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1. Introduction

Axiom systems, developed by Imai et al. [20, 21] and used in propositional calculi, are
collections of axioms and inference guidelines used to derive theorems and prove the cor-
rectness of logical arguments. Theorem logic and propositional calculus are other names
for propositional logic, which deals with the manipulation and analysis of statements us-
ing logical operators like OR, AND, and NOT. Various mathematical systems, including
propositional logic, can be modeled and analyzed using algebraic structures, particularly
Boolean algebra, which is closely related to propositional logic. Iseki [22, 23] introduced
the concept of BCK/BCI-algebras. BCl-algebras, also known as BCK-algebras, generalize
Boolean algebras and other related algebraic structures. The idea of fantastic ideals in
BCl-algebras is a significant algebraic substructure presented and discussed by Saeid [1].

Zadeh [39] proposed the concept of fuzzy (uncertainty) sets, which address ambiguity
and vagueness in real world circumstances. A membership function with a range of [0,1]
is used to illustrate an uncertainty structure. Throughout the history of uncertainty set,
there are many kinds of uncertainty set extensions, for example bipolar [13] and multi-
polar [3] uncertainty sets, etc. The bipolar and multipolar uncertainty sets are in fact a
generalization of an uncertainty set with a membership degree range [—1, 1] and [0, 1]%, re-
spectively. In [5, 17], the few aspects of the bipolar fuzzy concept are applied to algebraic
structures. The ¢P-FS has an extensive range of implementations to address ambigu-
ity and vagueness in real world issues related to the quadri-polar data, quadri-index and
quadri-attributes information. Researchers in a lot of different areas are very interested
in the multi-polar uncertainty set theory. These areas include Lie algebras [4], ordered
semihypergroups [30], subgroups [16] and BCK/BCl-algebras [7, 36].

Rosenfeld [38] introduced fuzzy groups, while Bhakat et al [12] developed a specific
type denoted as (€, € Vq), based on point fuzzy sets within group theory. Jun [27, 28]
and Muhiuddin et al. [35] extended this concept to («, 5)-fuzzy subalgebra. Ibrara et al.
[19], Dudek et al. [14], and Narayanan et al. [37] furthered this idea with extensions to
semigroups, hemirings, and near-rings, respectively. Al-Masarwah et al. [6, 8] explored
(ar, B) type subalgebras using m-F points within BCK-algebras. Ma et al. [33] intro-
duced (€., € Vgs)-fuzzy ideals, while Jana et al. [24] proposed (€4, €, Vgs) fuzzy soft
BCl-algebras. Zulfigar et al. [42, 43] introduced the idea of (€4, €, Vgs)-fuzzy subcom-
mutative ideals and fuzzy fantastic ideals in BCI/BCH-algebras. Zhan [41] contributed
with (€., € Vgs)-fuzzy soft I'-hyper ideals. Abuhijleh et al. [2] introduced the com-
plex fuzzy groups. Fallath et al. [15] introduced cosets and normals of (v, §)-fuzzy HX-
subgroups. Balamurugan et al. [10, 18] introduced anti-intuitionistic fuzzy soft ideals in
BCK/BCI/BG-algebras. Balamurugan et al. [11, 34] introduced tripolar picture fuzzy
ideals and bipolar intuitionistic fuzzy soft ideals in BCK/BCl-algebras. Moin et al. [9]
introduced and studied a graph associated to UP-algebras. Fuzzy bi-ideals in ternary
semirings are studied and explored by Kavikumar [29].

In this work, we combine ¢P-F sets with BCl-algebras to extend fuzzy set theory and
provide new approaches for studying quadri-polar fuzzy BCI-algebras. We introduce a new
class of generalized ¢qP-(w,¥)-FFZ. The properties of ¢P-(w, ¥)-FFZ(s) are highlighted.
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We then discuss ¢P-(€4, €5 Vagz)FFZL(s) and explore their properties. Characterization
theorems for ¢P-(€5,€5 Vqz)-FFZL(s) are also established. Finally, we present a ¢-PF
TOPSIS methodology, discuss potential applications, compare it with existing TOPSIS
methods, and propose future directions.

To explain the novelty of this structure, some contributions by several researchers
towards qP-FFL(s), ¢P-(w,9)-FFLs and qP-(€s, €5 Vgz)-FFL(s) in BCl-algebras are
presented in Table 1.

Table 1: Contributions of several researchers toward ceratin generalizations of gP-FFZ(s).

Authors Year Contributions
Rosenfeld [38] 1971 Creation of fuzzy subgroups.
Xi [40] 1991 Creation of fuzzy ideals.
Bhakat and Das [12] 1996  Certain extensions of fuzzy subgroups.
Jun [26] 2004 Creation of («, 5)-fuzzy ideals.
Lee [32] 2009 Creation of bipolar fuzzy ideals.
Jana et al. [25] 2017 Extensions of bipolar fuzzy ideals.
Al-Masarwah and Ahmad [6-8] 2018 Creation of multi P-FZs.
Algahtani et al. Present  Creation of ¢P-(€5, €5 Vgz)-FFL(s).

2. Preliminaries

BCl-algebras are types of algebraic structures used in the study of non-classical log-
ics, particularly in the context of certain types of implication algebras. These algebras
generalize certain aspects of set theory, logic and have applications in some areas, such as
theoretical computer science and mathematical logic.

A BCl-algebra is a structure (& (,0) consisting of a non-void set R, a binary operation
() on X, and a constant 0 € X, satisfying the following axioms: V¢, 9,k € R
(1) (G 06) 0 (< 0R) T G §6) =0,

(I2) (<0 (<0 @) feo=0,
(I3) s <=0
(1) < Qo

I
I3 )
Iy =0,00c=0=>¢=0p.

