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Abstract. In this paper, we find an atomic solution of the fractional abstract Cauchy problem
of order three. The fractional derivative used is the conformable derivative. The main idea of the
proofs are based on theory of tensor product of Banach space.
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1. Introduction

Let X be a Banach space and I = [0, 1]. Let C(I) be the Banach space of all real
valued continuous function on I under the sup-norm, and C(I,X) be the Banach space of
all continuous functions defined on I with values on X.

In recent years, many researchers were devoted to the problem

Bu´ = Au(t) + f(t)z

u(0) = x0,

where u ∈ Ć (I,X) and A,B are densely defined linear operators on the codomain u.
This is called the Abstract Cauchy Problem which is: If f = 0 or z = 0, then the

equation is homogenous, otherwise it is called non-homogenous. Now in the non homoge-
nous problem we have two cases: (i) The first case, u is unknown and f is given. In
this case the problem is called a direct problem. (ii) The second case, u and f are
unknown. In this case the problem is called an inverse problem, and some other condi-
tions and informations should be given. If B is not invertible, then the equation is called
non-degenerate.

There are many different techniques to solve Abstract Cauchy Problem in case (i).
Tensor product is one of such techniques.
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In [4], a new definition called α−conformable fractional derivative was introduced,
which says that: If α ∈ (0, 1), and f : E ⊆ (0,∞) → R. For x ∈ E, let:

Dαf(x) = lim
ε→0

f(x+ εx1−α)− f(x)

ε
. (1)

If the limit exists then it is called the α−conformable fractional derivative of f at x.
For x = 0, Dαf(0) = lim

x→0
Dαf(0) if such limit exists.

The new definition satisfies:

(i) Dα(af + bg) = aDα(f) + bDα(g), for all a, b ∈ R.

(ii) Dα(λ) = 0, for all constant functions f(t) = λ.

Further, for α ∈ (0, 1] and f, g be α−differentiable at a point t, with g(t) ̸= 0. Then

(iii) Dα(fg) = fDα(g) + gDα(f).

(iv) Dα
(
f
g

)
= gDα(f)−fDα(g)

g2
.

We list here the fractional derivatives of certain functions,

(v) Dα(tp) = ptp−α.

(vi) Dα
α(sin

(
1
α t

α
)
) = cos

(
1
α t

α
)
.

(vii) Dα
α(cos

(
1
α t

α
)
) = − sin

(
1
α t

α
)
.

(viii) Dα(e
1
α
tα) = e

1
α
tα .

On letting α = 1 in these derivatives, we get the corresponding ordinary derivatives.
One should notice that function could be α−conformable differentiable at a point but

not differentiable, for example, take f(t) = 2
√
t. Then D 1

2
(f)(t) = 1. Hence D 1

2
(f)(0) = 1.

But D1(f)(0) does not exist. This is not the case for the known classical fractional
derivatives.

For more on fractional calculus and its applications we refer to [1], [2], and [5].

2. Atomic solution

Let X and Y be two Banach space and X∗ be the dual of X. Assume x ∈ X and
y ∈ Y . Define the map x⊗ y: X∗ −→ Y , by x⊗ y(x∗) = ⟨x, x∗⟩ y for all x∗ ∈ X∗.

It is well known that x⊗ y is a bounded linear operator and ∥x⊗ y∥ = ∥x∥ ∥y∥ . The
operator x ⊗ y is called an atom. The set X ⊗ Y = span {x⊗ y : x ∈ X and y ∈ Y } is
subspace of L (X∗, Y ) .

If the sum of two atoms is an atom, then either the first components are dependent or
the second are dependent.
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An equation of the form

D2αu(t) +ADαu(t) +Bu(t) = f(t) (2)

is called the fractional abstract Cauchy problem of order two, where v and f are nice
functions from (0,∞) to the Banach space X, Aand B are closed linear operator on X.

A solution of this equation of the form v = u ⊗ x .is called an atomic solution,where
v(t) = u(t)x.In this paper, we are interested in finding an atomic solution of the third
order vector valued fractional differential equations.

