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Abstract. In this work, we introduce the concept of Pythagorean fuzzy soft somewhat open sets
utilizing the Pythagorean fuzzy soft interior operator, extending its application to Pythagorean
fuzzy soft topological spaces. This study aims to enhance decision-making processes in future-
assisted economies by addressing the limitations of existing fuzzy set theories. We investigate the
distinctive properties of Pythagorean fuzzy soft somewhat open sets as a subclass of Pythagorean
fuzzy soft somewhere dense sets. Additionally, we explore Pythagorean fuzzy soft somewhat meta-
morphism’s within the context of Pythagorean fuzzy soft somewhat continuous functions, offering
new insights into their topological invariant. Through detailed analysis and examples, we demon-
strate the applicability of these concepts in various scientific and engineering problems. This
work provides a comprehensive framework for understanding and utilizing Pythagorean fuzzy soft
sets in complex decision-making scenarios. Finally, we compare various relationships across some
generalizations of Pythagorean fuzzy soft continuous functions.
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1. Introduction

Many researchers in the fields of economics, engineering, medicine, and other sci-
ences face the daily challenge of lacking sufficient data to make decisions due to the
emergence of new problems in our daily lives that did not previously exist and for which
innovative and modern approaches are needed to find solutions. A topology is an im-
portant branch of mathematics called rubber geometry that helps solve these problems.
As a result, scientists are trying to expand the topological space in order to help with
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everyday problems related to the environment, economy, health, and even human needs.
To get beyond these obstacles, a number of theories have been put forward, similar to the
1999 introduction of the notion of soft sets (brevity Sss) by Molodtsov [23] and which
has been used in a number of sectors. The character of parameter sets is central to the
notion of Sss, it offers an extensive structure for modeling ambiguous data. In a short
time, this essentially advances the topic of soft set (brevity Ss) theory. The theoretical
basis of the Ss theory has been extensively examined by Maji et al. [22] and Azzam et
al. [10–12]. In addition, Radwan and et al. [1] proposed soft ditopological spaces to
achieve nearly soft β-open sets. To address this problem, Zadeh [32] developed the fuzzy
set (brevity Fs) theory. Following Fs theory concept for various specific purposes, Higher
order and nonclassical fuzzy sets (abbreviated Fss) have been presented. Atanassov [8]
established the idea of the intuitionistic fuzzy set (abbreviated IFs). A growth of theory
Fs that addresses both membership and non-membership values (abbreviated m-values
and n-m-values consequently) [7, 17]. Yager invented the Pythagorean fuzzy set (abbre-
viated PyFs) in two thousand thirteen, which is an additional extension of Fs and IFs
[30]. Numerous applications in the scientific and social sciences have been made possible
by this set theory. For instance, the work by Akram and et al. [2] introduced significant
advancements in fuzzy subsets. Similarly, Azzam [9] explored its applications in social
sciences, while Cuong and et al. [15] and Garg [16] provided critical insights into its
mathematical underpinnings. Further contributions by Garg [18] and Yager [30] expanded
its practical applications, and Zadeh [32] developed foundational theories that underpin
the current study. Olgun et al. [25] suggested and studied Pythagorean fuzzy topological
spaces (abbreviated PyFTSs) in 2019. Independent definitions of soft (generic) topology
were provided in two thousand eleven by Cağman et al. [13] and Shabir and Naz [27].
Nazmul and Samanta [24] provided a definition of soft continuity (abbreviated SC) of
functions in 2013. Next, a number of SC and soft openness generalizations functions that
were documented in the literature. PyFTS was first described in [25] and Pythagorean
fuzzy soft topological space (PyFSTS) [7, 26]. In recent years, the need for advanced
fuzzy set theories has grown significantly due to the increasing complexity of problems
in economics, engineering, and decision-making processes. The motivation behind this
study is to address these challenges by developing a robust framework using Pythagorean
fuzzy soft sets. Our main contribution lies in defining and exploring the properties of
Pythagorean fuzzy soft somewhat open sets and their applications in topological spaces.
This approach provides a more nuanced understanding of fuzzy environments, enabling
more precise modeling of uncertainty and imprecision in real-world scenarios. Following
this quick introduction, we will review some preliminary principles in Part 2. Part 3 then
introduces the idea that Pythagorean fuzzy soft somewhat open (brevity PyFSsw-open)
sets and looks at how it relates to a few soft open set assumptions. The objectives of Part
4 is to examine PyFSsw-C functions, which are stronger than PyFSsw-dense C, but
weaker than soft semicontinuous. We wrap up and offer some suggestions for next works
in Part 5.
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2. Preliminaries

Various fundamental ideas and symbols will be used in the sequel are contained in
this part. We will henceforth refer to an original universe X, a collection of parameters η,
an exponential set of X (℘(X)), soft topology ST , a soft topological space STS, picture
fuzzy set PFs, positive membership function pmf , negative membership function nmf ,
and continuous C.

Definition 1. [32] A membership function ξD(x) that assigns a real number in the range
[0, 1] to each point in X characterizes a fuzzy set D in X. The ”grade of m” of x in D
is indicated by the value of ξD(x) at x.

Definition 2. [29] Let X represent the universe, then the set
D = {(x, ξD(x), ψD(x)) : x ∈ X} is referred to as IFs of X, ξD : X → [0, 1] and
ψD : X → [0, 1] are referred to as x’s pmf in X, and within X, x has a nmf effectively
under the circumstances 0 ≤ ξD(x) + ψD(x) ≤ 1, ∀x ∈ X.

