EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 4, 2024, 3156-3166 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On Micro Pre Operators in Micro Topological Spaces

P. Sathishmohan¹, S. Stanley Roshan^{1,*}, K. Rajalakshmi², S. Brindha³, G. Poongothai 1

¹ Department of Mathematics, Kongunadu Arts and Science College(Autonomous), Coimbatore-29, Tamil Nadu, India ² Department of Science and Humanities, Sri Krishna College of Engineering and Technology, Coimbatore-08, Tamil Nadu, India ³ Department of Mathematics, Government Arts and Science College, Mettupalayam-04, Tamil Nadu, India

Abstract. The basic objective of this research work is to introduce and investigate the properties of micro pre-frontier, micro pre-exterior, micro pre-border, micro pre-kernel using the concept of frontier, exterior, border and kernel.

2020 Mathematics Subject Classifications: 54A05, 54A10

Key Words and Phrases: Micro pre-frontier, micro pre-exterior, micro pre-border, micro prekernel

1. Introduction

Levine's introduction of generalized closed sets in 1970 [3], providing a foundational framework for subsequent developments. Lellis Thivagar [1], further expanded this framework with the introduction of nano topology, utilizing approximations and boundary regions of a subset of a universe using an equivalence relation on it to define nano closed sets, nano-interior and nano-closure. The exploration of weak forms of nano open sets, such as nano α -open sets, nano semi-open sets, nano pre-open sets, and nano- β -open sets, was undertaken by many authors adding layers of complexity to the existing theories.

In 2013, Antony Rex Rodgio et.al., [8] defined the properties of β^* open sets like frontier, exterior and border. In 2018, Sathishmohan et.al., [6] introduced some properties of nano pre-neighbourhoods in nano topology. In 2019, Chandrasekar [4], introduced the concept of micro topology which is a simple extension of nano topology, with a focus on micro preopen and micro semi-open sets. Chandrasekar and Swathi [5], introduced micro α-open

Email addresses: sathishmohan@kongunaducollege.ac.in (P. Sathishmohan),

[∗]Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v17i4.5434

stanleyroshan20@gmail.com (S. Stanley Roshan),

rajalakshmikandhasamy@gmail.com (K. Rajalakshmi),

brindha.sagashra@gmail.com (S. Brindha), gpkpoongothai@gmail.com (G. Poongothai)

https://www.ejpam.com 3156 Copyright: C 2024 The Author(s). (CC BY-NC 4.0)

sets and studied the basic properties. Recently in 2020, Hariwan Z.Ibrahim [9], introduced micro β -open sets in micro topological spaces. The aim of this paper is to introduce and investigate the properties of micro pre-frontier, micro pre-exterior, micro pre-border and micro pre-kernel using the notion of frontier, exterior, border and kernel to obtain their basic results. The basic definitions used in this paper is given below.

Definition 1. [1] Let U be the universe, R be an equivalence relation on U and $\tau_R(X) = \{U, \emptyset, L_R(X), U_R(X), B_R(X)\}\$ where $X \subseteq U$. $\tau_R(X)$ satisfies the following axioms:

- (i) $U \in \tau_R(X)$ and $\emptyset \in \tau_R(X)$.
- (ii) The union of elements of any sub collection of $\tau_R(X)$ is in $\tau_R(X)$.
- (iii) The intersection of the elements of any finite sub collection of $\tau_R(X)$ is in $\tau_R(X)$.

That is, $\tau_R(X)$ forms a topology on U is called the nano topology on U with respect to X. ${U, \tau_R(X)}$ is called the nano topological space.

Definition 2. [4] Let $\{U, \tau_R(X)\}\$ is a nano topological space here $\mu_R(X) = \{N \cup (N' \cap \mu) :$ $N, N' \in \tau_R(X)$ and called it micro topology of $\tau_R(X)$ by μ where $\mu \notin \tau_R(X)$.

Definition 3. [4] The micro topology $\mu_R(X)$ satisfies the following axioms.

- (i) $U \in \mu_R(X)$ and $\emptyset \in \mu_R(X)$
- (ii) The union of elements of any sub collection of $\mu_R(X)$ is in $\mu_R(X)$.
- (iii) The intersection of the elements of any finite sub collection of $\mu_R(X)$ is in $\mu_R(X)$.

Then $\mu_R(X)$ is called micro topology on U with respect to X. The triplet $(U, \tau_R(X), \mu_R(X))$ is called micro topological spaces and the elements of $\mu_R(X)$ are called micro open sets and the complement of a micro open set is called a micro closed set.