3. Main results

In this section, we prove some nice result containing certain solution of atomic problem.
Consider the equation

v3α (t) +Av2α (t) +Bvα (t) = f (t) , (3)

where A and B are closed operators, f (t) is given and u is the unknown equation (3)
was discussed in [5] for the first order. Hence,we discuss third order.

Theorem 1. The equation v3α (t) +Av2α (t) +Bvα (t) = f (t) with the initial conditions
v(0) = 2x0, v

α(0) = x0, and v2α(0) = x0 has an atomic solution .where A and B are closed
operators on X,and f is a given atomic function, f : [0,∞] → X.

Now, we are looking for atomic solution of (3). So put v (t) = u (t)x, u(t) : [0,∞] →
R, x is an element in the Banach space X, and consider the case when u(0) = 1, then the
initial conditions given in Theorem 1 will be as follows:(

v(0) = u(0)x = 2x0 which implies that x = 2x0
vα(0) = x0, and v2α(0) = x0.

)
(4)

Further assume f to be an atom: f = h ⊗ z where h : [0,∞] → R,and z ∈ x. So, (3)
becomes:

u3α ⊗ x+ u2α ⊗Ax+ uα ⊗Bx = f (t) .

This can be written as:

u3α ⊗ x+ u2α ⊗Ax+ uα ⊗Bx = h⊗ z. (5)

There are four cases that must be discussed when solving the equation (5) as follows:
Case one: u3α ⊗ x+ u2α ⊗Ax is an atom.
In this case we have two situations:

(i) u3α = u2α.

(ii) x = Ax.
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Let us take situation (1).So equation (5) becomes:

u3α ⊗ (x+Ax) + uα ⊗Bx = h⊗ z, (6)

where h and z are given. So we have two cases:

(a) u3α = uα = h = u2α.

(b) x+Ax = Bx = z.

In case (a), we have three cases:

(i) u3α − uα = 0.

This case can be solved as in [3]:

r3 − r = r(r − 1)(r + 1) = 0,

which gives r1 = 0, r2 = 1, and r3 = −1.
Consequently,

u(t) = c1 + c2e
tα

α + c3e
− tα

α .

So by (4), we have

c1 + c2 + c3 = 2x0, c2 − c3 = x0, and c2 + c3 = x0,

which implies that c1 = x0, c2 = x0, and c3 = 0. Hence, we have

u(t) = x0 + x0e
tα

α . (7)

(ii) uα = h.

Using (7), we have

h = x0e
tα

α .

Hence for an atomic solution to exist, h must = x0e
tα

α .

(iii) u3α = h.

By using (7), we have

h = x0e
tα

α .

Since u3α = uα = h = u2α = x0e
tα

α , then( 6) becomes

x+Ax+Bx = z.
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So
(I +A+ b)x = z,

This means z will be in the intersection of the ranges (I +A+B) .
Consequently, there is an atomic solution in this situation.
In case (b), equation (6) becomes

u3α ⊗ (x+Ax) + uα ⊗Bx = h⊗ z.

So,
u3α + uα = h.

This is third order homogenous linear fractional differential equation. To solve it, we
follow the variation of parameters method.

The homogenous part can solved as in, [3].

r3 + r = r(r2 + 1) = 0,

which implies that r1 = 0, r2 = i, and r3 = −i.
Hence

uh(t) = c1 + c2 cos

(
tα

α

)
+ c3 sin

(
tα

α

)
.

By the assumption (4), we get c1 = 3x0, c2 = −x0, and c3 = x0.
Hence

uh(t) = 3x0 − x0 cos

(
tα

α

)
+ x0 sin

(
tα

α

)
.