Definition 3. [15] Assume X is the universe setting, then the set
D = {(x, ξD(x), υD(x), ψD(x)) : x ∈ X} is referred to as PFs of X, ξD : X → [0, 1],
ψD : X → [0, 1] and ψD : Ω → [0, 1] the degrees of positive, neutral, and negative m of x
in X, as well as their respective conditions 0 ≤ ξD(x) + υD(x) +ψD(x)) ≤ 1, ∀x ∈ X, are
designated accordingly.

Definition 4. [29] Let X represent the cosmos, then the set
D = {(x, ξ(x), ψ(x)) : x ∈ X} is named PyFs of X, ξ : X → [0, 1] and ψ : X → [0, 1] are
referred to the degree of pmf of x in X and nmf degree of x in X effectively under the
circumstances 0 ≤ ξ2 + ψ2 ≤ 1, ∀x ∈ X.

Definition 5. [29] Let D1 = {(x, ξD1(x), ψD1(x)) : x ∈ X} and D2 = {(x, ξD2(x), ψD2(x)) :
x ∈ X} are two FyFs on X, then
i) D1 ⊓D2 = {(x, ξD1(x) ∧ ξD2(x), ξD1(x) ∨ ξD2(x) : x ∈ X},
ii) D1 ⊔D2 = {(x, ξD1(x) ∨ ξD2(x), ξD1(x) ∧ ξD2(x) : x ∈ X},
iii) D1 ⊑ D2 if and only if ξD1(x) ≤ ξD2(x), ψD1(x) ≥ ψD2(x) : x ∈ X.

Definition 6. [25] PyFTS is the PyF family τ that subsets of a non-empty set X if
i) 0X , and 1X belong to τ ,
ii) We have x1 ⊓ x2 belong to τ for any pair x1, x2 ∈ τ ,
iii) We have ⊔ixi belong to τ for any xi ∈ τ .

Definition 7. [23] When ξ : η → ℘(X) is a (crisp) map, then a Ss over X is a pair
(ξ, η) = {(a, η(a)) : a ∈ η}. Instead of writing the soft set (ξ, η), we write ξη. Ssη(X) or
for all Sss on X, the class is represented by just Ss(X). When A ⊑ η, then SsA(X) will
serve as its symbol.

Definition 8. [6]
The term for a Ss ξη on X is:

(1) a soft element if ξ(a) = {x} for every a ∈ η, for x ∈ X, {x}η is used to represent
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it(maybe soon x).
(2) a soft point if for every a ̸= á, ξ(a) = {x} and ξ(á) = ϕ for every a ∈ η and x ∈ X.
It’s indicated by pxa. If x ∈ ξ(a), then the expression pxa ∈ ξ(a).

Definition 9. [5]
A soft set Xη − ξη (or simply ξcη is the complement of ξη, ξ

c : η → ℘(X) is defined as
ξc(a) = X − ξ(a) for every a ∈ η.

Definition 10. [23]
The term for a soft subset ξη over X is null for any a ∈ η if ξ(a) = ϕ, and absolute

if ξ(a) = X. Both empty and absolute SSs are denoted by ϕη and Xη, respectively. It is
evident that ϕcη = Xη and Xc

η = ϕη.

Definition 11. [22]
Assume C,D ⊑ η. If C ⊑ D and ξ(a) ⊑ G(a) for each a ∈ C, then GC is a soft subset

of HD (written as GC ⊑ HD). If GC ⊑ HD and HD ⊑ GC , we refer to GC soft equates
to HD.

Maji et al. [22] defined the soft union and soft overlap of two Sss with respect to
arbitrary subsets of η. However, as noted by Ali et al. [5], these definitions are imprecise
and ambiguous. Consequently, we adhere to the definitions provided by Ali et al. [5] and
M. Terepeta [28].

Definition 12. [27] A subfamily τ of Ssη is said to be a ST on X if (i) Xη and ϕη
elements in τ , (ii) τ owns the finite intersection of sets from τ , and (iii) τ owns any
union of sets from τ .

We refer to (X, τ, η) as a STS on X. τ ’s elements are known as soft open sets, while
their complements are known as soft closed sets.

Definition 13. [27] Suppose Zη is a non-null soft subset of (X, τ, η). In that case,
(Z, τZ , η) represents a soft subspace of (X, τ, η), A soft relative topology on Z is denoted
by τZ = {Gη ⊓ Zη : Gη ∈ τ}.

Definition 14. [27]
ξη is a soft subset of (X, τ, η). Denoted by intξη, the largest soft open set contained in

ξη is the soft interior of ξη. The soft closure of ξη is clξη, which is the smallest soft closed
set containing ξη.

Definition 15. The terms ”soft dense,” ”soft co-dense,” ”soft semiopen [14],” ”soft
β-C [31],” ”soft somewhat open [4],” and ”soft somewhere dense [3],” if ”cl(Gη) =
Xη,” ”int(Gη) = ϕη,” ”Gη ⊑ cl(int(Gη)),” ”Gη ⊑ cl(int(clGη)), ” ”int(Gη) ̸= ϕη,”
”int(cl(Gη)) ̸= ϕη,” respectively ”referring to the different states of a soft subset GE of
(X, τ, η). (We compel ϕη to be soft somewhere dense in order to improve the connectivity
between these soft sets).
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Definition 16. Suppose (X, τ, η) and (Z, ρ, ή) be STS. A soft function ξ : (X, τ, η) →
(Z, ρ, ή) is called
i) SC [24] (resp., soft semi-C [20], soft SD-C [4], soft β-C [31]) if every soft open subset of
(Z, ρ, ή) has a soft open as its inverse image (resp., soft semiopen, soft somewhere dense,
β-open) subset of (X, τ, η).
ii) soft open [23] (resp., soft semiopen [20], soft SD-open [4], soft β-open [31]) if the image
of each soft open subset of (X, τ, η) is a soft open (resp., soft semiopen, soft somewhere
dense, β-open) subset of (Z, ρ, ή).
iii) If it is one to one soft open and SC from (X, τ, η) onto (Z, ρ, ή), then it is a soft
homeomorphism [24].

