2 sin(2α2t), π

α2 ≤ t ≤ 3π
2α2

(14)

The function g(t) is continuous periodic with period 3π
2α2 for all t ∈ [0,+∞[ (extended

by periodicity to [0,+∞[) and f(t) is α-periodic with period ( 3π2α)
1
α for all t ∈ [0,+∞[.

Therefore, we have

T (α)(f)(t) =


T (α)(f1)(t) = α2 cos(αtα), 0 < t < (πα)

1
α

T (α)(f2)(t) = −α2 cos(2αtα), (πα)
1
α < t < ( 3π2α)

1
α

(15)



T. Abdeljawad et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 2405-2430 2414

and

g′(t) = T (α)(f)((αt)
1
α ) =


g′1(t) = α2 cos(α2t), 0 < t < π

α2

g′2(t) = −α2 cos(2α2t), π
α2 < t < 3π

2α2

(16)

The function f1 is continuously α-differentiable on [0, (πα)
1
α ] and g1 ∈ C1([0, π

α2 ]). The

function f2 is continuously α-differentiable on [(πα)
1
α , ( 3π2α)

1
α ] and g2 ∈ C1([ π

α2 ,
3π
2α2 ]).

On the other hand, we have

T (α)(f1)((
π

α
)

1
α ) = g′1(

π

α2
) = T (α)(f2)((

π

α
)

1
α ) = g′2(

π

α2
) = −α2

and

T (α)(f1)(0) = g′1(0) = T (α)(f1)((
3π

2α
)

1
α ) = g′2(

3π

2α2
) = α2.

Then f is continuously α-differentiable on [0, ( 3π2α)
1
α ] and g ∈ C1([0, 3π

2α2 ]). Therefore f is
continuously α-differentiable on [0,+∞[ and g ∈ C1([0,+∞[). So, we have g′(t) is periodic
with period 3π

2α2 for all t ∈ [0,+∞[ (extended by periodicity to [0,+∞[) and Tα(f)(t) is

α-periodic with period ( 3π2α)
1
α for all t ∈ [0,+∞[.

Theorem 6. Let 0 < α ≤ 1. Assume that the function f : [0,+∞[→ R is n times
continuously α-differentiable on [0,+∞[ for n ∈ N and α-periodic with period p. Then for
all j ∈ {0, . . . , n} and for all t ∈ [0,+∞[, we have

(i) T (jα)(f)(t) = g(j)( t
α

α ) and g ∈ Cj([0,+∞[) where g(t) = f((αt)
1
α ).

(ii) T (jα)(f)(t) is α-periodic function with period p.

Note that T (0)(f)(t) = f(t) and g(0)(t) = g(t).

Proof. Let 0 < α ≤ 1 and f is n times continuously α-differentiable on [0,+∞[ for
n ∈ N and α-periodic with period p. Let j ∈ {0, . . . , n} and by recurrence, we have the
following:
For j = 0, f is α-periodic, then by Definition 6 there exists a continuous function
g : [0,+∞[→ R such that f(t) = g

(
tα

α

)
= g

(
tα

α + pα

α

)
. Thus (1) and (2) are satisfied.

For j = 1, see Theorem 5. Suppose that for all j ∈ {2, ..., n} and for all t ∈ [0,+∞[,
(*) T ((j−1)α)(f)(t) = g(j−1)( t

α

α ) and g ∈ Cj−1([0,+∞[)

(*) T ((j−1)α)(f)(t) is α-periodic with period p.

(1) For all t ∈ [0,+∞[, we have f(t) is j times continuously α-differentiable, then
T (jα)(f)(t) exists and continuous.
Case 1: t > 0
By hypothesis T ((j−1)α)(f)(t) is α-periodic and g ∈ Cj−1([0,+∞[), then

T (jα)(f)(t) : = T (α)(T ((j−1)α)(f))(t) = T (α)(g(j−1))(
tα

α
)
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= t1−α(g(j−1)(
tα

α
))′ = g(j)(

tα

α
)

and the function g(j)(t) = T (jα)(f)((αt)
1
α ) exists and continuous for all t ∈]0,+∞[. Thus

g ∈ Cj(]0,+∞[)

Case 2: t = 0

We have T (jα)(f)(0) = limt→0+ T (jα)(f)(t) exists. The functions T (jα)(f)(t) and g(j)(t)
are continuous, then

lim
t→0+

g(j)(t) = lim
t→0+

T (jα)(f)(t) = T (jα)(f)(0) = g(j)(0).