For the particular part, the ,we use variation of parameters introduced in [2]. Thus we
have

up(t) =

3∑
m=1

um

t∫
b

hWα
m(τ)

Wα(τ)τ1−α
dτ. (8)

Where b is an arbitrary positive constant, and

Wα[u1(t), u2(t), u3(t)] =

∣∣∣∣∣∣
u1(t) u2(t) u3(t)
uα1 (t) uα2 (t) uα3 (t)
u2α1 (t) u2α2 (t) u2α3 (t)

∣∣∣∣∣∣ ,Wα
1 =

∣∣∣∣∣∣
0 u2(t) u3(t)
0 uα2 (t) uα3 (t)
1 u2α2 (t) u2α3 (t)

∣∣∣∣∣∣ ,
Wα

2 =

∣∣∣∣∣∣
u1(t) 0 u3(t)
uα1 (t) 0 uα3 (t)
u2α1 (t) 1 u2α3 (t)

∣∣∣∣∣∣ , and Wα
3 =

∣∣∣∣∣∣
u1(t) u2(t) 0
uα1 (t) uα2 (t) 0
u2α1 (t) u2α2 (t) h

∣∣∣∣∣∣ .
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Hence,

Wα =

∣∣∣∣∣∣
3x0 −x0 cos

(
tα

α

)
x0 sin

(
tα

α

)
0 x0 sin

(
tα

α

)
x0 cos

(
tα

α

)
0 x0 cos

(
tα

α

)
−x0 sin

(
tα

α

)
∣∣∣∣∣∣ = −3x0.

Which means that:

Wα
1 =

∣∣∣∣∣∣
0 −x0 cos

(
tα

α

)
x0 sin

(
tα

α

)
0 x0 sin

(
tα

α

)
x0 cos

(
tα

α

)
1 x0 cos

(
tα

α

)
−x0 sin

(
tα

α

)
∣∣∣∣∣∣ = −x0,

Wα
2 =

∣∣∣∣∣∣
3x0 0 x0 sin

(
tα

α

)
0 0 x0 cos

(
tα

α

)
0 1 −x0 sin

(
tα

α

)
∣∣∣∣∣∣ = −3x0 cos

(
tα

α

)
,

and

Wα
3 =

∣∣∣∣∣∣
3 −x0 cos

(
tα

α

)
0

0 x0 sin
(
tα

α

)
0

0 x0 cos
(
tα

α

)
1

∣∣∣∣∣∣ = 3x0 sin

(
tα

α

)
.

So, we have

uα1 (t) =
Wα

1

Wα
=

1

3
,

uα2 (t) =
Wα

2

Wα
=

−3x0 cos
(
tα

α

)
−3x0

= cos

(
tα

α

)
,

and

uα3 (t) =
Wα

3

Wα
=

3x0 sin
(
tα

α

)
−3x0

= − sin

(
tα

α

)
.

Consequently,

up(t) = 3x0

t∫
b

h

3

dτα

τα−1
−x0 cos

(
tα

α

) t∫
b

h cos

(
τα

α

)
dτα

τα−1
−x0 sin

(
tα

α

) t∫
b

h sin

(
τα

α

)
dτα

τα−1
.

So,

u(t) = uh(t) + up(t),

u(t) = 3x0 − x0 cos

(
tα

α

)
+ x0 sin

(
tα

α

)
+ 3x0

t∫
b

h
dτα

τα−1
− x0 cos

(
tα

α

) t∫
b

h cos

(
τα

α

)
dτα

τα−1

−x0 sin

(
tα

α

) t∫
b

h sin

(
τα

α

)
dτα

τα−1
.

This completes situation (1).
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Considering situation (2), x = Ax, equation (5) becomes:(
u3α + u2α

)
⊗ x+ uα ⊗Bx = h⊗ z.

This situation has two cases:

(a) u3α + u2α = uα = h.

(b) x = Bx = z.

In case (a), for the existence of an atomic solution, we have three situations:

(i) u3α + u2α − uα = 0.

This can be solved as in [3],

r3 + r2 − r = r(r2 + r − 1) = 0.