The reader is referred to [19] for a definition of soft functions spanning collections of
all Sss. From here on, we refer to ”soft function” when we use the term ”function.”

Definition 17. [29]
The PyFSS may be expressed as a collection of ordered pairs

(ξ̃, η̃) = {(a, {(x, ξξ̃(a)(x), ψξ̃(a)(x)) : a ∈ η̃}} because it is not a set but rather a specified

unit of certain components of the set PyF (X̃), where ξξ̃(a)(x) and ψξ̃(a)(x) are the pmfs

and nmfs, successively. If x ∈ X̃, 0 ≤ ξ2
ξ̃(a)

(x) + ψ2
ξ̃(a)

(x) ≤ 1.

We introduced the idea of PyFSTS and looked into its properties in more detail. Let
PyF (X̃, η̃) and X̃ represent, respectively, the family of PyFSs on X̃ and the origin of the
universal set.

Definition 18. [7]
A void PyFSSs (or 0̃) is defined as a PyFSSs(ξ̃, η̃) over X̃ if and only if ∀a ∈

η̃, (ξ̃, η̃)(a) = (0̃, 1̃), where 0̃, 1̃ are the pmf and the value of the nmfs, the null and
absolute, respectively PyFSs Pythagorean over X̃.

Definition 19. [7]
An absolute PyFSSs, or(1̃), is a PyFSSs(ξ̃, η̃) over X̃ if and only if ∀a ∈ η̃, (ξ̃, η̃)(a) =

(0̃, 1̃), where 0̃, 1̃ are the pmf and the value
of the nmfs, the null and absolute, respectively, of the absolute and null function.

Definition 20. [7] Let Ω̃ ⊑ PyF (X̃, η̃), at hence, Ω̃ is claimed to be a PyFSTS if
i) Ω̃ includes 0̃ and 1̃ as members,
ii) Any two PyFSS that intersect in Ω̃ are related to Ω̃,
ii) Any number of PyFSS in Ω̃ that is united belongs to Ω̃,
It is argued that the triple (X̃, Ω̃, η̃) is a PyFSTS over X̃.

∗. All Ω̃ members are considered to be Ω̃-open PyFSS.
∗∗. A Ω̃-closed PyFSS is considered to be the complement of a Ω̃-open.
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3. Pythagorean fuzzy soft somewhat open sets

We create key properties and introduce the concept of PyFSsw-open sets in this
section. We provide examples to show the relationships between PyFS semiopen and
PyFS somewhere dense sets, as well as various generalizations of PyFSsw-open sets.

Definition 21. A subset Gη̃ of a PyFSTS (X̃, Ω̃, η̃) is claimed to be PyFSsw-open if
int(Gη̃) ̸= ϕη̃ or Gη̃ is null. PyFSsw-closed is the complement of PyFSsw-open set.
That is, a set ξη̃ is PyFSsw-closed if cl(ξη̃) ̸= Hη̃ or ξη̃ = X̃η̃.

Remark 1. Let (X̃, Ω̃, η̃) be a PyFSTS.
i) If and only if there is a PyFS-open set Uη̃ that ϕη̃ ̸= Uη̃ ⊑ Gη̃, The non-null set Gη̃

over X̃ is PyFSsw-open.
ii) If ξη̃ is a PyFSsw-closed set that Hη̃ ⊑ ξη̃ ̸= X̃η̃, then a valid set Hη̃ over X̃ is
PyFSsw-closed.

Proposition 1. i) Each superset of a PyFSsw-open set is PyFSsw-open.
ii) Each subset of a PyFSsw-closed set is PyFSsw-closed.

Proof. Obvious.

Proposition 2. A non-null PyFSs is PyFSsw-open if and only if it is a PyFS neigh-
borhood of a PyFS point.

Proof. Let Gη̃ be a PyFSsw-open set that isn’t null. Next, there exists a PyFS open
set Uη̃, where ϕη̃ ̸= Uη̃ ⊑ Gη̃. As a result, Gη̃ is every soft point in Uη̃’s soft neighborhood.
Let Gη̃, on the other hand, be the PyFS neighborhood of a PyF soft point pxa. After
that, Uη̃ is PyF softly opened so that pxa ∈ Uη̃ ⊑ Gη̃. As a result, we get intGη̃ ̸= ϕη̃, as
needed.

Proposition 3. A union of PyFSsw-open sets is PyFSsw-open.

Proof. Suppose that {Gβ
η̃ : β ∈ Λ} is the collection of PyFSsw-open subsets of a

PyFSTS (X̃, Ω̃, η̃). At hence, int(∪β∈ΛG
β
η̃ ) ⊒ ∪β∈Λint(G

β
η̃ ) ̸= ϕη̃. Thus ∪β∈ΛG

β
η̃ is

PyFSsw-open.

Corollary 1. The intersection of PyFSsw-closed sets is PyFSsw-closed.

As demonstrated by the example that follows, the intersection of two PyFSsw-open
sets need not be PyFSsw-open.