Definition 4. [4] The micro closure of a set A is denoted by Mic-cl(A) and is defined as $Mic\text{-}cl(A) = \bigcap \{B:B \text{ is micro closed and } A \subseteq B\}$. The micro interior of a set A is denoted by Mic-int(A) and is defined as Mic-int(A) = $\bigcup \{B:B \text{ is micro open and } A \supseteq B\}.$

Definition 5. [7] The union of all micro pre-open sets which are contained in A is called the micro pre-interior of A and is denoted by Mic-Pint(A) or by Mic-PA_{*}.

As the union of micro pre-open sets is micro pre-open, Mic-PA $_{*}$ is micro pre-open always. micro pre-open is denoted by Mic-PO(U) and micro pre-closed is denoted by Mic-PF(U).

Definition 6. [7] The intersection of micro pre-closed sets containing a set A is called the micro pre-closure of A and is denoted by Mic-Pcl(A) or by Mic-P A^* .

Definition 7. [4] Let $(U, \tau_R(x), \mu_R(X))$ be a micro topological space and $A \subseteq U$. Then A is called micro pre-open if $A \subseteq Mic-int(Mic-cl(A)).$

Definition 8. [2] A point $x \in X$ is said to be limit point of A if every neighborhood of x intersects A in some point other than x itself.

Definition 9. [2] The set of all limit points of A is called the derived set of A and it denoted by $D(A)$.

Definition 10. [7] A point $x \in U$ is said to be a micro pre-limit point of A iff for each U \in Mic-PO(U), $U \cap (A - \{x\}) \neq \emptyset$.

Definition 11. [7] The set of all micro pre-limit points of A is said to be the micro pre-derived set of A and in denoted by Mic-PD(A).

2. micro pre-frontier

In this section, we define and study the notions of micro pre-frontier and obtain its basic properties.

Definition 12. micro pre-frontier of $A ⊂ U$ is defined as Mic-PA^{*} – Mic-PA_{*} and is denoted by Mic-Pfr(A). It is obvious that Mic-Pfr(A) \subseteq Mic-fr(A), the micro frontier of A. But in general the converse may not be true. micro pre-interior(A) is denoted as Mic-PA[∗] and micro pre-closure is denoted as Mic-PA[∗] .

Example 1. Let $U = \{a, b, c, d\}$, $U \setminus R = \{\{a, c\}, \{b, d\}\}\$, $X = \{a, c\}$, $\tau_R(X) = \{U, \emptyset, \{a, c\}\}\$, $\mu = \{b\}$ and $\mu_B(X) = \{U, \emptyset, \{b\}, \{a, c\}, \{a, b, c\}\}\$. If $A = \{b, c\}$ then, Mic-cl(A) = $\{U\}$ and $Mic-int(A) = \{b\}$, $Mic-Pcl(A) = \{b,c,d\}$ and $Mic-Pint(A) = \{b,c\}$, where $Mic-tr(A)$ $=\{a,c,d\}$ and Mic-Pfr(A) $=\{d\}$. This shows that Mic-fr(A) \subset Mic-Pfr(A).

Lemma 1. For a subset A of a space U ,

- (i) $Mic-PA^* = Mic-PA_* \cup Mic-Pfr(A).$
- (ii) Mic-PA_{*} ∩ Mic-Pfr(A) = \emptyset and
- (iii) $Mic-Pfr(A) = Mic-PA^* \cap Mic-P(U-A)^*$.

Proof: By definition of Mic-Pfr(A), we have

- (i) $Mic-PA_* \cup Mic-Pfr(A) = Mic-PA_* \cup (Mic-PA^* Mic-PA_*) = Mic-PA^*.$
- (ii) $Mic-PA_* \cap Mic-Pfr(A) = Mic-PA_* \cap (Mic-PA^* Mic-PA_*) = \emptyset.$
- (iii) $Mic-Pfr(A) = Mic-PA^* Mic-PA_* = Mic-PA^* \cap (U-Mic-PA_*) = Mic-PA^* \cap Mic$ $P(U - A)^*$ by lemma 3.8(1) [7].

Lemma 2. Mic-Pfr (A) is micro pre-closed.

Proof: By Lemma 1, Mic-Pfr(A) = Mic-PA^{*} \cap Mic-P(U – A)^{*}, which is micro pre-closed by corollary 3.9 [7].