Finally, T (jα)(f)(t) = g(j)( t
α

α ) for all t ∈ [0,+∞[ and g ∈ Cj([0,+∞[).

(2) We have g(j−1)( t
α

α ) = g(j−1)( t
α

α + pα

α ) for all t ∈ [0,+∞[ and g ∈ Cj([0,+∞[), then

g(j)( t
α

α ) = g(j)( t
α

α + pα

α ). Thus T (jα)(f)(t) is α-periodic with period p for all t ∈ [0,+∞[.

Example 6. Let us consider the Example 5. The function f is α-periodic with period
( 3π2α)

1
α and g is continuous periodic with period 3π

2α2 . Then, we have for n ∈ N and t ∈
[0, ( 3π2α)

1
α ]

T (nα)(f)(t) =


T (nα)(f1)(t) = α2n sin(αtα + nπ

2 ), 0 < t < (πα)
1
α

T (nα)(f2)(t) = −2n−1α2n sin(2αtα + nπ
2 ), (πα)

1
α < t < ( 3π2α)

1
α

and for t ∈ [0, 3π
2α2 ]

g(n)(t) =


g
(n)
1 (t) = α2n sin(α2t + nπ

2 ), 0 < t < π
α2

g
(n)
2 (t) = −2n−1α2n sin(2α2t + nπ

2 ), π
α2 < t < 3π

2α2

The function f1 is n times continuously α-differentiable on [0, (πα)
1
α ] and g1 ∈ Cn([0, π

α2 ]).

The function f2 is n times continuously α-differentiable on [(πα)
1
α , ( 3π2α)

1
α ] and g2 ∈ Cn([ π

α2 ,
3π
2α2 ]).

To study the continuity of T (nα)(f) and of g(n) on [0,+∞[, we put

∆α
n = T (nα)(f1)(0) − T (nα)(f2)((

3π

2α
)

1
α ) = g

(n)
1 (0) − g

(n)
2 (

3π

2α2
)

and
δαn = T (nα)(f1)((

π

α
)

1
α ) − T (nα)(f2)((

π

α
)

1
α ) = g

(n)
1 (

π

α2
) − g

(n)
2 (

π

α2
).

Now, we have

∆α
n = α2n(1 − 2n−1) sin(n

π

2
)
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and
δαn = −α2n(1 − 2n−1) sin(n

π

2
).

The continuity conditions of T (nα)(f) on [0, ( 3π2α)
1
α ] of g(n) on [0, 3π

2α2 ] and their extention
by periodicity to [0,+∞[ are ∆α

n = δαn = 0.
Therefore under this condition, f is n times continuously α-differentiable on [0,+∞[ and
g ∈ Cn([0,+∞[). On the other hand

∆α
n = δαn = 0 ⇔ n ∈ {0, 1, 2}

Then the function f is twice continuously α-differentiable on [0,+∞[ and we have for all
j ∈ {0, 1, 2} and t ∈ [0,+∞[, T (jα)f(t) = g(j)( t

α

α ), g ∈ C(j)([0,+∞[) and T (jα)f(t) is

α-periodic function with period ( 3π2α)
1
α .

We conclude this section with the following theorem.

Theorem 7. Let 0 < α ≤ 1. Assume that f ∈ L1(R+,R) is α-periodic function with
period p and a(t) = a1(

tα

α ) with a1 ∈ L1(R+). The function (a ∗α f)−∞(t) is defined by

(a ∗α f)−∞(t) =

∫ tα

α

−∞
a((tα − αs)

1
α )f((αs)

1
α )ds, t ∈ [0,+∞[

is α-periodic with period p.

Proof. Let 0 < α ≤ 1 and f ∈ L1(R+,R) is α-periodic function with period p and
a(t) = a1(

tα

α ) with a1 ∈ L1(R+). For all t ∈ R+, we have

(a ∗α f)−∞(t) =

∫ tα

α

−∞
a((tα − αs)

1
α )f((αs)

1
α )ds

=

∫ tα

α

−∞
a1

( tα
α

− s
)
g(s)ds = F

( tα
α

)
where F is the continuous function given by Theorem 3

F (t) =

∫ t

−∞
a1(t− s)g(s)ds.