Example 1. Let η̃ = {a1, a2, a3, a4} be the parameters or characteristics set and As the
reference set, let X̃ = {x1, x2, x3} represent the applicants who have been recommended for
promotion, in which a1 denotes intelligence, a2 experience, a3 attitude, and a4 competence.
Let D1 = {a1, a2} ⊑ η̃, D2 = {a2} ⊑ η̃. Next, two PyFSsw(ξ̃1, D1) and (ξ̃2, D2) are
examined. These are represented as follows:
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(ξ̃1, D1) = {(a1, ξ̃1(a1)), (a2, ξ̃1(a2))}, and (ξ̃2, D2) = {(a2, ξ̃2(a2))}, where ξ̃1(a1)) = {x1 =
(0.5, 0.6), x2 = (0.4, 0.7), x3 = (0.1, 0.7)},
ξ̃1(a2)) = {x1 = (0.3, 0.2), x2 = (0.6, 0.5), x3 = (0.2, 0.7)},
ξ̃2(a2)) = {x1 = (0.8, 0.4), x2 = (0.8, 0.3), x3 = (0.4, 0.3)}
Ω̃1 = {1̃, 0̃, (ξ̃1, D1)} and Ω̃2 = {1̃, 0̃, (ξ̃1, D1), (ξ̃2, D2)}} are two PyFSTSs and Ω̃ =
{1̃, 0̃, (ξ̃1, D1), (ξ̃2, D2)} is a PyFST over X̃, (ξ̃1, D1) ⊓ (ξ̃2, D2) ̸= ϕη̃ but int((ξ̃1, D1) ⊓
(̃ξ̃2, D2)) = ϕη̃.

There are several examples when the intersection of a PyFSsw-open set with another
PyFS open, PyFS closed, or PyFS dense set is not a PyFSsw-open set.

The following result shows when the intersection of PyFSsw-open and PyFS open
sets is a PyFSsw-open set.

Definition 22. A PyFSTS (X̃, Ω̃, η̃) is named
i) PyFS separable if it has a countable PyFS dense subset.
ii) PyFS hyperconnected if any pair of non-null PyFS open subsets intersect.

Proposition 4. In a PyFS hyperconnected space (X̃, Ω̃, η̃), a PyFSsw-open set is the
intersection of two PyFSsw-open sets.

Proof.
The evidence is easy to understand if one of the two PyFSsw-open sets is null. Assume

that there are two PyFSsw-open sets, Gη̃ and Hη̃. Next, int(Gη̃) = Uη̃ ̸= ϕη̃ and
int(Hη̃) = Vη̃ ̸= ϕη̃ are obtained. Now, int(Gη̃ ⊓ Hη̃) = int(Gη̃) ⊓ int(Hη̃) = Uη̃ ⊓ Vη̃.
Then, Uη̃ ⊓Vη̃ ̸= ϕη̃ since (X̃, Ω̃, η̃) is a PyFS hyperconnected. Hence, int(Gη̃ ⊓Hη̃) ̸= ϕη̃,
and we achieve the intended outcome.

Corollary 2. In a PyFS hyperconnected space (X̃, Ω̃, η̃), the intersection of PyFSsw-
open and PyFS open sets is a PyFSsw-open.

Corollary 3. A PyFS topology is formed by the family of PyFSsw-open subsets of a
PyFS hyperconnected space (X̃, Ω̃, η̃).

Lemma 1. Suppose Gη̃ and Hη̃ are subsets of (X̃, Ω̃, η̃). If Gη̃ is sw-open and Hη̃ is a
PyFS dense over X̃, then Gη̃ ⊓Hη̃ is PyFSsw-open over X̃.

Proof.
Since intH(Gη̃ ⊓ Hη̃) = intH(Gη̃) ⊓ Hη̃ ⊒ int(Gη̃) ⊓ Hη̃ ̸= ϕη̃, hence Gη̃ ⊓ Hη̃ is

PyFSsw-open over X̃.

Lemma 2. Assume that Gη̃ ⊑ Yη̃ and that (Ỹ , Ω̃Y , η̃) is a PyFS open subspace of
(X̃, Ω̃, η̃). If and only if Gη̃ is PyFSsw-open over X̃, then it is also PyFSsw-open over
Ỹ .
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Proof. Let’s say that Gη̃ is PyFSsw-open over Ỹ . It is possible to have a PyFS open
set Uη̃ over Ỹ such that ϕη̃ ̸= Uη̃ ⊑ Gη̃. Because Yη̃ is PyFS open over X̃, Uη̃ is also
PyFS open over X̃. As a result, Gη̃ is PyFSsw-open over X̃.
In contrast, let’s say that Gη̃ is PyFSsw-open over X̃. This is equivalent to intX̃(Gη̃) ̸=
ϕη̃. According to Theorem 2 in [19], and Remark 3.2, intX̃(Gη̃) ⊑ intỸ (Gη̃) , hence Gη̃ is

PyFSsw-open over Ỹ .

If Yη̃ is PyFS dense in X̃, as the following example demonstrates, then the previous
result is not valid.

Example 2. Suppose X̃ = {x1, x2, x3, x4}, η = {a1, a2}, and Ω̃ = {0̃, Fη̃, Gη̃, Hη̃, 1̃},
where
Fη̃ = {(a1, {x2, x4}), (a2, {x1, x2})}
Gη̃ = {(a1, X̃), (a2, {x3, x4})}
Hη̃ = {(a1, {x2, x4}), (a2, ϕη̃)}
Let Ỹ = {x2, x3} at hence, Ω̃Y = {0̃, Iη̃, Jη̃,Kη̃, 1̃}, where
Iη̃ = {(a1, {x2}), (a2, {x2})}
Jη̃ = {(a1, Ỹ ), (a2, {x3})}
Kη̃ = {(a1, {x2}), (a2, ϕη̃)}
Ỹη̃ = {(a1, {x2, x4}), (a2, {x2, x4})}.
Over the PyFS dense set Ỹ , the set Iη̃ is PyFSsw-open, but not over X̃.

Lemma 3. Suppose Gη̃ that a subset of (X̃, Ω̃, η̃). Hence, Gη̃ is PyFS semiopen if and
only if cl(Gη̃) = cl(int(Gη̃)).