S
S
A subset Z of R is referred to an ideal of R (see [22, 23]) if it meets:

0cZand (V¢, p€Z)(SQo€eZ,0el=¢€T). (1)
A subset T of N is referred to a fantastic ideal of R (see [1]) if it meets:
0eZand (Vs, 0, €L)((S00)0RheZ, keI =<0 (00 (005)) €T). (2)

Definition 1. [31] A mapping A : R — [0,1] is a fuzzy set FS for the set R,
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A FS A of Nis a FZ of N if it meets:
(¥, 0. € R, A(0) > A(<) and A(¢) = A< § 0) A A(0)- (3)

A FS A of Nis a FFZT of N if it meets:

(v, 0 € R,A(0) 2 A) and A(CQ (20 (20<))) 2 A0 0) UR) AAR).  (4)

3. Quadri-Polar Fuzzy Fantastic Ideals
Definition 2. A mapping d: R — [0,1]* is a ¢P-F for the set X, where for any ¢ € X,
0(¢) = (8'(<), 8%(¢),0%(<), 04(<)) and 8(<) € [0,1],
forq=1,2,3,4.
Definition 3. A qP-F set 0 of& is a qP-FFTL if, V¢, 0,k € N and ¢ =1,2,3,4,
0(0) > 0(<) and 8(< § (60 (60¢)) = 0((< § 0) § &) AB(k).
That 1is, ) ) . . )
51(0) > §9(<) and 39 § (80 (60<))) = 39 § ) 1 #) A (k).
Example 1. Consider R = {0,¢, 0, k} with the binary operation () defined by Table 2:
Table 2. Cayley table representing by “ () ”
0o < o &
0

AR NS
T R

0
0
S
K

xR N
QR N D

Thus, (R;(,0) forms a BCl-algebra.
Consider a qP-F set O defined on X as follows:

(.58,.65,.75, .54
(.48, .21, .45, .
(
(

w W
oS O
NP NN

28,.52, .54, .
28, .41, .36, .54

Thus, d is a ¢P-FFL of N.

Theorem 1. A ¢P-F set dis a ¢qP-FFI of}tl & for any p € (0,1]*, the p-cut subset
0; ={< €N | 0(S) > p} is a fantastic ideal of N.

Proof. Let d be a qP-FFTI of N and j € (0, 1]* be such that 35 ={ceN| (<) > p}
Let ¢, 0,k € 9;5. Then, 0((< § 0) 0 k) > p and d(k) > p. It follows from Definition 3.2
that,
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050 (20 (20)) =0((S U 0) U #)AD(R) =pAp=p.

Therefore, ¢ ( (00 (00<)) € 0. Hence, 0 is a fantastic ideal of X.
Conversely, assume J; is a fantastic 1dea1 of R. Suppose that d(< { (o ) (009)) <

0((< 0 0) § A) AD(R)._ Then5(<§( 0 (60<) <p<0((<00) k) AD(K). But
3((¢ 0 0) 0 k) >pand d(k) > p. So, <0 (00 (00¢)) ¢, a contradiction. Therefore,

00 (60 (60¢)) =0((s 0 6) [ &) AD(k).
Hence, (;),3 is a FFT of X.
Consider a ¢P-F set 0 defined on R, where

- 5e (0,109, if ¢ e R
Ej(g)_{o, if ¢ ¢ R,

then 5(g is a ¢P-F point with support N and the value p, and it is symbolized by ¢z.
Theorem 2. Every fantastic ideal of N is a ¢P-FFI of R.
Proof. Suppose (;),3 is a fantastic ideal of X and let d be an ¢P-FS in R defined by
_ [ pe(0,1)9, if ¢ceR
0(¢) = { 0 if ¢ ¢ R
Let ¢, o € R. To verify that 9 is a ¢P-FFZ of X.

Case 1: If (S0o0))kedand k€, then (S (060 (00¢<))) €d. Thus d((< ) 9) 0 &) =
0(k) = p. Hence by Definition 3.2, we have

3000 (00<)>0(($00) ) k)AD(R)=pAp=p.

Case 2 If (< .6) 0 & ¢ 8 and & ¢ 8, then (¢ § (60 (60 <)) ¢9. Thus, (< [ 6) § &) =
d(%) = 0. Hence by Definition 3.2, we have

0(< 0 (00 (80<)) 20(( 0 0) § &) AD(R) =0
Case 3: If either (¢ () 9) () & € O or & € d, then either d((< § ¢) ( ) = 0 or d(%) = 0. So,
0§ (0 (60¢)>0((< 0 6) 0 &) AD(R).
Hence, 0 is a ¢P-FFZI of X.



K. H. Hakami et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 3129-3155 3134
4. Quadri-Polar (w,?)-Fuzzy Fantastic Ideals

In this section, we introduce the concept of a ¢P-(w,d)FFZ(s) in BCIl-algebras and
explore various properties associated with it. Here, we use w and 9 to represent symbols
such as €3, €5 Vgz, gz or €s Agz, unless specified otherwise.

Consider a ¢P-F point denoted as ¢; and a ¢P-F set 0 defined on X. Then

)
) )
) S5 €5 Vq;? if S5 €5 ? or g'/;q;3.~
) S5 €5 Ngz0 if ¢5 €5 0 and ¢5¢50.
) éﬁwé does not hold for @ = {€5, ¢z, €5 Vgz, €5 Ng:},V5,7 € [0,1]4, where 6 =
5-175-275-2%5-4) <7-:(7~—1L7~—277~l377:4)‘ N 5
A ¢P-F point ¢; € 0 if 9(¢) > p. That is 99(¢) > p?, Vg = 1,2,3,4. Also, ¢3¢0 if
3(¢) +p > 1. That is, 39(¢) 4+ 52 > 1,¥g =1,2,3, 4.

By ¢; € \/qé(resp.,g'ﬁ € /\qé) =G5 € d or éﬁqé(resp., S5 € d and g',;q(%). If ¢ #C C R,
then the quadri-polar characteristic fuzzy set (¢P-CF) of C, say X, where

. [1=(@1,11),ifceC
X6 = 0=1(0,0,0,0), ifcgC

Clearly, a ¢P-CF is a ¢P-F subset of N.
Definition 4. A ¢P-F set d is a qP-(w,9)-FFL of R, if

(€0 0) § £)50, fzemd = (S 0 (20 (¢0))ana?0,
where @ #€5 Nz, Y6 < p,71 <1 and ((¢ § 0) 0 %),k € N

Consider a ¢P-F set ) deﬁr}ed on &~such that 8(() < 7,V¢ € R. Let ¢ € R and
G < p <1 be such that <5 € Agz0. Then, (s) > p > ¢ and 9(<) + p > 27. Thus,
27 < 0(¢) + p < 3(¢) +0(¢) = 20(¢) = 0(¢) > 7.
Hence, {<5 | 5 €5 /\q;é} = ¢. Therefore, we exclude the case w =€5 Ag; in Definition
4.1 is neglected.