Definition 13. A subset $A \subset U$ is called micro pre-regular if it is both micro pre-open and micro pre-closed set. The family of all micro pre-regular sets of U is denoted by $Mic-PR(U)$. micro pre-closed is denoted by Mic-PF(U).

Theorem 1. Mic-Pfr(A) = \emptyset iff $A \in Mic-PR(U)$.

Proof: Let $A \in Mic-PR(U)$. Then $A \in Mic-PO(U)$ and $A \in Mic-PF(U)$. Now, using results of Lemma 3.7 [7] and Theorem 3.16 [7] it follows that $Mic-Pfr(A) = \emptyset$. Conversely, let Mic-Pfr(A) = \emptyset . Then we show that $A \in Mic-PR(U)$. Since by hypothesis, Mic-PA^{*} − $Mic-PA_* = \emptyset$. We have $Mic-PA^* = Mic-PA_*$. But, $Mic-PA_* \subset A \subset Mic-PA^*$. Therefore, it follows that $A = Mic-PA_* = Mic-PA^*$ which means $A \in Mic-PR(U)$.

Theorem 2. Let A be subset of U. Then, the following holds.

- (i) $Mic-Pfr(A) = Mic-Pfr(U-A)$.
- (ii) $A \in$ Mic-PO(U) iff Mic-Pfr(A) \subseteq U A. i.e., $A \cap$ Mic-Pfr(A) = \emptyset .
- (iii) $A \in \text{Mic-PF}(U)$ iff $\text{Mic-Pfr}(A) \subseteq A$.

Proof:

- (i) We have, $Mic-Pfr(U-A) = (U-Mic-PA)^* \cap (U-(U-Mic-PA))^* = (U-Mic-PA)^*$ \cap Mic-PA^{*} = Mic-Pfr(A) by Lemma 1(3).
- (ii) Assume $A \in \text{Mic-PO}(U)$. By definition, we have $\text{Mic-Pr}(A) = \text{Mic-PA}^* \text{Mic-PA}_*$ $=$ Mic-PA^{*} – A. Since $A \in$ Mic-PO(U). Then, $A \cap$ Mic-Pfr(A) = A \cap (Mic- $PA^* - A$) = Mic-PA^{*} \cap (U – A) \cap A = Ø. Conversely, if A \cap Mic-Pfr(A) = Ø. Then, $A \cap Mic-PA^* \cap (U-Mic-PA_*) = \emptyset$ implies $A \cap (U-Mic-PA_*) = \emptyset$ as A $\subset U - (U-Mic-PA_*) = Mic-PA_*,$ but on the other hand Mic-PA_{*} $\subset A$. It follows that $A = Mic-PA_*,$ which implies $A \in Mic-PO(U).$
- (iii) Assume $A \in$ Mic-PF(U). Then, we have $U A \in$ Mic-PO(U). Then by (2), Mic- $Pfr(U - A) \cap (U - A) = \emptyset$. But, by (1), Mic-Pfr $(U - A) = Mic-Pfr(A)$. Hence $Mic-Pfr(A) \cap (U - A) = \emptyset$. This shows that $Mic-Pfr(A) \subset A$. Conversely, if Mic- $Pfr(A) \subset A$, then Mic-PA^{*} − Mic-PA_{*} $\subset A$, which implies Mic-PA_{*} ∪ (Mic-PA^{*} − $Mic-PA_*\subset A\cup Mic-PA_*=A$, which implies $Mic-PA^*\subset A$ by Lemma 1(1). But $A \subset \textit{Mic-PA}^*$. It follows that $A = \textit{Mic-PA}^*$. Hence $A \in \textit{Mic-PF}(U)$.

Remark 1. Let A and B be subsets of space U. Then $A \subset B$ does not imply that either Mic- $Pfr(A) \subset$ Mic-Pfr(B) or Mic-Pfr(B) \subset Mic-Pfr(A). This can be verified by the following.

Example 2. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c, d\}\}$, $X = \{b, c\}$, $\tau_R(X) = \{U, \emptyset, \{b, c\}\}$, $\mu = b$ and $\mu_R(x) = \{U, \emptyset, \{b\}, \{b, c\}\}\$. Mic-PO(U) = $\{U, \emptyset, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}\$ $\{b, c, d\}, \{a, b, d\}\}.$ Then,

Case(1): Take $A = \{a\}$ and $B = \{a,c\}$. Then $A \subset B$. Also Mic-PA^{*} = $\{a\}$, Mic-PA_{*} = $\{\emptyset\}$ and $Mic-Pfr(A) = \{a\}$. Mic-PB^{*} = $\{a,c\}$, Mic-PB_{*} = $\{\emptyset\}$ and Mic-Pfr(B) = $\{a,c\}$. This shows that Mic-Pfr(A) \subset Mic-Pfr(B).