Proof. Suppose Gη̃ is PyFS semiopen, that Gη̃ ⊑ cl(int(Gη̃)), and then cl(Gη̃) ⊑
cl(int(Gη̃)). For the opposite side of inclusion, there is always int(Gη̃) ⊑ Gη̃. So, cl(Gη̃) =
cl(int(Gη̃)).
In contrast, let’s say that cl(Gη̃) = cl(int(Gη̃)), but Gη̃ ⊑ cl(Gη̃) always, at hence Gη̃ ⊑
cl(int(Gη̃)). So, Gη̃ is PyFS semiopen.

Lemma 4. Consider Gη̃ as a non-null subset of (X̃, Ω̃, η̃). Hence, Gη̃ is PyFS semiopen
if int(Gη̃) ̸= ϕη̃.

Proof. Suppose otherwise that, if Gη̃ is a non-null soft semiopen set with int(Gη̃) = ϕη̃,
then Gη̃ = ϕη̃ is implied by Lemma 3.14 since cl(Gη̃) = ϕη̃. Inconsistency.

Remark 2. Since int(Gη̃) = int(cl(Gη̃)) for each PyFS Gη̃ in a PyFSTs (X̃, Ω̃, η̃), so
each PyFSsw-open set is PyFS somewhere dense.

The following figure depicts the relation between different extensions of PyFS open
sets.

As demonstrated below, none of these implications can, in general, be replaced by
equivalency.
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Figure 1: The relationships between some generalizations of PyFS open sets.

Example 3. Think about PyFST over X̃ that Example 3.7. The PyFSs over X̃ is not
PyFSsw-open, meaning it is not PyFS semiopen, but is PyFSβ-open, meaning it is
PyFS somewhere dense. However, it is evident that the set
{(a1, ξ̃1(a1)), (a2, ξ̃1(a2))} is not PyFS semiopen, but rather PyFSsw-open.

Lemma 5. Suppose Gη̃ that a non-null subset of (X̃, Ω̃, η̃). Then cl(Gη̃)⊓Hη̃ ⊑ cl(Gη̃⊓Hη̃)
for all PyFS open set Hη̃ on X̃.

Lemma 6. Assume that Gη̃, Hη̃ is a subset of (X̃, Ω̃, η̃). Gη̃ ⊓Hη̃ is PyFS semiopen over
X̃ if Gη̃ is PyFS open and Hη̃ is PyFS semiopen.

Proof. Suppose that Gη̃ is PyFS open and Hη̃ is PyFS semiopen. Then there’s a
PyFS open set. Uη̃ over X̃ with Uη̃ ⊑ Hη̃ ⊑ cl(Uη̃). Now Uη̃⊓Gη̃ ⊑ Hη̃⊓Gη̃ ⊑ cl(Uη̃)⊓Gη̃.
By Lemma 3.18, Uη̃ ⊓Gη̃ ⊑ Hη̃ ⊓Gη̃ ⊑ cl(Uη̃ ⊓Gη̃) and since Uη̃ ⊓Gη̃ is PyFS open, then
Hη̃ ⊓Gη̃ is PyFS semiopen over X̃.

Lemma 7. Assume that Gη̃, Hη̃ is a subset of (X̃, Ω̃, η̃). Gη̃ ⊓Hη̃ is PyFS semiopen over
Gη̃ if Gη̃ is PyFS open and Hη̃ is PyFS semiopen.

Proof. Utilizing the same procedures as in the lemma proof above, apply the assertion
that cl(Uη̃) ⊓Gη̃ = clGη̃(Uη̃).

Lemma 8. A subset Gη̃ of (X̃, Ω̃, η̃) is PyFS semiopen if and only if Gη̃⊓Uη̃ is PyFSsw
open for each PyFS open set Uη̃ over X̃.
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Proof. The first part follows because each PyFS semiopen set is PyFSsw open and
because the intersection of a PyFS semiopen set with a PyFS open set is semiopen
according to Lemma 3.19. On the other hand, suppose that pxa ∈ Gη̃ and that for any
PyFS open set Uη̃ over X̃, Gη̃ ⊓ Uη̃ is PyFSsw open. That is int(Gη̃ ⊓ Uη̃) ̸= ϕη̃. But
ϕη̃ ̸= int(Gη̃ ⊓ Uη̃) = int(Gη̃) ⊓ int(Uη̃) = int(Gη̃) ⊓ Uη̃, that is p

x
a ∈ cl(int(Gη̃)) and then

Gη̃ ⊑ cl(int(Gη̃)). This demonstrates Gη̃’s PyFS semiopenness.

Lemma 9. Consider Fη̃. is a subset of (X̃, Ω̃, η̃). If Fη̃ is PyFS semiclosed and PyFS
somewhere dense, it is PyFSsw open.

Proof. It may be inferred directly from Lemma 3.15 that Fη̃ is semiclosed if and only
if
int(cl(Fη̃))=int(Fη̃).

4. PyFSsw-continuous functions

This part focuses on outlining the ideas behind PyFSsw C functions, also known as
PyFSsw C, and providing several characterizations of them. Furthermore, we demon-
strate its connections to various forms of PyFS continuity. In conclusion, we obtain
certain findings about hyperconnected and PyFS separable spaces.

Definition 23. Consider (X̃, Ω̃1, η̃1) and (Ỹ , Ω̃2, η̃2) are a PyFSTSs.
If every PyFS open set over Ỹ has an inverse image that is also PyFSsw open over X̃,
then the function f : (X̃, Ω̃1, η̃1) → (Ỹ , Ω̃2, η̃2) is considered PyFSsw-C.