Theorem 3. Let 0 be a qP-(w,9)-FFIL and 6 + 1 = 27 of N. Then, the set

Qxn

= {¢ceR|d(<)>a}

[
is a FI of X.

Proof. Let <, 4, iz € R be such that <, , & € 05. Then, (¢ § 6) { k) > & and (k) > 5.
Assume 0(< () (00 (00¢))) <o.
If we {€s, €5 Vgz}, then
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((5 0 0) § #)5(5y@0 and F5 0.

But
(S0 (00(60¢)) < <d((<0o)0 k) AD(R)
and
050 (00 (00¢)+0((s00) 0 k) AD(k) <&+1=2F.
So,

(0000 5)))§(§.)A5(ﬁ)’l95,w9 € {€s, 97, €5 Va7, €5 Nz}, a contradiction.

Hence, 8(< (00 (60¢)) > =<0 (00 (80<)) € 5.

Also,
00 (0@l +1>6+1=2F= (<0 (00 (00¢)));140.
But
300000 <e=(<0(00(60¢);E50
and

0000 (00 +1<e+1=2F= (<000 (60¢)));1770, a contradiction.
Thus,
00 (00 (009))>a=<¢0(00(20¢)) € 0s.
Therefore, 35 is a FZ of N.

Theorem 4. Let ¢ # C CRNandé+1=27. Then C is a FI of R if and only if the
qP-F subset O of R, which is defined as follows:

(1) 8(¢) = 7, %< € C, ]
(2) 0(<) <a,V¢ € C is a qP-(€5,€5 Vagz)-FFL of N.
Proof. Let C be a FZ of N, ¢, 0,k€Randlet 5 < p,7 < 1 be such that
(o) I%)p €5 \/q;é and k5 €5 d.

Then

Qe

0(((5 0 0) 0 /) = p> 6 and B(k) = 7] >

$O00(60¢)eC=0(<Q(00(00¢)) =7
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300000 =2F>2pAT>6= (<000 (00<)))mq €5 0.

If pA7 > 7, then
0000 +AAT>THTF=2F= (<0 (00 (00<)))sni470.

Thus,

(0 (0Q(00¢9)))sng € Vgz0.

Hence, 3 is an ¢P- (€5,€5 Vaz) FFI of X.
On the contrary, assume dis a ¢P- (EU, €5 \/qT)]-"]-"I of R. Then C is equal to Js.
Consequently, according to Theorem 4.1, C' is a FZ of N.

Corollary 1. Let 56 +1 =27 and ¢ # C C N. Then, Q s a FL of& if and only if the
characteristic function X is a qP-(€5,€5 Vqz) FFL of N.

Theorem 5. Let ¢ £ C C X and 6 + 1 = 27. Then, C is a FI of N if and only if the
qP-F subset d of& defined by the following conditions:

(1) 3(¢) > 7,¥ € C,

(2)0(5) <a,VcgC 3

is a qP-(qz, €5 Vqz)-FFL of N.

Proof. Let ChbeaFIofR, ¢, o,k € Nandlet 5 < p,7 < 1 be such that (0o (A )pq;(;)
and /ﬁané
Then

(<08) DR +p>2F=B((C0 o) 1K) >2—p22F—1=5

and

Thus,

Now, if p A7) < 7, then
0 (00 (00¢)>7>pA7}> 5.
L Venrd
0000 (00N +AAT >T+T=2F= (<0 (00 (00¢))nigr0.

Therefore, (¢ ( (60 (0 0<)))sni € V@:0. Thus, 0 is an ¢P-(gz, €5 Vgz)-FFI of N.
On the contrary, assume 0 is a ¢P- (qT, €5 Vqz)-FFI of R. Then, C is equal to Js.
Consequently, according to Theorem 4.1, C' is a FZ of N.
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Corollary 2. Let ¢ # C C R and 6 + 1 = 27. Then, C~’~is a FI of R if and only if the
characteristic function Xz is a ¢P- (g7, €5 Vqz)-FFI of N.

Theorem 6. Letgzb;éCC R and 5+ 1 = 27. Then, C is a FI of R if and only if ¢P-F
subset D of N defined by the following conditions:

(1)8()>7-V§€C

(2) (<) <a,¥¢ ¢ C

is a qP-(€5 Vqz, €5 Vqz) FFL of N.

Proof. Let C be a FZ of R, ¢, 0,/ € R and let 6 < 5,7 < 1 be such that
((08) 1 #)p €5 Vard = (1 6) § &) €5 B or (<1 6) 0 #)parD
and
K7 €5 \/q;é = Kj €5 d or /%ﬁqfé.
If (< 0 0) ) )5 €5 O, and g0, then
0((<00)0Fk)>p>5and 0(k)+7>2F=0(k) >2F —7>2F—1=34
Thus, < { (60 (00 <)) € C. Analogous as in Theorems 4.3 and 4.5,
(S0 (0 (007 €5 Va7

Hence, dis a q¢-P-(€5 Vgz, €5 Vgz)-FFI of N. The other scenarios can be approached in
a similar manner to this one.

On the contrary, assume dis a ¢P- (€5 Vgz, €5 Vqz)-FFZL of N. Then, C is equal to
d5. Consequently, according to Theorem 4.1, C'is a FZ of N.

Corollary 3. Let ¢ # C C R and 6 + 1 = 27. Then, C is a FI of R if and only if the
characteristic function Xz is a qP-(€5 Vqz, €5 Vaz)-FFL of N.
Theorem 7. Every qP-(qz, €5 Vq:)-FFL of R is a qP-(€5, €5 Vqz)-FFL of

N.
1 be such

Proof. Let 9 be a ¢P-(qz, €5 Vaz)-FFL of X, ¢, 0,/ € R and let & < j,7]
that < (00 (00¢<))s €5 0 and A5 €7 0. Then,

0(s0(60(60¢))>p>6andd(k)>7 > 5.
Suppose that (s § (& 0 (6 0<)))pni€s Vg70. Then
00 (00 00+ 0 (00(209) <D (20 (60<)+pAe <27
;herefore, 3¢ (00(009) <7
o 00 (00 (009))VE<((SHa)AD(R) AT
Choose ¢ < 7 <1 Then



K. H. Hakami et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 3129-3155 3138
27 =93¢0 (60 (60) VG >7>2F—((¢)0) AI(K) AT

Therefore,

27 —0(< 0 (20 (60<)) A (2F —5) > (27 = 0((< § 0)) V (27 = (k) V 7

Thus,

P> 27 —0((< 0 0),7 > 27 —0(k) and 27 =3 (60 (<)) > 7
So,

D((cGo)+7>270(k)+7>2Fand d(<§ (00 (00<))) +7 < 27.
Thus, < § (60 (¢ 0 $))#¢70, 70 but (< § (60 (6 0<)))s €5 Vgz0, a contradiction. Hence,
0 is a qP-(€5,€5 Vgz)-FFL of N.
Theorem 8. Every qP-(€5 Vqz, €5 Vq:)-FFL of R is a qP-(€5, €5 Vqz)-FFIL of N.