On the other hand

F
( tα
α

+
pα

α

)
=

∫ tα

α
+ pα

α

−∞
a1(

pα

α
+

tα

α
− s)g(s)ds.

By making a change of variable u = s− pα

α , we obtain

F
( tα
α

+
pα

α

)
=

∫ tα

α

−∞
a1

( tα
α

− u
)
g
(
u +

pα

α

)
ds
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the function g is continuous periodic with period pα

α , then

F
( tα
α

+
pα

α

)
=

∫ tα

α

−∞
a1

( tα
α

− u
)
g(u)ds = F

( tα
α

)
and (a ∗α f)−∞(t) is α-periodic function with period p for all t ∈ [0,+∞[.

Example 7. Let f1 defined in Example 3 and a(t) = a1(
tα

α ) such that a1(t) = e−t ∈
L1(R+). The function f1 is α-periodic function with period ( 1

α)
1
α and we have for all

t ∈ [0,+∞[

(a ∗α f)−∞(t) =

∫ tα

α

−∞
a1

( tα
α

− s
)
f((αs)

1
α )ds

=

∫ tα

α

−∞
e−

tα

α
+sg(s)ds = F

( tα
α

)
.

where F (t) = e−t
∫ t
−∞ esg(s))ds is a continuous function. We have

F
( tα
α

+
1

α2

)
=

∫ tα

α
+ 1

α2

−∞
e−

tα

α
+s− 1

α2 g(s)ds

=

∫ tα

α

−∞
e−

tα

α
+sg

(
s +

1

α2

)
ds = F

( tα
α

)

Then (a ∗α f)−∞(t) is α-periodic function with period ( 1
α)

1
α .

In the next section, we present some results of conformable fourier transforms.

4. Result of conformable fourier transform

For investigating the property of the classical fourier transform, the following new
definition of the conformable fourier transform for α-periodic function is introduced.

Definition 7. (Conformable fourier Transform)
Assume that f : [0,+∞[→ R is α-periodic function with period p and 0 < α ≤ 1. The k-th
conformable Fourier coefficient of f denoted by Fα(f(t))(k) is defined by

Fα(f(t))(k) =
α

pα

∫ p

0
e
−ik 2π

pα
tα
f(t)tα−1dt, ∀k ∈ Z

Remark 2. : For k = 0, Fα(f(t))(0) = α
pα Iα(f)(p)

The next theorem gives a relationship between fourier conformable transform and
classical fourier transform applied to α-periodic functions.
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Theorem 8. Assume that f : [0,+∞[→ R is α-periodic function with period p and 0 <
α ≤ 1. Then for all k ∈ Z,

Fα{f(t)}(k) = F{f((αt)
1
α )}(k)

Proof. Let 0 < α ≤ 1 and f : [0,+∞[→ R is α-periodic function with period p, then

by Remark 1, f((αt)
1
α ) is periodic with period pp

α and for all k ∈ Z,

Fα{f(t)}(k) =
α

pα

∫ p

0
e
−ik 2π

pα
tα
f(t)tα−1dt.

By variable change tα

α , we obtain

Fα{f(t)}(k) =
α

pα

∫ pα

α

0
e
−ik 2πα

pα
t
f((αt)

1
α )dt,

the function t ∈ [0,+∞[→ e
−ik 2πα

pα
t
f((αt)

1
α ) is periodic with period pα

α , then

Fα{f(t)}(k) = F{f((αt)
1
α )}(k).