Remark 3. A function f : (X̃, Ω̃1, η̃1) → (Ỹ , Ω̃2, η̃2) is PyFSsw-C if each pxa ∈ X̃ and
each PyFS open set Vη̃2 over Ỹ ⊒ f(pxa), there is a PyFSsw open set Uη̃ on X̃ ⊒ pxa that
f(Uη̃) ⊑ Vη̃2.

Based on Figure 1, we deduce that
The ramifications shown in the above graphic are all irreversible.

Example 4. Let X̃ = {x1, x2, x3}, η = {a1, a2}, and Ω̃ = {0̃, Fη̃, Gη̃, 1̃}, where
Fη̃ = {(a1, {x2}), (a2, {x2})}
Gη̃ = {(a1, {x1, x3}), (a2, {x1, x3})} and Ω̃1 = {0̃, Hη̃, 1̃} where
Hη̃ = {(a1, X̃}), (a2, {x1, x2})}.
Let f : (X̃, Ω̃1, η̃) → (X̃, Ω̃2, η̃) be the PyFS identity function. At hence, f is PyFSsw-C
but not PyFSsw-semicontinuous.

Example 5. Let X̃ = ℜ be the set of real numbers and η = {a} be a collection of
parameters. Let Ω̃ be the PyFST on ℜ generated by {(a, ξ(a)) : (x1, x2) ∈ ℜ;x1 < x2}.
Define a PyFS function f : (X̃, Ω̃, η̃) → (X̃, Ω̃, η̃) by
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Figure 2: The relationships between some generalizations of PyFS continuous.

f(x) =


x if x /∈ {0̃, 1̃}η̃,
0 if x = 1,

1 if x = 0.

Given that every PyFS basic open set has an inverse image that also contains another
PyFS basic open, one can simply demonstrate that f is PyFSsw-C (and hence, PyFS
SD-C), since its PyFS interior cannot be null. However, f is not PyFSβ-C. Let Gη̃ =
{(a, (−ε, ε))} be the PyFS open set, with ε < 1. Therefore
f−1(Gη̃) = {(a, (−ε, 0))} ⊔ {(a, (0, ε))} ⊔ {(a, {1})}.
But cl(int((cl(f−1(Gη̃))) = {(a, [−ε, ε])} and so f−1(Gη̃) ⊈ cl(int((cl(f−1(Gη̃))). As a
result, f is not PyFS semicontinuous and cannot be PyFSβ-C.

Example 6. Consider the PyFSTS (X̃, Ω̃, η̃) as described in Example 4.4. Define f :
(X̃, Ω̃, η̃) → (X̃, Ω̃, η̃) as follows:

f(x) =

{
0 if x /∈ Qη̃,

1 if x ∈ Qη̃.

In such case, f is not PyFSsw-continuous but soft SD-continuous. Any PyFS open set
with only one element is its inverse image, and Qη̃ is not a PyFSsw-open set over X̃.
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Definition 24. We introduce the following for a subset Gη̃ of a PyFSTS (X̃, Ω̃, η̃):
1-clsw(Gη̃) = ⊓{Fη̃ : Fη̃ is PyFSsw-closed over X̃ and Gη̃ ⊑ Fη̃}.
2-intsw(Gη̃) = ⊔{Oη̃ : Oη̃ is PyFSsw-open over X̃ and Oη̃ ⊑ Gη̃}.

Proposition 5. Consider (X̃, Ω̃1, η̃1) and (Ỹ , Ω̃2, η̃2) that a PyFSTSs. The function
f : (X̃, Ω̃1, η̃1) → (Ỹ , Ω̃2, η̃2) can be represented by the following functions:
1- f is PyFSsw-C,
2- f−1(Fη̃2) is PyFSsw-closed set over X̃, for every PyFS closed set Fη̃2 over Ỹ ,
3- f(clsw(Gη̃)) ⊑ cl(f(Gη̃)) for every set Gη̃ on X̃,
4- clsw(f

−1(Hη̃2)) ⊑ f−1(cl(Hη̃2)), for every set Hη̃2 on Ỹ ,
5- f−1(int(Hη̃2)) ⊑ intsw(f

−1(Hη̃2)), for every set Hη̃2 on Ỹ .

Proof. Straightforward.

Definition 25. Assume that PyF (X̃, η̃1) and PyF (Ỹ , η̃2) be PyFSSs and let Dη̃1 ∈
(X̃, η̃1). The restriction of f : PyF (X̃, η̃1) → PyF (Ỹ , η̃2) is the FyFS function
fDη̃1

: PyF (X̃, η̃1) → PyF (Ỹ , η̃2) defined by fDη̃1
(P x

a ) = f(P x
a ) for all P

x
a ∈ Dη̃1. a PyFS

function’s expansion f is a PyFS function of g, meaning that f restricts g.

Theorem 1. Consider (X̃, Ω̃1, η̃1) and (Ỹ , Ω̃2, η̃2) that a PyFSTSs, and let dη̃1 be a
PyFS dense subspace over X̃. If f : (X̃, Ω̃1, η̃1) → (Ỹ , Ω̃2, η̃2) is PyFSsw-C over X̃,
then f | dη̃1 is PyFSsw-C over d.

Proof. Straightforward (with the aid of Lemma 3.12).

Theorem 2. Let (X̃, Ω̃1, η̃1) and (Ỹ , Ω̃2, η̃2) be a PyFSTSs, and let f : (X̃, Ω̃1, η̃1) →
(Ỹ , Ω̃2, η̃2) be a function and {Gβ

η̃1
: β ∈ Λ} be a PyFS open cover of X̃. At hence, f is

PyFSsw-C, if f | Gβ
η̃1

is PyFSsw-C for each β ∈ Λ.