Proof. The proof is based on the observation that if ¢; €5 9, then S5 €5 V0.

Theorem 9. Every qP-(€5,€5)FFIL is a ¢P-(€5, €5 Vqz)FFI of N.

Proof. Let 3 be a qP-(€s,€5)-FFI of N, ¢, 0,6 €Nandlet 5 < p,7 < 1. So the ¢P-F
points ((¢ § 0) § £); €5 0 and k5 €5 0. Then

(S0 0)0Fk)sEsDand iy €50 = (S0 (60 (60))png €5 Vaz0.

Thus, 3 is a ¢P-(€5, €5 Vqz)-FFI of N.

5. Quadri-Polar (&;, €; V¢;)-Fuzzy Fantastic Ideals

In this section, we present the notion of a ¢P-(€5, €5 Vgz)-FFI(s) and explore several
of its essential characteristics and properties.

Definition 5. A ¢P-F set 0 of N is a qP-(€5, €5 Vaz)-FFL of N if it satisfies condition
(1), as follows: . } 3

(1) (< 0) 0 k)p €5 0,k €5 0 = (<0 (00 (00 <))sni €5 Vg:0,¥5 < p,7] < 1 and
¢ 0,k € R

Example 2. Consider the BCK-algebra (X; (,0) and a qP-F set 0 as illustrated in Ex-
ample 3.1. It is evident from Definition 5.1, 0 is a qP-(€(0.2,0.1,0.3,0.2)> €(0.2,0.1,0.3,0.2)
Vq(0.61,0.68,0.78,0.57))~F F L of R.

Theorem 10. For a ¢P-F set D of R, condition (1) in Definition 5.1 is similar with
condition (2), as follows:

(2)0(<0 (00 (60¢) Ve >0((<00) (k) AD(k), 7, V<, 0 €R.
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Proof. (1) = (2). Assume that (2) does not hold. Then, 3¢, o, & € X such that
0(¢ 0 (60 (00 VE <B((< 7o) k) AD(E) A

Then,

0000 (00<))VE<p<O((<[0) Qi) AD(R)AFT.
Thus,
(($00) 0 k) €5 0 and ij €5 0.
But (¢ (00 (00¢<)))5€5 V €50, a contradiction.
00 (00 (00))VE>0((S 0 o) 0 &) AD(R) A
= (1) Let ((¢ § 0) 0 )5 €5 0,f; €5 0. Then, 3((¢ 0 ¢) 0 &) > p > & and

)
O(k) =7 >ac. 1 (<0 (00 (00<)))sni €5, then (1) is hold.
If (<0 (00 (60$))pna €50, then 8(< § (6§ (67 <)) < p A7 Since

00 (20(0¢) Ve =0(S)AD(0) AT
>pATAT

N

™

Therefore,
00 (00 (00¢)>7and pAcr > 7.
Thus,
00 @0 (0UN+AAT>T+T=2F= (<0 (00 (605))snigr0.
Hence, (0 (60 (6 0)))pnn €5 Vas0.

Corollary 4. A ¢P-F set d ofN is a qP-(€5, €5 Vag7)-FFL of R if it satisfies 5(§ 0 (00
(00¢) Ve >0((< (o) 0 k) AD(k),7,V5,6 € R.

Theorem 11. The intersection of any collection of ¢qP-(€5,€5 Vaz)-FFLs of N is a
(fP-(G&, €s \/q;-)-]:]:I of N.

Proof. Let {3;}ier be a collection of ¢P-(€5, €5 Vs )-FFIs of Rand (¢ § 9) ) £,/ € N.
Then,

0i(s 0 (20 (00<))VE=0i((s U 0)k) ADi(R) A
Thus,

(Mier0i) (S § (01 (20<))) VG = NierBi(s 0 (60 (60 IN)ve
Pier(0i((¢ 0 0) § &) A Bi (i) A

(Mierd3)((S 0 0) § A) A (A

ALY, ||

7)
10:) (k) A 7.
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Therefore, (Mie1d) (S0 (00 (00 $))Va=> (Nie1ds) (S 0 0) 0 &) A (Aiesds)(F) A 7. Hence,
Nic10; is a qP-(Ea, €5 \/Q%)]:]:I of N.

For any ¢P-F set dofRand je [0,1]9, we define:

(1)822{§EN|§5658},

(2) (0); = {< €N as0},
(3) [07 = {s € R | ¢5 €5 Vq:0}.
It is clear that

A7 = 3% U (B)3.

The ensuing theorems elucidate the connection between qP-(€s,€5 Vqz)-FFZLs and the
crisp FZs in N.

Theorem 12. Let 0 be a ¢P-F set of R. Then, d is a qP-(€5, €5 Vqz)-FFL of R & Sg #
¢ is a FL of R, V5 < p < 7.

Proof. Let 3 be a qP-(€5, €5 Vqz)-FFL of X and let <, o, i € 82 for ¢ < p < 7. Then
9((¢00)0k)>p>aand d(k) > p> 6. Thus, we have

Therefore,
00 (0000 2p=<0(20(20¢) €0z
Thus, 9 is a FZ of U.

On the other hand, suppose that Sg isaFZofUVe < p<7. Assume ¢, 9,k € N such
that

00 (00 (00¢))VE<((SHa)0A) AD(R) AT,
Select & < p < 7 such that
3 BU(60)))VE<i=0((<00)0Fk)AD(R)AF.