Example 8. The functions f1 and f2 defined in Example 3 are α-periodic with period
p = ( 1

α)
1
α . For k ̸= 0,

Fα(f1(t))(k) = F(f1((αt)
1
α ))(k) = α2

∫ 1
α2

0
e−2ikπα2tf1((αt)

1
α )dt

= α2[

∫ 1
2α2

0
te−2ikπα2tdt +

∫ 1
α2

1
2α2

(
1

α2
− t)e−2ikπα2tdt]

=
(−1)k − 1

2π2k2α2
.

and

Fα(f2(t))(k) = F(f2((αt)
1
α ))(k) = α2

∫ 1
α2

0
e−2ikπα2tf2((αt)

1
α )dt

= α2[

∫ 1
4α2

0
te−2ikπα2tdt +

∫ 3
4α2

1
4α2

(
1

α2
− t)e−2ikπα2tdt

+

∫ 1
α2

3
4α2

(t− 1

α2
)e−2ikπα2tdt]

=
(−1)−

k
2 (1 − (−1)−k)

2α2k2π2
.
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For k = 0, we have

Fα(f1(t))(0) = α2

∫ 1
α2

0
f1((αt)

1
α ))dt =

1

4α2

and

Fα(f2(t))(0) = α2

∫ 1
α2

0
f2((αt)

1
α ))dt = 0.

Then

Fα(f1(t))(k) =


(−1)k−1
2π2k2α2 , ∀k ∈ Z∗

1
4α2 , k = 0.

(17)

and

Fα(f2(t))(k) =


(−1)−

k
2 (1−(−1)−k)
2α2k2π2 , ∀k ∈ Z∗

0, k = 0.

(18)

As a classical fourier transform, we apply the conformable fourier transform to the
conformable fractional integral given by Definition 4. The following theorem is obtained.

Theorem 9. Assume that f : [0,+∞[→ R is α-periodic function with period p such that
Iα(f)(p) = 0 and 0 < α ≤ 1. Then for all t ∈ [0,+∞[, Iα(f)(t) is α-periodic with period p
and

Fα(Iα(f)(t))(k) =


pα

2ikπαFα(f(t))(k), ∀k ∈ Z∗

F(fα((αt)
1
α ))(0), k = 0.

where fα(t) = − tα

α f(t).

Proof. Let 0 < α ≤ 1. f is α-periodic function with period p such that Iα(f(p)) = 0,
then by Theorem 4, for all t ∈ [0,+∞[, Iα(f)(t) is α-periodic with period p.
For k ̸= 0,

Fα(Iα(f)(t))(k) = F(Iα(f)((αt)
1
α ))(k)

=
α

pα

∫ pα

α

0
e
−2ikπ α

pα
t
Iα(f)((αt)

1
α )dt

By Definition 4, we have

Iα(f)(t) =

∫ t

0
sα−1f(s)ds.
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Using variable change tα

α , we obtain

Iα(f)(t) =

∫ tα

α

0
f((αs)

1
α )ds

then

Iα(f)((αt)
1
α ) =

∫ t

0
f((αs)

1
α )ds.

By integrating by parts, we find that

Fα(Iα(f)(t))(k) = − 1

2ikπ
[Iα(f)(p) −

∫ pα

α

0
e
−2ikπ α

pα
t
f((αt)

1
α )dt]

and using the condition Iα(f)(p) = 0, the result is obtained.
For k = 0, using Remark 2, we have

Fα(Iα(f(t)))(0) =
α

pα
Iα(Iα(f))(p) =

α

pα

∫ pα

α

0
Iα(f)((αt)

1
α )dt.

Using integration by parts and the condition Iα(f)(p) = 0, we find that

Fα(Iα(f)(t))(0) =
α

pα

∫ pα

α

0
−tf((αt)

1
α )dt = F(fα((αt)

1
α ))(0)

where fα(t) = − tα

α f(t).

Example 9. Consider the function f2 defined by Example 3. We have showed in Example
4 that Iα(f2)(

1
α2 ) = 0 and Iα(f2) is α-periodic with period 1

α2 . For k ∈ Z∗,

Fα(Iα(f2)(t))(k) = F(Iα(f2)((αt)
1
α )(k) = α2

∫ 1
α2

0
e−2ikπα2tIα(f2)((αt)

1
α )dt.