Proof. Suppose Vη̃2 is a PyFS open set across Ỹ . By presumption, (f | Gβ
η̃1
)−1(Vη̃2)

is PyFSsw open over Gβ
η̃1
. By Lemma 3.13, (f | Gβ

η̃1
)−1(Vη̃2) is PyFSsw open over X̃

foe all β ∈ Λ. But f−1(Vη̃2) = ⊔β∈Λ[(f | Gβ
η̃1
)−1(Vη̃2)], this is the union of PyFSsw open

sets, and f−1(Vη̃2) is PyFSsw open over X̃. f is hence PyFSsw-C.

Theorem 3. Let (X̃, Ω̃1, η̃1) and (Ỹ , Ω̃2, η̃2) be a PyFSTSs, and let Uη̃1 be a PyFS open
set over X̃. If f : (Ũ , Ω̃1, η̃1) → (Ỹ , Ω̃2, η̃2) is a PyFSsw-C function that f(Uη̃1) is FyS
dense over Ỹ , then PyFSsw-C is the extension function of each f over X̃.

Proof. Let Vη̃2 be a (non-null) PyFS open set on Ỹ and let g be an extension of f . If
g−1(Vη̃2) = ϕη̃1 , then g is simply PyFSsw-C. Let g−1(Vη̃2) ̸= ϕη̃1 . By density of f(Uη̃1),
f(Uη̃1) ⊓ Vη̃2 ̸= ϕη̃2 it suggests that Uη̃1 ⊓ f−1(Vη̃2) ̸= ϕη̃1 . Therefore f−1(Vη̃2) ̸= ϕη̃1 .
Presumably, a non-null PyFS open set Wη̃1 on U exists such that
Wη̃1 = Wη̃1 ⊓ Uη̃1 ⊑ f−1(Vη̃2) ⊓ Uη̃1 = g−1(Vη̃2) ⊓ Uη̃1 ⊑ g−1(Vη̃2). Since Wη̃1 is a PyFS
open set over X̃ according to Lemma 3.13, ϕη̃1 ̸= Wη̃1 ⊑ g−1(Vη̃2). Consequently, across
X̃, g is PyFSsw-C.
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Theorem 4. Consider (X̃, Ω̃1, η̃1) and (Ỹ , Ω̃2, η̃2) be a PyFSTSs. A function f : (Ũ , Ω̃1, η̃1) →
(Ỹ , Ω̃2, η̃2) is a PyFS-semicontinuous if and only if f | Wη̃1 is sw-C for all PyFS open
set Wη̃1 over X̃.

Proof. Let f be a PyFS-semicontinuous, Wη̃1 is any PyFS open set on X̃. Let Gη̃2

be a PyFS open set on Ỹ . then f−1(Gη̃2) is PyFS semiopen and from Lemma 3.19,
(f | Wη̃1)

−1(Gη̃2) = f−1(Gη̃2) ⊓Wη̃1 is PyFS semiopen over W . Then f | Wη̃1 is PyFS-
semicontinuous and hence PyFSsw-C.
Conversely, Let f | Wη̃1 is sw-C for all PyFS open set Wη̃1 over X̃, and Hη̃2 be PyFS
open set over Ỹ . Then (f | Wη̃1)

−1(Hη̃2) = f−1(Hη̃2) ⊓Wη̃1 is PyFSsw-open over W .
Since Wη̃1 is a PyFSsw-open over X̃ by Lemma 3.12, f−1(Hη̃2) ⊓ Wη̃1 is a PyFSsw-
open over X̃ and so, by Lemma 3.22, f−1(Hη̃2) is PyFS semiopen over X̃. Thus f is
PyFS-semicontinuous.

Theorem 5. Consider (X̃, Ω̃1, η̃1) and (Ỹ , Ω̃2, η̃2) be a PyFSTS. The function f :
(Ũ , Ω̃1, η̃1) → (Ỹ , Ω̃2, η̃2) can be represented by the following function:
1- f is PyFSsw-continuous,
2-There is a non-null PyFS open set Wη̃1 on X̃ that Wη̃1 ⊑ f−1(Vη̃2), for any PyFS open
set f−1(Vη̃2) on Y with f−1(Vη̃2) ̸= ϕη̃1,
3-There is a proper PyFS closed Kη̃1 on X̃ that f−1(Fη̃2) ⊑ Kη̃1, for any PyFS closed
set Fη̃2 on Y with f−1(Fη̃2) ̸= X̃η̃1,
4- f(dη̃1) is PyFS dense over f(X̃) for any PyFS dense set dη̃1 over X̃.

Proof. 1 ⇒ 2 The definition of sw-continuity and Remark 3.2.
2 ⇒ 3 Given a PyFS closed set Fη̃2 over Ỹ , f−1(Fη̃2) ̸= X̃η̃1 . f