Then, (< § 6) § /)5 €5 0,/ €5 0, but (¢ § (80 (¢ <))#€s Vgz0.
Since 0% is a FZ of ¥,

S0(00(00¢9)) € 52, a contradiction.

Hence, 3(< § (0 0 (0 0<)Vvae > 3((¢ 0 0) 0 k) AD(k) A 7. Therefore, d is a ¢P-
(€5, €5 Vagz) FFI of X.

By setting 6 = 0 and 7 = 0.5 in Theorem 5.3, we can derive the subsequent corollary.
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Corollary 5. Let 0 be a qP-F set of N. Then d is a qP-(€,e Vq)FFL of N & 85 ={ce
R|¢;ed}#¢isaFT of R,¥p € (0,0.5]9.

Theorem 13. Let 0 be a qP-F set of N. Then .
(1) 0 is a qP-(€5,€5 Vg7 )-FFLs of R & 5% #¢isa FL of \,Vo < p < T.

(2) If 1+ 6 = 27, then D is a qP-(€5,€5 Vgz)-FFL of R < (8);; # ¢ is a FI of
N,VF <<l ) o
(3) If 1+ 6 = 27, then 0 is a qP-(€5,€5 Vgz)-FFL of X & [5]; #* ¢ is a FL of

N, V6 < p<1.

Proof. (1) Let 9 be a qP-(€5, €5 Vqz)-FFI of X. Let ¢ € 6;. Then

Hence, 3(0) > 5= 0 € 8;
Let ¢, ¢,/ € 07. Then,
((c0o)0k)>p>dand (k) > p> 6.

By Theorem 5.1 (2), we have

Therefore,
00 (20 (209N =p=30(0(20¢) €Dy
Hence, 8‘; is a FZ of R.
Conversely, assume 52 is a FZ of X, Vp € (0, 7]. Let ¢ € R be such that d(0) Vo < j =
9(¢) A7T. Then ¢; €5 9, but 05E5 Vgz0, a contradiction. Suppose <, 9,4 € R. Then
0(< 0 (00 (80<)Va<d((<0)0 k) AD(R)AT.
Select some p € (7, 7] such that
050 (00 (209))VE<p=0((00) 0k AD(E)AF.
Then (< ) ¢) [ )5 €5 0,5 €5 0, but (< [ (27 (2 § <))€ Va0,

IS{ince 07 is a FZ of N, we have ¢ () (¢ ( (0 (<)) € 33, a contradiction.
ence

0§ (00 (80¢))VE=0((S1 o) k) AD(R) AT.
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Therefore d be a qP-(€s,€5 Vaz)-FFL of R.
(2) The proof follows a similar pattern as in (1), and therefore, we omit it for brevity.
(3) Let d is a qP-(€4, €5 Vgz) FFI of R and j € (6, 1]. Then V< € [0]Z,
$5 €5 Vgz0 = 0(S) > p> G or 0(¢) >2F —p>2F —1=4.
Since 0 is a qP-(€ 6,€ 6V qz) FFZ of N,
d0)VG>D()AF>GAT =5,

and so

Case 1: Let p € (6,7]. Then 27 —p > 7

9(0) >B()AT>pAT=pord0)>0(C)ANT>2F—p)AT=pAT=p.

Thus, 0; €5 0.

Case 2: Let p € (7,1]. Then 27 — p < 7 < p,
9(0) >d)ANT=pAT=7>2F—pord0)>dC)AT> (27 —p) AT =27 — .
Hence, 05:0 = 05 €5 Vgz0. )
Let (< ( 0) O &, £ € [0]5. Then ((< ( 0) Q #)p, fp €5 Va0,
(<) 0R)>p>G0rd((CO0) 0 k) >2r—p>2F—1=¢
and
d(r)>p>cor>2F—p)ATO(R) >2F —p=2F—p>27—1=5¢.

Since 0 is a qP-(€5, €5 Vaqz)-FFI of N,

000 (00)))VE>(CH0)0R)ADR)AT>GAGAT>FANT=6.

Therefore,

00 (00 (00¢)))=6=0(:0(20(003))>0((s 1) k) AD(R) AT.
Case 1: Let p € (6,7]. Then 27 — p > 7 > p,

00 (00 (209))
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90 (00 (60<) >0(($00) 0 k)AI(R)AT
> pA(2F ) AT
=pAFAT
= AT
=7

00 (00(00¢) =0((s00) 0 k) AD(R) AT
> (27— p) A (27— ) AF
=FATAT
—F>p

Hence, (< § (60 (6 0<))); €5 0.
Case 2: Let p € (7,1]. Then 27 — p < 7 < p,

0(< 0 (00 (20¢)

or

00 (00 (009))) =0((s o)k

v v Iv IV
ki
> > >
o
2
|
>

>0((s 0 6) 0 &) AD(R) A
> (2T —p) N (2T — )/\T
> (27 — p) AT > (27 — p).

0(< 0 (20 (20¢)

Thus, (¢ § (60 (6 0 <)))pg70.
Hence,

(S000(003))5€s Va0 = (S0 (60 (605))) € [O]5.
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Therefore [(;)]E is a FZ of N.

By substituting ¢ = 0 and 7 = 0.5 into Theorem 5.4, we can derive the ensuing
corollary.

Corollary 6. Let d be a qP-F set of}tl. Then )
(1) 0 is a qP-(€,€ Vq)-FFL of X\ & ?5%(7/é @) is a FIZ of X,Vp € (0,0.5]9.
(2) D is a qP-(€,€ Vq)-FFI of X< (0)(#£ ¢) is a FI of R,Vp € (0.5,1]7.

(3) 3 is a qP-(€,€ Vq)-FFI of X & [J] p(;é ¢) is a FI of X,¥p € (0,1].

p
6. Quadri-Polar Fuzzy TOPSIS Approach

In this section, we present a ¢-PJF TOPSIS approach for multi-criteria group decision-
making (MCGDM) problems. For these problems, we use a TOPSIS method based on
gPF-sets to address a set of alternatives A = {<1,¢2,¢3,¢4} and a set C = {c1,c2,c3,¢4}
classified by ¢. Decision-makers must evaluate the four possibilities based on the ¢-PF
criteria. The possible ratings of alternatives are evaluated in terms of q different attributes
among four membership values, represented as (i = 1,2, 3,4).