Using integration by parts and the condition Iα(f2)(
1
α2 ) = 0, we have

Fα(Iα(f2)(t))(k) =
1

2ikπ

∫ 1
α2

0
e−2ikπα2tf2((αt)

1
α )dt

=
1

2ikπ
[

∫ 1
4α2

0
te−2ikπα2tdt +

∫ 3
4α2

1
4α2

(
1

2α2
− t)e−2ikπα2tdt]

+
1

2ikπ

∫ 1
α2

3
4α2

(t− 1

α2
)e−2ikπα2tdt

=
(−1)−

k
2 (1 − (−1)−k)

4iα4k3π3
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On the other hand, by Example 8, we have

F(f2((αt)
1
α ))(k) =

(−1)−
k
2 (1 − (−1)−k)

2α2k2π2
,

Then

Fα(Iα(f2)(t))(k) =
1

2iα2kπ
F(f2((αt)

1
α ))(k).

For k = 0, we have

F((f2)α((αt)
1
α ))(0) = −α2

∫ 1
α2

0
tf2((αt)

1
α )dt

= −α2[

∫ 1
4α2

0
t2dt +

∫ 3
4α2

1
4α2

t(
1

2α2
− t)dt +

∫ 1
α2

3
4α2

t(t− 1

α2
)dt]

=
1

32α4
.

On the other hand, by Example 4, we have

Fα(Iα(f2)(t))(0) = α2

∫ 1
α2

0
Iα(f2)((αt)

1
α )dt

= α2

{∫ 1
4α2

0

t2

2
+

∫ 3
4α2

1
4α2

(− 1

16α4
+

1

2α2
− t2

2
)dt

+

∫ 1
α2

3
4α2

(
t2

2
− t

α2
+

1

2α4
)dt

}

=
1

32α4
.

Then Fα(Iα(f2)(t))(0) = F(fα((αt)
1
α ))(0) where fα(t) = − tα

α f(t).

In order to establish a similar relationship between conformable fourier transform and
conformable fractional derivative as a classical fourier transform of order α, the following
two theorems are obtained.

Theorem 10. Let 0 < α ≤ 1, and assume that f : [0,+∞[→ R is α-periodic function
with period p and continuously α-differentiable on [0,+∞[. Then T (α)(f) is α-periodic
function with period p and for all k ∈ Z :

Fα(T (α)(f)(t))(k) = (2ikπ
α

pα
)Fα(f(t))(k)

Proof. Let 0 < α ≤ 1, f is α-periodic function with period p and continuously α-
differentiable on [0,+∞[. By Theorem 5, T (α)(f)(t) = g′( t

α

α ), g ∈ C1([0,+∞[) where

g(t) = f((αt)
1
α ) and T (α)(f) is α-periodic function with period p. For k ∈ Z, we have

Fα(T (α)(f)(t))(k) = F(T (α)(f)((αt)
1
α ))(k)
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=
α

pα

∫ pα

α

0
e
−2ikπ α

pα
t
T (α)(f)((αt)

1
α )dt

=
α

pα

∫ pα

α

0
e
−2ikπ α

pα
t
g′(t)dt

Using integration by parts the periodicity of g, we have

Fα(T (α)(f)(t)(k) = (2ikπ
α

pα
)Fα(f(t))(k).

Example 10. Consider the same function from Example 5, then f is α-periodic func-
tion with period ( 3π2α)

1
α and continuously α-differentiable on [0,+∞[. By Theorem 5,

T (α)(f)(t) = g′( t
α

α ), g ∈ C1([0,+∞[) where g(t) = f((αt)
1
α ) and T (α)(f) is α-periodic

function with period ( 3π2α)
1
α . For all k ∈ Z, we have

Fα(f(t))(k) = F(f((αt)
1
α ))(k)

=
2α2

3π

∫ 3π
2α2

0
e−

4
3
ikα2tf((αt)

1
α )dt

=
2α2

3π
[

∫ π
α2

0
sin(α2t)e−

4
3
ikα2tdt− 1

2

∫ 3π
2α2

π
α2

sin(2α2t)e−
4
3
ikα2tdt]

=
81((−1)−

4k
3 + 1)

2π(64k4 − 180k2 + 81)
.

On the other hand

Fα(T (α)(f)(t))(k) = F(T (α)(f)((αt)
1
α )(k)

=
2α2

3π

∫ 3π
2α2

0
e−

4
3
ikα2tT (α)(f)((αt)

1
α )dt

=
2α2

3π
[

∫ π
α2

0
α2 cos(α2t)e−

4
3
ikα2tdt−

∫ 3π
2α2

π
α2

α2 cos(2α2t)e−
4
3
ikα2tdt]

=
54ikα2((−1)−

4k
3 + 1)

π(64k4 − 180k2 + 81)

then

Fα(T (α)(f)(t))(k) = (
4

3
ikα2)Fα(f(t))(k).