Which gives

r1 = 0, r2 =
−1 +

√
5

2
, and r3 =

−1−
√
5

2
. (9)

Then

u(t) = c1 + c2e
r2(

tα

α
) + c3e

r3(
tα

α
). (10)

Now, by assumptions (4), we have

c1 + c2 + c3 = 2x0, r2c2 + r3c3 = x0, and r22c2 + r23c3 = x0.

So,

c1 = 2x0 − c2 − c3, c2 =
r3 − x0
r2r3 − r22

, and c3 =
r2 − x0
r2r3 − r23

. (11)

From (9) and (11), we have

c1 = 0, c2 =
3 +

√
5

5−
√
5
x0 , and c3 =

3−
√
5√

5 + 5
x0.

So, the equation (10) will be

u(t) =
3 +

√
5

5−
√
5
x0e

−1+
√
5

2
( t

α

α
) +

3−
√
5√

5 + 5
x0e

−1−
√
5

2
( t

α

α
). (12)

(ii) uα = h.

For an atomic solution to exist h must equal to uα.

Hence, from (12), we have

h =
1 +

√
5

5−
√
5
x0e

−1+
√
5

2
( t

α

α
) +

1−
√
5

5 +
√
5
x0e

−1−
√
5

2
( t

α

α
).
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(iii) u3α + u2α = h.

So,

h = c2(r
3
2 + r22)e

r2(
tα

α
) + c3(r

3
3 + r23)e

r3(
tα

α
)

h =
1 +

√
5

5−
√
5
x0e

−1+
√
5

2
( t

α

α
) +

1−
√
5

5 +
√
5
x0e

−1−
√
5

2
( t

α

α
). (13)

Hence, the equations (12) and (13) are equal to h.

So, there is an atomic solution in this case.

In case (b), equation (5) becomes(
u3α + u2α

)
⊗ x+ uα ⊗Bx = h⊗ z.

So,

u3α + u2α + uα = h. (14)

This is third order homogenous linear fractional differential equation, to solve it we
follow the variation of parameters method.

The homogenous part can solved as in [3].

r3 + r2 + r = r(r2 + r + 1) = 0,

which gives r1 = 0, r2 =
−1+i

√
3

2 , and r3 =
−1−i

√
3

2 .
Hence,

uh(t) = c1 + e−
tα

2α

(
c2 cos

(√
3tα

2α

)
+ c3 sin

(√
3tα

2α

))
.

By assumption (4), we have

c1 = 4x0, c2 = −2x0, and c3 = 0.

So,

uh(t) = 4x0 − 2x0e
− tα

2α cos

(√
3tα

2α

)
.

Since c3 = 0, there is no particular part, and for an atomic solution to exist, h must
equal zero. This completes situation (2), and hence, Case one is completed.

Case two: (u3α ⊗ x+ uα ⊗Bx) is an atom.
In this case we have two situations:
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(i) u3α = uα.

(ii) x = Bx.

Considering situation (1), equation (5) becomes:

u3α ⊗ (x+Bx) + u2α ⊗Ax = h⊗ z. (15)

So we have two cases:

(a) u3α(t) = u2α(t) = h = uα.

(b) x+Bx = Ax = z.

In case (a) we have three cases:

(i) u3α − u2α = 0.

This case can be solved as in [3]:

r3 − r2 = r2(r − 1) = 0,

which gives r1 = 0, r2 = 0, and r3 = 1.
Consequently,

u(t) = c1 + c2
tα

α
+ c3e

tα

α .

Hence, by the assumption (4), we have

c1 = x0 , c2 = 0, c3 = x0.

Hence,

u(t) = x0 + x0e
tα

α . (16)

(ii) u2α = h.

From (16), we get

h = x0e
tα

α .

So for an atomic solution to exist h must = x0e
tα

α .

(iii) u3α = h.
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From (16), we get

h = x0e
tα

α .

Since u3α = u2α = uα = h = x0e
tα

α in (ii) and (iii).
Consequently,

x+Bx+Ax = z.

So (I+B+A)x = z which mean z will be in the intersection of the ranges of (I +B +A)
.

Hence, there is an atomic solution in situation (1).
Now, in case (b) x + Bx = Ax = z. Hence, x + Bx = Ax, x + Bx = z, and Ax = z.