Step 1: The degree of each alternative ¢; € A,j = 1,2,3,4) over all the criteria (¢; €
C,k=1,2,3,4) may be expressed as ¢-PFEs.

k() = (p1 0 3(<), p2 0 3E(<), p3 0 K (<), pa 0 DF(S)),

where = (p1 o 3jk(§') | i = 1,2,...,q). The tabular representation of the ¢-PF decision
matrix is given by Table 2, which describes the ratings of alternatives.

Table 3. Tablular representation of ¢-PF decision matrix.

Alternatives ¢ Co c3 Cy4

$1 0 (¢1) 0%(c1) 0%(q) 9M(<r)
S 0%H(G) 0%(&2) 0%(g) 0*(S)
<3 ?31 (3) ?32 (3) ?33 (3) ?34 (<3)
<4 oM (¢y) 0%() 0%(ca) M(<h)

Step 2: We build the optimistic or pessimistic ¢-PF decision matrix by adding the max-
imal and smallest values to equalize the length of all ¢-PFEs.

Step 3: Weights can be assigned to each ¢-PF criteria of alternatives by decision-makers
based on their choice and importance of each criterion. We assume that the weights
assigned by the decision-makers are

W= (w1;w27'w3awq) € (07 1]7

>
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satisfying the normalized condition

Shqwr=1,¢=1,234.
Step 4: The weighted ¢g-PF decision matrix is calculated in Table 4.

Table 4. Tabular representation of a weighted ¢-PF decision matrix.

Alternatives ¢ co c3 c4

& )W B e B
$2 8(52)21/ (;)(52)22/ 8(@2)23, 5(52)24/
& 3e)? B Ble)® D)t
& 3 B )™ B

For each possible j and k,

K (&) = (p1 0 ¥ (<), p2 0 B (S), p3 0 ¥ (¢), pa 0 B (<)),

Step 5: The ¢P-F positive ideal solution (¢P-FPZS) and ¢P-F negative ideal solution
(¢P-FNZIS) of alternatives under the ¢P-F environment can be calculated by Equations
(5) and (6) as

gP — FPIS = {(3" ()", (3% ()", 3¥ (&)F, (3* (&)1}, (5)

P — FNTS = {(3" (€)™, (% (<)), (% (), (3" () 1, (6)
where

(& () = sup(3 (<))
up(pr 0 3 (<), p2 0 (<), ps 0 ¥ (¢), pa 0 ()
J
= ((p1 0 B (), (p2 0 3 ())F, (p3 0 B ()T, (pa 0 T ()T,

and

= inf(p1 0 5 (&), po 0 3 (<), p3 0 B (), pa 0 ()

=((p1 08" (€))7, (p2 00" ()7, (p3 00" ()7, (pa 08" (<)) 7).
Step 6: The ¢P-F Euclidean distance of each alternative ¢; from ¢P-FPLS and ¢P-
FNZS can be calculated by Equations (7) and (8).

klllzl

Dy(¢j,qP — FPIS) J ZZ{Z (pi 0 0K (¢) — pi 0 D (¢)H1], (7)
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and

4 4 4

/ 1

> _ - | = k K

Diy($, qP — FNIS) = 16;2 > (pi 0 3K (<) = pi 0 O (&)Y, (8)
=1 =1 i=1

Step 7: The relative ¢P-F closeness coefficient of each alternative ¢; using the following

formula as described by (9),

B - p— Dy($j,qP — FNIS) _1.9.3.4 (9)
(S, qP — FPIS) + D 1S, qP — fNIS)
The alternative with the highest ¢P-F closeness coefficient is the best one, and we can
rank each alternative in order.
We present our proposed decision-making method in Algorithm 1.
In Section 6.1, we examine the practical usage of our suggested model. Specifically, we

Algorithm 1. The algorithm of the proposed approaches for dealing MCGDM problems.

Step 1. Input.
Step 2. Determine the optimistic or pessimistic ¢-PF decision matrix.
Step 3. Calculate the normalized weights.
Step 4. Calculate the weight for the pessimistic ¢/P-F decision matrix.
Step 5. Compute the gP-FPZS, and ¢P-FNIS.
Step 6. ¢P-F Euclidean distance of each alternative ¢; from ¢FPZS and ¢P-FPLS.
Step 7. Calculate the relative ¢/P-F closeness coefficients Iz
Step 8. Output.
Rank the possibilities for the final decision and choose the best one.

show how ¢P-F is useful in the selection of solar power plant stations in a rural region.

Selection of Solar Power Plant Station in a Rural Area

Assume that the government want to build a solar power plant station in a rural area.
The government has four options for the location of a new solar power plant. Each site
was appraised by a group of decision makers based on the following criteria as follows:

1. “Solar Irradiance (77)”, which could have the characteristics shown below:

e Solar Irradiance Density: The amount of solar power received per unit area.

e Sun Light Duration: The number of sunlight hours per day.

e Solar Tracking: The technology used to follow the sun’s path to maximize energy
capture.

e Temporal Variability: The fluctuation of solar irradiance over time, including daily
and seasonal changes.
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2. “Land Availability (7%)”, which could have the characteristics shown below:
e Land Size: The total area available for the solar power plant.
e Land Ownership: The ownership status of the land, such as government-owned,
privately-owned, or leased.
e Land Access: The ease of access to the land for construction and maintenance.
eLand Cost: The cost of acquiring or leasing the land for the project.

3. “Environmental Impacts (73)”, which could have the characteristics shown below:

e Land Use: The current and previous use of the land and the impact of converting it
to a solar power plant.

e Water Consumption: The amount of water required for cleaning solar panels and
other operations.

e Biodiversity: The effect of the solar power plant on local wildlife and plant species.

e Materials and Waste: The environmental impact of materials used in the construc-
tion and the waste generated.

4. “Proximity to Grid Connections (T4)”,which could have the characteristics shown
below:

e Grid Connection Cost: The expense associated with connecting the solar power plant
to the nearest grid infrastructure.
e Electricity Demand: The local demand for electricity and how the new plant will meet
or exceed this demand.

e Grid Stability: The ability of the existing grid to handle the additional load from
the solar power plant.

e Grid Capacity: The existing capacity of the grid to integrate the new power supply
without significant upgrades.