Theorem 11. Let 0 < α ≤ 1, n ∈ N and assume that the function f : [0,+∞[→ R is
α-periodic with period p and n times continuously α-differentiable on [0,+∞[. Then for
all j ∈ {0, . . . , n}, T (jα)(f) is α-periodic with period p and for k ∈ Z

Fα(T (jα)(f)(t))(k) = (2ikπ
α

pα
)jFα(f(t))(k).

Note that T (0)f(t) = f(t).
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Proof. Let 0 < α ≤ 1, n ∈ N and assume that the function f is α-periodic with period
p and n times continuously α-differentiable on [0,+∞[. Then by theorem 6, we have for

all j ∈ {0, . . . , n}, T (jα)(f)(t) = g(j)( t
α

α ), g ∈ Cj([0,+∞[) where g(t) = f((αt)
1
α ), and

T (jα)(f) is α-periodic function with period p.
Let j ∈ {0, . . . , n}, by recurence.
For j = 0, the property is true.
For j = 1, the property is true (see Theorem 10).
Suppose that

Fα(T ((j−1)α)(f)(t))(k) = (2ikπ
α

pα
)j−1F(f((αt)

1
α ))(k)

and we show that

Fα(T (jα)(f)(t))(k) = (2ikπ
α

pα
)jF(f((αt)

1
α ))(k).

The function f is n times continuously α-differentiable on [0,+∞[ implies that T ((j−1)α)(f)
is continuously α-differentiable. Moreover, by Theorem 10 and the recurrence hypothesis

Fα(T (jα)(f)(t))(k) = Fα(Tα(T ((j−1)α)(f)(t)))(k)

= (2ikπ
α

pα
)Fα(T ((j−1)α)(f)(t))(k)

= (2ikπ
α

pα
)jFα(f(t))(k).

Then the property is true for all j ∈ {0, . . . , n}.

Example 11. Consider the same function from Example 6, we have f is α-periodic func-
tion with period ( 3π2α)

1
α . We showed that f is twice continuously α-differentiable on [0,+∞[,

g ∈ C2([0,+∞[) where g(t) = f((αt)
1
α ) and T (jα)(f) is α-periodic function with period

( 3π2α)
1
α for j ∈ {0, 1, 2}.

For k in Z, we have
1. For j = 0, the property is true.
2. For j = 1, the property is true by Example 10.
3. For j = 2, the function T (α)(f) is α-differentiable and α-periodic with period p = ( 3π2α)

1
α .

Then, we have

Fα(T (2α)(f)(t))(k) =
−72α4k2[(−1)−

4k
3 + 1]

π(64k4 − 180k2 + 81)

and by Example 10, we have

Fα(f(t))(k) =
81((−1)−

4k
3 + 1)

2π(64k4 − 180k2 + 81)
.

Then

Fα(T (2α)(f)(t))(k) = (
4

3
ikα2)2Fα(f(t))(k).
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Corollary 1. If f is α-periodic function with period (2πα)
1
α , then we obtain the following

classical fourier property

F(f (n)((αt)
1
α ))(k) = (ik)nF(f((αt)

1
α ))(k).

We conclude this section with a result which has been used by several authors to solve
certain integro-differential equations.

Lemma 3. Assume that g ∈  L1(R+,R) is a continuous periodic function with period T
and a1 ∈  L1(R+). Then for t ∈ [0,+∞[∫ 0

−∞
a1(t− s)g(s)ds =

+∞∑
N=1

∫ T

0
a1(t− u + NT )g(u)du. (19)

Proof. Let g ∈  L1(R+,R) is a continuous periodic function with period T . We have∫ 0

−∞
a1(t− s)g(s)ds =

+∞∑
N=1

∫ −(N−1)T

−NT
a1(t− s)g(s)ds

=

+∞∑
N=1

∫ −(N−1)T

−NT
a1(t− s)g(s + NT )ds

=
+∞∑
N=1

∫ T

0
a1(t− u + NT )g(u)du.