So, equation (5) becomes

u3α ⊗ (x+Bx) + u2α ⊗Ax = h⊗ z. (17)

Substitute the equation (17) in the equation (15), we get(
u3α + u2α

)
⊗Ax = h⊗ z.

Hence,

u3α + u2α = h. (18)

This is third order homogenous linear fractional differential equation, to solve it we
follow the variation of parameters method.

The homogenous part can solved as in [3] as follows:

r3 + r2 = 0,

which gives r1 = 0, r2 = 0, and r3 = −1.
Hence,

uh(t) = c1 + c2
tα

α
+ c3e

−( t
α

α
). (19)

So by the assumption (4), we have

c1 = x0, c2 = 2x0, c3 = x0.

Hence, (19) becomes

uh(t) = x0 + 2x0
tα

α
+ x0e

−( t
α

α
).

For the particular part we use variation of parameters introduced in [2]. Thus, by
using (8), the Wronskian will given by:
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Wα =

∣∣∣∣∣∣∣
x0 2x0

tα

α x0e
−( t

α

α
)

0 2 −x0e
−( t

α

α
)

0 0 x0e
−( t

α

α
)

∣∣∣∣∣∣∣ = 2x0e
−( t

α

α
).

So, we have

Wα
1 =

∣∣∣∣∣∣∣
0 2x0

tα

α x0e
−( t

α

α
)

0 2x0 −x0e
−( t

α

α
)

1 0 x0e
−( t

α

α
)

∣∣∣∣∣∣∣ = −2x0e
−( t

α

α
)

(
tα

α
+ 1

)
,

Wα
2 =

∣∣∣∣∣∣∣
x0 0 x0e

−( t
α

α
)

0 0 −x0e
−( t

α

α
)

0 1 x0e
−( t

α

α
)

∣∣∣∣∣∣∣ = x0e
−( t

α

α
),

and

Wα
3 =

∣∣∣∣∣∣
x0 2x0

xtα

α 0
0 2x0 0
0 0 1

∣∣∣∣∣∣ = 2.

So,

uα1 (t) =
Wα

1

Wα
=

−2x0e
−( t

α

α
)
(
tα

α + 1
)

2x0e
−( t

α

α
)

= −
(
tα

α
+ 1

)
,

uα2 (t) =
Wα

2

Wα
=

e−( t
α

α
)

2e−( t
α

α
)
=

1

2
,

and

uα3 (t) =
Wα

3

Wα
=

2x0

2x0e
−( t

α

α
)
= e(

tα

α
).

Consequently,

up = −x0

t∫
b

h(
tα

α
+ 1)

dtα

tα−1
+ 2x0

tα

α

t∫
b

h

2

dtα

tα−1
+ x0e

−( t
α

α
)

t∫
b

he
tα

α
dtα

tα−1
.

Hence,

u(t) = uh + up,

u(t) = x0 + 2x0
tα

α
+ x0e

−( t
α

α
) −

t∫
b

h(
tα

α
+ 1)

dtα

tα−1
+

tα

α

t∫
b

h
dtα

tα−1
+ e−( t

α

α
)

t∫
b

he
tα

α
dtα

tα−1
.
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Now, we will take situation (2), so equation (5) becomes:(
u3α(t) + uα(t)

)
⊗ x+ u2α(t)⊗Ax = h⊗ z.

For this case we have two cases:

(a) u3α + uα = u2α = h = uα.

(b) x = Ax = z.

In case (a), for the existence of an atomic solution, we have five situations.

(i) u3α − u2α + uα = 0.

So we have from [3]

r3 − r2 + r = r(r2 − r + 1) = 0,

which gives r1 = 0, r2 =
1+i

√
3

2 , and r3 =
1−i

√
3

2 .
Then,

u(t) = c1 + e
1
2

(
tα

α

)(
c2 cos

(√
3tα

2α

)
+ c3 sin

(√
3tα

2α

))
.