Case(2): Take $A = \{a\}$ and $B = \{a, c, d\}$. Also Mic-PA^{*} = $\{a\}$, Mic-PA_{*} = $\{\emptyset\}$ and $Mic-Pfr(A) = \{a\}.$ Let $Mic-PB^* = \{c,d,a\}.$ Mic-P $B_* = \{\emptyset\}$ and $Mic-Pfr(B) = \{a,c,d\}.$ This shows that $Mic-Pfr(A) \subset Mic-Pfr(B)$, where $Mic-Pfr(B) \not\subset Mic-Pfr(A)$.

Theorem 3. If $A \in Mic\text{-}PO(U) \cup Mic\text{-}PF(U)$, then Mic-Pfr(A) = Mic-Pfr(Mic-Pfr(A)). **Proof:** It follows by Lemma $1(3)$, Lemma 2 and Theorem 2 $(2, 3)$.

Corollary 1. For every $A \subset U$, Mic-Pfr(Mic-Pfr(Mic-Pfr(A))) = Mic-Pfr(Mic-Pfr(A)). Proof: It is obvious.

Lemma 3. A subset A of U is micro pre-closed iff $A = Mic-Pcl(A)$.

Theorem 4. For a subset A of space U, the following statements hold

- (i) A is Mic-PO iff Mic-Pfr(A) = Mic-PD(A).
- (ii) $\text{Mic-Pfr}(\text{Mic-Pfr}(A)) \subseteq \text{Mic-Pfr}(A)$.
- (iii) $Mic-Pfr(Mic-Pcl(A)) \subseteq Mic-Pfr(A)$.
- (iv) $Mic-Pint(A) = A Mic-Pfr(A)$

Proof:

- (i) Let A be micro pre-open then $Mic-Pint(A) = A$. Since $Mic-Pf(A) = Mic-Pcl(A)$ $-$ Mic-Pint(A) = Mic-Pcl(A)−A. By Lemma 4.9 [7] we have Mic-Pcl(A) = A ∪ Mic-PD(A). Therefore Mic-Pfr(A) = [A ∪ Mic-PD(A)]– A = Mic-PD(A). Conversely, Let Mic-Pfr(A) = Mic-PD(A). i.e., Mic-Pcl(A) – Mic-Pint(A) = [A ∪ $Mic\text{-}PD(A)$] - Mic-Pint(A) = Mic-P $D(A)$ \Rightarrow A $-$ Mic-Pint(A) = \emptyset implies A \subset $Mic-Pint(A) \longrightarrow (1)$ and $Mic-Pint(A) \subset A \longrightarrow (2)$. Therefore from (1) and (2) we have $Mic-Pint(A) = A$ is micro pre-open.
- (ii) Now Mic-Pfr(Mic-Pfr(A)) \subset Mic-Pcl(Mic-Pfr(A)) \cap Mic-Pcl(U Mic-Pfr(A)) \Rightarrow $Mic-Pfr(Mic-Pfr(A)) \subseteq Mic-Pcl(Mic-Pfr(A)) \subseteq Mic-Pfr(A).$
- (iii) $Mic-Pfr(Mic-Pcl(A)) \subseteq Mic-Pcl(Mic-Pcl(A)) Mic-Pint(Mic-Pcl(A)) \subseteq Mic-Pcl(A)$ $-$ Mic-Pint(A) \subset Mic-Pfr(A)
- (iv) It is obvious from the definition of micro pre-interior and micro pre-frontier.

3. micro pre-exterior

In this section, we define and study the notions of micro pre-exterior and obtain its basic properties.

Definition 14. A point $x \in U$ is called micro pre-exterior point of a subset A of U if x is micro pre-interior point of $(U - A)$ and set of all micro pre-exterior points of A is called micro pre-exterior of A and denoted by Mic-Pext(A). Therefore Mic-Pext(A) = $Mic-Pint(U - A)$.