Example 12. Let f1 defined by Example 3 and a1(t) = e−t ∈ L1(R+). The function f1 is

α-periodic with period ( 1
α)

1
α for all t ∈ [0,+∞[, and the associated function g satisfies

g1(t) = f1((αt)
1
α ) =


t, 0 ≤ t ≤ 1

2α2

1
α2 − t, 1

2α2 < t ≤ 1
α2

is periodic with period 1
α2 and continuous for all t ∈ [0,+∞[. Then, we have∫ 0

−∞
a1(t− s)g1(s)ds =

+∞∑
n=1

∫ 1
α2

0
e−(t−u− n

α2 )g1(u)du

= e−t(
+∞∑
n=1

e−
n
α2 )

∫ 1
α2

0
eug1(u)du

= (
e−t

e
1
α2 − 1

)

∫ 1
α2

0
eug1(u)du

= (
e−t

e
1
α2 − 1

)[

∫ 1
2α2

0
ueudu +

∫ 1
α2

1
2α2

(
1

α2
− u)eudu]
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= (
e

1
2α2 − 1

e
1

2α2 + 1
)e−t.

Theorem 12. Let 0 < α ≤ 1, assume that f ∈  L1(R+,R) is α-periodic function with
period p, and a(t) = a1(

tα

α ) such that a1 ∈ L1(R+). Then (a ∗α f)−∞ is α-periodic with
period p and for k ∈ Z

Fα((a ∗α f)−∞(t))(k) = Lα(a(t))(2ikπ
α

pα
)Fα(f((t))(k)

where Lα(a(t))(λ) is the conformable Laplace transform of a(t) given by the Definition 5.

Proof. Let 0 < α ≤ 1 and assume that f ∈  L1(R+,R) is α-periodic function with

period p. For t ∈ [0,+∞[, g(t) = f((αt)
1
α ) is periodic with period T = pα

α .
By Theorem 7, (a ∗α f)−∞(t) is α-periodic function with period p, and we showed that

(a ∗α f)−∞(t) = F (
tα

α
)

where the continuous function F is defined by F (t) =
∫ t
−∞ a1(t− s)g(s)ds. Thus, we have

F (t) =

∫ 0

−∞
a1(t− s)g(s)ds +

∫ t

0
a1(t− s)g(s)ds.

By Lemma 3, ∫ 0

−∞
a1(t− s)g(s)ds =

+∞∑
N=1

∫ T

0
a1(t− u + NT )g(u)du

=
+∞∑
N=1

∫ t+nT

t+(n−1)T
a1(w)g(t− w)dw

= lim
n→+∞

n∑
N=1

∫ t+NT

t+(N−1)T
a1(w)g(t− w)dw

= lim
n→+∞

∫ t+nT

t
a1(w)g(t− w)dw

=

∫ +∞

t
a1(w)g(t− w)dw

and

F (t) =

∫ +∞

0
a1(v)g(t− v)dv

Then for all k ∈ Z

Fα((a ∗α f)−∞(t))(k) =
α

pα

∫ p

0
e
−ik 2π

pα
tα
F (

tα

α
)tα−1dt.
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By making variable change tα

α = u and u− s = t, we have

Fα((a ∗α f)−∞(t))(k) =
α

pα

∫ pα

α

0
e
−ik 2πα

pα
u
[

∫ u

−∞
a((α(u− s))

1
α )f((αs)

1
α )ds]du

=
α

pα

∫ pα

α

0
e
−ik 2πα

pα
u
[

∫ +∞

0
a((αs)

1
α )f((α(u− s))

1
α )ds]du

= [

∫ +∞

0
a((αs)

1
α )e

2ikπ α
pα

s
ds][

α

pα

∫ pα

α

0
e
−ik 2πα

pα
t
f((α(t))

1
α )dt

= Lα(a(t))(2ikπ
α

pα
)Fα(f(t))(k).