By the assumption (4), we have

c1 = 2x0, c2 = 0, and c3 =
2√
3
x0.

Hence,

u(t) = 2x0 +
2√
3
x0e

1
2

(
tα

α

)
sin

(√
3tα

2α

)
. (20)

(ii) u3α + uα = uα.

u3α = 0, from [3],we have
r3 = 0.

Consequently,

r1 = r2 = r3 = 0.

So,

u(t) = c1 + c2

(
tα

α

)
+ c3

(
tα

α

)2

.
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So, by assumption (10), we have

c1 = 2x0, c2 = x0, c3 =
x0
2
.

Hence,

u(t) = 2x0 + x0

(
tα

α

)
+

x0
2

(
tα

α

)2

.

(iii) u2α = h.

So,from (20) we have,

h = x0e
1
2

(
tα

α

)(
cos

(√
3tα

2α

)
− x0√

3
sin

(√
3tα

2α

))
.

(iv) uα = h.

So, from (20) we have,

h = x0e
1
2

(
tα

α

)(
cos

(√
3tα

2α

)
+

x0√
3
sin

(√
3tα

2α

))
.

(v) u3α + uα = h.

So, from (20), we have

h = x0e
1
2

(
tα

α

)
cos

(√
3tα

2α

)
.

Since we don’t have same solution from (i), (ii), (iii), (iv), and (v), there is no
an atomic solution in this case.

This completes situation (2), and hence, Case two is completed.

Case three: (u2α ⊗Ax+ uα ⊗Bx) is an atom. This has two situations:

(1) u2α = uα.

(2) A x = Bx.

Let us take situation (1), so equation (5) becomes:

u3α ⊗ x+ u2α ⊗ (Ax+Bx) = h⊗ z.

So, we have two cases:

(a) u3α(t) = u2α(t) = h = uα.
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(b) x = Ax+Bx = z.

In case (a), we have four situations:

(i) u3α − u2α = 0.

So, we can solve it as in [3]

r3 − r2 = r2(r − 1) = 0,

which gives r1 = 0, r2 = 0, and r3 = 1. So,

u(t) = c1 + c2
tα

α
+ c3e

( t
α

α
). (21)

By assumption (4), we have

c1 = x0, c2 = 0, and c3 = x0.

So, (21) becomes

u(t) = x0 + x0e
( t

α

α
). (22)

(ii) u2α = h.

Using (21), we get

h = x0e
( t

α

α
).

(iii) u3α = uα.

r3 = r.

So, we have r1 = 0, r2 = 1, and r3 = −1.

Hence,

u(t) = c1 + c2e
( t

α

α
) + c3e

−( t
α

α
).

By assumption (4), we have

c1 = x0.c2 = x0, and c3 = 0.

Consequently,

u(t) = x0 + x0e
( t

α

α
). (23)

(iv) u3α = h.
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Using (21), we get

h = x0e
( t

α

α
).

Since u3α = u2α = h = uα = x0e
tα

α , (6) becomes

x = Ax+Bx = z.

So,
(A+B)x = z,

or
(I)x = z.

Which means that z will be at the range of intersection of (A+B) and I.
Consequently, there is atomic solution in this case.
In case (b), equation (5) becomes

u3α ⊗ x+ u2α ⊗ (A+B)x = h⊗ z.

So,

u3α + u2α = h.

This is third order homogenous linear fractional differential equation, to solve it we
follow the variation of parameters method. The homogenous and particular parts can be
found similarly as (18) in the case (b) in situation (1) in Case two, and

u(t) = x0 + 2x0
tα

α
+ x0e

−( t
α

α
) −

t∫
b

h(
tα

α
+ 1)

dtα

tα−1
+

tα

α

t∫
b

h
dtα

tα−1
+ e−( t

α

α
)

t∫
b

he
tα

α
dtα

tα−1
.

Now, we will take situation (2), so equation (5) becomes:

u3α ⊗ x+ (u2α + uα)⊗Ax = h⊗ z.