5. “Local Regulations (75)”, which could have the characteristics shown below:

e Zoning Laws: Regulations that dictate land use in the area.

e Permitting Process: The complexity and duration of obtaining the necessary permits
for construction and operation.

e Incentives and Subsidies: Availability of government incentives, tax credits, and sub-
sidies for renewable energy projects.

e Compliance Requirements: Environmental and operational regulations that need to
be met for the project to proceed.

The five criteria and their attributes are shown below:
1. The ¢P-F initial decision matrix is represented in Table 5.
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Table 5. ¢P-F initial decision matrix.

Alternatives

qP-F criteria c¢1-Solar Radiance

$1 {(.18,.73,.43,.67),(.32,.64,.49,.72),(.38,.66,.54,.64) }
o {(.46,.76,.45,.27),(.56,.91,.36,.48)

$3 {(.85,.37,.45,.59),(.72,.48,.72,.58),(.51,.64,.55,.32) }
4 {(.21,.52,.34,.77),(.41,.61,.43,.78),(.42,.66,.39,.87) }
5 {(-11,.33,.56,.61),(.31,.41,.6,.73) }

Alternatives ¢P-F criteria co-Local Availability

St {(.75,.45,.67,.69),(.79,.37,.57,.69) }

9 {(.45,.70,.49,.86),(.56,.72,.66,.74),(.47,.62,.58,.72) }’
3 {(.46,.66,.71,.17),(.41,.77,.78,.19),(.48,.80,.83,.15) }
4 {(.57,.64,.38,.57),(.51,.56,.59,.47)

s {(.24,.12,.81,.77),(.31,.25,.86,.73),(.23,.31,.80,.75) }
Alternatives ¢P-F criteria cs-Environmental Impacts

1 {(.82,.51,.67,.7),(.8,.64,.69,.8),(.7,.59,.68,.78) }

) {(.70,.56,.45,.29),(.73,.51,.37,.43),(.83,.63,.65,.54) }
<3 {(.74,.46,.61,.8),(.81,.52,.59,.91) }

Sy {(.66,.55,.46,.88),(.61,.58,.41,.86),(.71,.61,.48,.93) }
5 {(.11,.76,.42,.61),(.31,.79,.46,.72),(.23,.8,.57,.84) }
Alternatives ¢P-F criteria cq-Local regulations

S| {(.72,.91,.67,.75),(.69,.84,.69,.87),(.73,.87,.60,.81) }
) {(.60,.44,.76,.80),(.56,.51,.75,.77),(.63 .41,.68,.85)}
3 {(.74,.56,.47,.80),(.81,.56,.53,.91),(.61,.60,.65,.89) }
4 {(.43,.66,.77,.41),(.51,.68,.76,.36),(.53,.60,.87,.27) }
S5 {(.21,.65,.52,.61),(.27,.67,.41,.77)

2. The pessimistic decision matrix ¢gP-F in Table 6.
3. The criteria’s normalised weights are shown below,

w1, =

where S0 w; = 1.

4. The weight pessimistic of the ¢P-F decision matrix is calculated in Table 7.

2412, wy = 2424, w3 = .2548, w4 = .2616,

3148
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Table 6. The pessimistic ¢P-F decision matrix.
Alternatives ¢P-F criteria ci-Solar Radiance

& {(.18,.73,.43,.67),(.32,.64,.49,.72),(.38,.66,.54,.64) }
S {(.46,.76,.45,.27),(.46,.76,.45,.27),(.56,.91,.36,.48) }
&3 {(.85,.37,.45,.59),(.72,.48,.72,.58),(.51,.64,.55,.32) }
& {(.21,.52,.34,.77),(.41,.61,.43,.78),(.42,.66,.39,.87)}
és {(.11,.33,.56,.61),(.11,.33,.56,.61),(.31,.41,.6,.73)}

Alternatives ¢P-F criteria co-Local Availability

a {(75,.45,.67,.69),(.79,.37,57,.69),(.79,.37,.57,.69) }
S {(.45,.7,.49,.86),(.56,.72,.66,.74),(.47,.62,.58,.72) }
& {(.46,.66,.71,.17),(.41,.77,.78,.19),(.48,.80,.83,.15) }
& {(.57,.64,.38,.57),(.51,.56,.59,.47),(.51,.56,.59,.47) }
& {(.24,.12,.81,.77),(.31,.25,.86,.73),(.23,.31,.8,.75)}

Alternatives ¢P-F criteria cs-Environmental Impacts

& {(:82,51,.67,.7),(.8,.64,.69,8),(.7,.59,.68,.78)}

& {(.7,.56,.45,.29),(.73,.51,.37,.43),(.83,.63,.65,.54) }
é3 {(.74,.46,.61,.8),(.74,.46,.61,.8),(.81,.52,.59,.91)}
& {(.66,.55,.46,.88),(.61,.58,.41,.86),(.71,.61,.48,.93)}
& {(.11,.76,.42,.61),(.31,.79,.46,.72),(.23,.8,.57,.84)}

Alternatives ¢P-F criteria cq-Local regulations

& {(72,.91,.67,.75),(.69,.84,.69,.87),(.73,.87,.6,.81) }

& {(.60,.44,.76,.80),(.56,.51,.75,.77),(.63 .41,.68,.85)}
& {(.74,.56,.47,.80),(.81,.56,.53,.91),(.61,.60,.65,.89) }
&4 {(.43,.66,.77,.41),(.51,.68,.76,.36),(.53,.60,.87,.27) }
& {(.21,.65,.52,.61),(.21,.65,.54,.61),(.27,.67,.41,.77)}

5. The evaluation of the ¢P-F positive ideal solution (¢P-FPZLS) and ¢P-F negative
ideal solution (¢P-FNZS) is as follows:
qP-FPLS =

{{(.2050, .1833, .1351, .1857), (.1737,.1833,.1737, .1881), (.1351, .2195, .1447, .2098) },
{(.1818,.1697,.1963, .2085), (.1915, .1866, .2085, .1794), (.1915, .1939, .2012, .1818)},
{(.2089,.1936,.1707, .2242), (.2038, .2013, .1758, .2191), (.2115, .2038, .1733, .2370) },
{(.1936,.2381, 2014, .2093), (.2119, .2197, .1988, .2381), (.1910, .2276, .2276, .2328) } },

and
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Table 7. The weighted pessimistic ¢P-F decision matrix.