−1(Ỹη̃2 \ Fη̃2) ̸= ϕη̃1 indi-
cates that Ỹη̃2 \Fη̃2 is PyFS open over Ỹ . A PyFS open set Wη̃1 over X̃ exists according
to (2) in such a way that ϕη̃1 ̸=Wη̃1 ⊑ f−1(Ỹη̃2 \Fη̃2) = X̃η̃1 \f−1(Fη̃2). This suggests that
f−1(Fη̃2) ⊑ X̃η̃1 \Wη̃1 ̸= X̃η̃1 . Kη̃1 is a proper PyFS closed set that meets the necessary
property if Kη̃1 = X̃η̃1 |Wη̃1 .
3 ⇒ 4 Over X̃, let dη̃1 be PyFS dense. The claim that f(dη̃1) is PyFS dense over f(X̃)
must be proven. Assume that over f(X̃), c is not PyFS dense. A proper PyFS closed
set Fη̃2 , exists such that f(dη̃1) ⊑ Fη̃2 ⊏ f(X̃η̃1). So, dη̃1 ⊑ f(Fη̃2). According to (3), there
is a PyFS closed set Kη̃1 over X̃ such that dη̃1 ⊑ f−1(Fη̃2) ⊑ Kη̃1 ̸= X̃η̃1 . That dη̃1 is
PyFS dense over X̃ is contradicted by this. Therefore, (4) is true.
4 ⇒ 1 Let Hη̃2 be a PyFS open set over Ỹ with f−1(Hη̃2) ̸= ϕη̃1 without losing gen-
erality, since it is trivially PyFSsw-open if f−1(Hη̃2) = ϕη̃1 . Assume that f−1(Hη̃2)
is not PyFSsw-open, i.e. int(f−1(Hη̃2)) = ϕη̃1 . At hence, cl(X̃η̃1 \ f−1(Hη̃2) = X̃η̃1 .
This suggests that on X̃, X̃η̃1 \ f−1(Hη̃2) is PyFS dense. From 4, f(X̃η̃1 \ f−1(Hη̃2)) is
PyFS dense over f(X̃), this means that cl(f(X̃η̃1) \ f−1(Hη̃2)) = f(X̃η̃1). This results in
cl(f(X̃η̃1) \ f−1(Hη̃2) = f(X̃η̃1) \Hη̃2 = f(X̃η̃1) and so Hη̃2 = ϕη̃2 . In contrast to the selec-
tion of Hη̃2 . As a result, int(f−1(H)) cannot be null. As a result, f−1(Hη̃2) is PyFSsw
on X̃.

Corollary 4. Consider (X̃, Ω̃1, η̃1) and (Ỹ , Ω̃2, η̃2) be a PyFSTS. The corresponding
values for a one-to-one function are as follows: f : (Ũ , Ω̃1, η̃1) → (Ỹ , Ω̃2, η̃2):
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a-f is PyFSsw-C,
b-f(Mη̃1) is PyFS co-dense over Ỹ for any soft co-dense set Mη̃1 over X̃.

This section concludes with two results about soft separable and hyperconnected space.

Theorem 6. Consider (X̃, Ω̃1, η̃1) and (Ỹ , Ω̃2, η̃2) be a PyFSTSs, and f : (Ũ , Ω̃1, η̃1) →
(Ỹ , Ω̃2, η̃2). If f is PyFSsw-C and (X̃, Ω̃1, η̃1) is PyFS separable, then (Ỹ , Ω̃2, η̃2) is
PyFS separable.

Proof. Allow dη̃1 to be a countable PyFS dense set on X̃. f(dη̃1) is clearly countable.
According to f(dη̃1) is PyFS dense over f(X̃) = Ỹ . As a result, (Ỹ , Ω̃2, η̃2) is PyFS
separable.

Theorem 7. Let (X̃, Ω̃1, η̃1) and (Ỹ , Ω̃2, η̃2) be a PyFSTSs, and f : (Ũ , Ω̃1, η̃1) →
(Ỹ , Ω̃2, η̃2). If f is PyFSsw-C and (X̃, Ω̃1, η̃1) is PyFS hyperconnected, then (Ỹ , Ω̃2, η̃2)
is PyFS hyperconnected.

Proof. Allow Gη̃2 , Hη̃2 be any two PyFS open sets over Ỹ with Gη̃2 ̸= Hη̃2 ̸= ϕη̃2 .
Since f is PyFSsw-C, then int(f−1(Gη̃2) ̸= ϕη̃1 ̸= int(f−1(Hη̃2). But (X̃, Ω̃1, η̃1) is PyFS
hyperconnected, then int(f−1(Gη̃2)) ⊓ int(f−1(Hη̃2) ̸= ϕη̃1 .
If x ∈ int(f−1(Gη̃2)) ⊓ int(f−1(Hη̃2)) ⊑ f−1(Gη̃2) ⊓ f−1(Hη̃2), at hence f(x) ∈ Gη̃2 ⊓Hη̃2 .
Thus (Ỹ , Ω̃2, η̃2) is PyFS hyperconnected.

5. Conclusion

Numerous aspects of everyday existence are uncertain. The PyFSs theory is one the-
ory developed to deal with uncertainty. This study is based on a novel mathematical
structure called PyFST , which was initiated by typologists using PyFSss. In this work,
we presented the idea of PyFSsw open sets as a new extension of PyFS open sets. On
the one hand, the family of PyFS open to some extent sets is located between the families
of PyFS semiopen sets and PyFS somewhere dense sets. The families of PyFSsw open
sets and PyFSβ-open sets, on the other hand, are independent of one another. With
the help of examples, these linkages have been explained and main attributes established.
Then, to define PyFSsw-continuous, we used PyFSsw open sets. We defined these two
functions and explored their key characteristics. Investigates some intriguing relationships
in a certain PyFST in [8]. The purpose of developing these categories was to analyze the
distinctions betweenPyFS homeomorphism and PyFS partly homeomorphism in terms of
preserving certain PyFST features. In the following work, we intend to investigate some
topological concepts such as PyFS compactness, PyFS Lindelofness, and PyFS connect-
edness using PyFSsw open sets. It is also planned to investigate certain applications of
PyFSsw homeomorphisms. In addition, we investigate PyFSsw open sets in the context
of supra PyFSTS. This study has laid the groundwork for further exploration of PyFSs
and their applications. Future research should investigate the potential of T-Bipolar Sss
[3], spherical and T-spherical Fss [9], complex PyFss [7, 16], and Bipolar complex Fss
[21]. These directions offer promising avenues for developing more sophisticated models
and decision-making tools in various scientific and engineering domains.
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