So, we have two cases:

(a) u3α(t) = u2α(t) + uα(t) = h.

(b) x = Ax = z.

In case (a), for an atomic solution to exist we must have three situations

(i) u3α(t)− u2α(t)− uα(t) = 0.
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So, we can solve it as in [3]

r3 − r2 − r = r(r2 − r − 1) = 0,

which gives r1 = 0, r2 =
1+

√
5

2 , and r3 =
1−

√
5

2 . So,

u(t) = c1 + c2e
r2(

tα

α
) + c3e

r3(
tα

α
).

By assumption (4), we have

c1 = 2x0, c2 =
x0√
5
, and c3 =

−x0√
5
.

Hence,

u(t) = 2x0 +
x0√
5
e

−1+
√
5

2
( t

α

α
) − x0√

5
e

−1−
√
5

2
( t

α

α
). (24)

(ii) u2α(t) + uα(t) = h.

So from (24), we have

h =

(
1 +

2√
5

)
x0e

−1+
√
5

2
( t

α

α
) +

(
1− 2√

5

)
x0e

−1−
√
5

2
( t

α

α
).

So, for an atomic solution to exist hmust equal
(
1 + 2√

5

)
x0e

−1+
√

5
2

( t
α

α
)+
(
1− 2√

5

)
x0e

−1−
√

5
2

( t
α

α
).

(iii) u3α(t) = h.

So from (24), we have

h = c2r
3
2e

r2t
α

α + c3r
3
3e

r3t
α

α .

Hence,

h = (
2√
5
+ 1)x0e

1+
√
5

2
tα

α + (1− 2√
5
)x0e

1−
√
5

2
tα

α .

Since u2α(t) + uα(t) = u3α(t) = h in (ii) and (iii), there is an atomic solution .
This completes situation (2), and hence, Case three is completed.
Case four: (u3α ⊗ x+ u2α ⊗Ax+ uα ⊗Bx) is an atom.
This has two situations:

(1) u3α = u2α = uα = h.

(2) x = Ax = Bx = z.

Considering situation (1), equation (5) becomes:

u3α ⊗ (x+Ax+Bx) = h⊗ z.

So, we have seven cases:
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(a) u3α = u2α.

We can solve it as in [3]
r3 − r2 = r2(r − 1) = 0.

Hence, r1 = 0, r2 = 0, and r3 = 1.

Consequently,

u(t) = c1 + c2(
tα

α
) + c3e

tα

α .

By assumption (4), we have

c1 = x0, c2 = 0, and c3 = x0.

Hence,

u(t) = x0 + x0e
tα

α .

(b) u3α = uα.

We can solve it as in [3]

r3 − r = r(r2 − 1) = r(r − 1)(r + 1) = 0.

Hence, r1 = 0, r2 = 1, and r3 = −1.

Consequently,

u(t) = c1 + c2e
tα

α + c3e
− tα

α .

By assumption (4), we have

c1 = x0, c2 = x0, and c3 = 0.

Hence,

u(t) = x0 + x0e
tα

α .

(c) u2α = uα.

We can solve it as in [3]
(r2 − r) = r(r − 1) = 0.

Hence, r1 = 0 and r2 = 1.

Consequently,

u(t) = c1 + c2e
tα

α

By assumption (4), we have

c1 = x0 and c2 = x0.

Hence,

u(t) = x0 + x0e
tα

α .
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(d) u3α = h.

Consequently,

h = x0e
tα

α .

So, for an atomic solution to exist h must equal x0e
tα

α .

(e) u2α = h = x0e
tα

α .

(f) uα = h = x0e
tα

α .

Hence, (e) and (f) give the same result, there is an atomic solution in this case and

h = x0e
tα

α .

In situation (2), equation (5) will be

e
tα

α ⊗ x+ e
tα

α ⊗Ax+ e
tα

α Bx = e
tα

α ⊗ z.

So,
(I +A+B)x = z.

Hence, z is the image of x under (I +A+B).
This completes situation (2), and hence, Case four is completed.
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