Example 13. Let f1 defined by Example 3 and a(t) = a1(
tα

α ) such that a1(t) = e−t ∈
L1(R+). The function f1 is α-periodic with period ( 1

α)
1
α . Let k ∈ Z and t ∈ [0,+∞[, we

have

Fα((a ∗α f1)−∞(t))(k) = F((a ∗α f1)−∞((αt)
1
α ))(k)

= α2

∫ 1
α2

0
e−2ikπα2tF (t)dt

= α2

∫ 1
α2

0
e−2ikπα2t[

∫ 0

−∞
a1(t− s)g1(s)ds +

∫ t

0
a1(t− s)g1(s)ds]dt

= I1 + I2

such that

I1 = α2

∫ 1
α2

0
e−2ikπα2t(

∫ 0

−∞
a1(t− s)g1(s)ds)dt

and

I2 = α2

∫ 1
α2

0
e−2ikπα2t(

∫ t

0
a1(t− s)g1(s)ds)dt.

By Lemma 3 ∫ 0

−∞
a1(t− s)g(s)ds = (

e
1

2α2 − 1

e
1

2α2 + 1
)e−t

then

I1 =
α2(−2e

1
2α2 + e

1
α2 + 1)e−

1
α2

2ikπα2 + 1

and

I2 = α2

∫ 1
α2

0
e−(2ikπα2+1)t(

∫ t

0
esg1(s)ds)dt
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= − α2

2ikπα2 + 1
{e−

1
α2

∫ 1
α2

0
etg1(t)dt−

∫ 1
α2

0
e−ik2πα2tg1(t)dt}

= − α2

2ikπα2 + 1
{e−

1
α2 [

∫ 1
2α2

0
tetdt +

∫ 1
α2

1
2α2

(
1

α2
− t)etdt]

−
∫ 1

2α2

0
te−2ikπα2tdt−

∫ 1
α2

1
2α2

(
1

α2
− t)e−2ikπα2tdt}

=
−2π2e−

1
α2 α4k2 + 4π4e−

1
2α2 α4k2 − 2k2π2α4 + (−1)k − 1

2α2π2k2(2ikπα2 + 1)
.

Thus

Fα((a ∗α f1)−∞(t))(k) =
(−1)k − 1

2α2π2k2(2ikπα2 + 1)
.

On the other hand, we have

Lα(a(t))(2ikπα2) =
1

2ikπα2 + 1

and by Example 8

Fα(f1(t))(k) =
(−1)k − 1

2α2π2k2

then
Fα((a ∗α f1)−∞(t))(k) = Lα(a(t))(2ikπα2)Fα(f1((t))(k), ∀k ∈ Z∗.

For k = 0, we have Fα((a ∗α f1)−∞(t))(0) = I1 + I2 such that

I1 = α2

∫ 1
α2

0
e−t(

∫ 0

−∞
esg1(s)ds)dt = −α2(e−

1
α2 − 1)(e

1
2α2 − 1)

e
1

2α2 + 1

and

I2 = α2

∫ 1
α2

0
e−t(

∫ t

0
esg1(s)ds)dt

= α2(−e−
1
α2

∫ 1
α2

0
etg1(t)dt +

∫ 1
α2

0
g1(t)dt)

= −α2e−
1
α2 (−2e

1
2α2 + e

1
α2 + 1) +

1

4α2
.

then by Example 8, we have

Fα((a ∗α f1)−∞(t))(0) =
1

4α2
= Lα(a(t))(2ikπα2)Fα(f1(t))(0).

Finally
Fα((a ∗α f1)−∞(t))(k) = Lα(a(t))(2ikπα2)Fα(f1(t))(k), ∀k ∈ Z.
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5. Conclusion

The definition of α-periodic function introduced by Khalil et al [8] has been investi-
gated. Many results and examples related to this definition have been given and proved.
A new definition of conformable Fourier transform for α-periodic function has been given.
A relationship between the conformable Fourier transform and the classical Fourier trans-
form have been established. Many results relating to the classical Fourier case have been
obtained and demonstrated in the conformable Fourier case. Many examples have been
constructed to illustrate these results. Our interest for future work is to apply this results
to solve some conformable partial differential equations, conformable ordinary differential
equations, conformable integro-differential equations and conformable Cauchy problems.
Also, it may be of interest to investigate several modifications of the introduced con-
formable Fourier transform in this article to serve other modifications of conformable
derivatives, such as M−truncated fractional derivatives.
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