3150

S

qP-F criteria ci-Solar Radiance

<1
G2
<3
4
S5

{(:0434,.1761,.1037,.1568),(.0724,.1544,.1182,.1688),(.0917,.1592,.1302,.1544) }
{(.1110,.1833,.1085,.0651),(.1110,.1833,.1085,.0651), (. 1351,.2195,.0868,.1158)}
{(.2050,.0892,.1085,.1375),(.1737,.1158,.1737,.1399),(.1230,.1544,.1327,.0772) }
{(.0507,.1254,.0820,.1857),(.0989,.1471,.1037,.1881),(.1013,.1592,.0941,.2098) }
{(.0265,.0796,.1351,.1471),(.0265,.0796,.1351,.1471),(.0748,.0989,.1447,.1761) }

S

qP-F criteria cg-Local Availability

1
9
3
4
S5

{(11818,.1091,.1624,.1673),(.1915,.0897,.1382,.1673),(.1915,.0897,.1382,.1673) }
{(.1091,.1697,.1188,.2085),(.1357,.1745,.1600,.1794),(.1139,.1503,.1406,.1745) }
{(.1115,.1600,.1721,.0412),(.0994,.1866,.1891,.0461),(.1164,.1939,.2012,.0364) }
{(.1382,.1551,.0921,.1382),(.1236,.1357,.1430,.1139),(.1236,.1357,.1430,.1139) }
{(.0582,.0291,.1963,.1866),(.0751,.0606,.2085,.1770),(.0558,.0751,.1939,.1818) }

S

q'P-F criteria cs-Environmental Impacts

<1
G2
3
4
S

{(:2089,.1299,.1707,.1784),(.2038,.1631,.1758,.2038),(.1784,.1503,.1733,.1987) }
(.1784,.1427,.1147,.0739),(.1860,.1299,.0943,.1096),(.2115,.1605,.1656,.1376) }
(.1886,.1172,.1554,.2038),(.1886,.1172,.1554,.2038),(.2064,.1325,.1503,.2319) }
(.1682,.1401,.1172,.2242),(.1554,.1478,.1045,.2191),(.1809,.1554,.1223,.2370) }
(- ) (- ) (- )}

{
{
{
{(.0280,.1936,.1070,.1554),(.0790,.2013,.1172,.1835),(.0586,.2038,.1452,.2140

S

qP-F criteria cq-Local regulations

<1
o)
<3
4
S5

{(.1884,.2381,.1753,.1962),(.1805,.2197,.1805,.2276),(.1910,.2276,.1570,.2119) }
(.1570,.1151,.1988,.2093),(.1465,.1334,.1962,.2014),(.1648,.1073,.1779,.2224) }
(.1936,.1465,.1230,.2093),(.2119,.1465,.1386,.2381),(.1596,.1570,.1700,.2328) }
(.1125,.1727,.2014,.1073),(.1334,.1779,.1988,.0942),(.1386,.1570,.2276,.0706) }
(.0549,.1700,.1360,.1596),(.0549,.1700,.1413,.1596),(.0706,.1753,.1073,.2014) }

e A

qP-FNIS =

{{(.0265,.0796, .0820, .0651), (.0265, .0796, .1037, .0651), (.0748, .0989, .0868, .0772)},
{(.0582,.0291,.0921,.0412), (.0751, .0606, .1430, .0461), (.0558, .0751, .1406, .0364)},
{(.0280,.1172,.1070, .0739), (.0790, .1172, .0943, .1096), (.0586, .1325, .1223, .1376)},
{(.0549, .1151,.1230,.1073), (.0549, .1334, .1386,.0942), (.0706, .1073,.1073, .0706) } },

6. Using (7) and (8), the ¢P-F Euclidean distance of each alternative ¢; from ¢FPZS
and gP-FPILS are calculated as:

D;E(gl, qP-FPLS) = .0951,
Dy (&, ¢P-FPLS) = 1293,
’E(gg, ¢P-FPLS) = .1229,
D4, gP-FPIS) = 1311,
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Dy(S, qP-FPLS) = 1786,

and
D (é1,qP-FNIS) = 1817,
Dy (é2,qP-FNIS) = .1627,
D (S3, qP-FNIS) = 1740,
Dy (é4, qP-FNIS) = 1461,

Dy(&, qP-FNIS) = .1218.

3151

Using Equation (9), the relative ¢P-F closeness coefficients Ej/ are calculated as:

E, = 6565,
Ey = 5572,
Ey = 5860,
E, = 5270,
E, = .4055.

According to the foregoing computations, the final ranking of power plant selection is as

follows:
S1 > 63 >¢62 > > 5.

Hence, solar power plant station ¢ is selected in the rural area.

As a result of the evaluation among the alternatives, the most risky structure is ¢i.
The positive ideal solution, negative ideal solution and ranking of alternatives based on

closeness coefficients is shown in Figure 1.
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Closeness of Effectiveness

Fig. 1: Positive ideal solution, Negative ideal solution and Ranking of alternatives
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7. Conclusions

Quadri-polar structures are often preferred over clear-cut circumstances. Various forms
of information can be used to manipulate the membership degrees to facilitate the handling
of quadri-polar fuzzy information. We have proposed a novel class of generalized ¢P-
FFI(s) of R called, a qP-(w,9)-FFL(s) and compared to the generalizations of present
fuzzy sets, it is shown to be a more flexible approach that can be evaluated in quadri-
polar ways based on practical interests and requirements. We defined and analyzed the
concept of ¢P-(€4, €5 Vqz)-FFI(s). Moreover, we presented various characterizations of
qP-(€5,€5 Vaz)-FFZLs. It is used to manage data that includes quadri-polar information
suggested by decision-makers. The final decision on the proposed approach is determined
by the decision-maker’s optimistic or pessimistic outlook. In practical perspective, we have
devised a ¢-PJF TOPSIS approach to address MCGDM problems. This method represents
a natural extension of the TOPSIS method tailored to our specific model. Ultimately, we
have implemented our methodology in addressing real-world issues. In the future, we
will delve into additional decision-making methods associated with the proposed concept,
such as g-polar fuzzy semi-hyper groups, g-polar fuzzy rough sets, g-polar fuzzy in different
logical algebras environment.
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