Theorem 5. For a subset A of a space U the following statements hold

- (i) $Mic\text{-}ext(A) \subseteq Mic\text{-}Pext(A)$.
- (ii) Mic-Pext(A) \subset Mic-PO(U).
- (iii) $Mic-Pext(A) = U-Mic-Pcl(A)$.
- (iv) $Mic-Pext(Mic-Pext(A)) = Mic-Pint(Mic-Pcl(A)).$
- (v) If $A \subset B$ then Mic-Pext(B) \subseteq Mic-Pext(A).
- (vi) Mic-Pext($A \cup B$) \subseteq Mic-Pext(A) \cup Mic-Pext(B).
- (vii) $Mic-Pext(A) \cap Mic-Pext(B) \subseteq Mic-Pext(A \cap B)$.
- (viii) Mic-Pext(U) = \emptyset and Mic-Pext(\emptyset) = U.
	- (ix) $Mic-Pext(A) = Mic-pext[U Mic-Pext(A)].$
	- (x) $\text{Mic-}P\text{int}(A) \subseteq \text{Mic-}P\text{ext}/\text{Mic-}P\text{ext}(A)$.
	- (xi) Mic-Pint(A), Mic-Pext(A) and Mic-Pfr(A) are mutually disjoint and $U =$ Mic- $Pint(A) \cup Mic-Pext(A) \cup Mic-Pfr(A).$
- (xii) $A \cap Mic-Pext(A) = \emptyset$.

Proof:

- (i) Let $x \in \text{Mic-ext}(A) \Rightarrow x \in \text{Mic-int}(U A)$. There exists $G \in \mu_R(x)$ such that $x \in$ $G \subseteq (U - A)$. Also $G \in \text{Mic-PO}(U, X)$. Therefore $x \in G \subseteq (U - A)$ for Mic-PO set $G \Rightarrow (U - A)$ is Mic-Pint of x, $x \in Mic-Pint(U - A)i.e., x \in Mic-Pext(A)$. Hence $Mic\text{-}ext(A) \subseteq Mic\text{-}Pext(A)$.
- (ii) Now Mic-Pint $[MicroFext(A)] = Mic-Pint(Mic-Pint(U A)) = Mic-Pint(U A)$ $Mic-Pext(A) \Rightarrow is contained in Mic-PO(U).$
- (iii) $Mic-Pext(A) = Mic-Pint(U-A) = U-Mic-Pcl(A).$
- (iv) Mic-Pext $[Micro -$ Pext(A)] = Mic-Pext $[U-Mic-cl(A)]$ by (3), Mic-Pext $[U-Mic-cl(A)]$ $= Mic-Pint[U-|U-Mic-Pcl(A)] = Mic-Pint[Mic-Pcl(A)].$
- (v) If $A \subset B$ then $(U B) \subset (U A) \Rightarrow Mic-Pint(U B) \subseteq Mic-Pint(U A)$ i.e., $Mic-Pext(B) \subseteq Mic-Pext(A)$.
- (vi) Since $A \subset (A \cup B)$ and $B \subset (A \cup B) \Rightarrow Mic-Pext(A \cup B) \subseteq Mic-Pext(A) \cup$ $Mic-Pext(A \cup B) \subseteq Mic-Pext(B)$. Therefore $Mic-Pext(A \cup B) \subseteq Mic-Pext(A) \cup$ $Mic-Pext(B)$.

- (vii) We have $(A \cap B) \subset A$, $(A \cap B) \subset B$. \Rightarrow Mic-Pext(A) \subseteq Mic-Pext(A \cap B) and Mic-Pext(B) \subseteq Mic-Pext(A \cap B) \Rightarrow Mic- $Pext(A) \cap Mic-Pext(B) \subseteq Mic-Pext(A \cap B).$
- (viii) Mic-Pext(U) = Mic-Pint(U U) = Mic-Pint(\emptyset) = \emptyset and Mic-Pext(\emptyset) = Mic- $Pint(U-\emptyset) = Mic-Pint(U) = U.$
	- (ix) $Mic-Pext[U Mic-Pext(A)] = Mic-Pint[U-(U-Mic-Pint(A))] = Mic-Pint(Mic-Pint(B)))$ $Pext((A)) = Mic-Pint(Mic-Pint(U-A)) = Mic-Pint(U-A) = Mic-Pext(A).$
	- (x) By the definition Mic-Pext(A) ⊂ $(U A)$ then from (5) Mic-Pext($U A$) ⊂ Mic- $Pext[Micro-Pext(A)]$ i.e., Mic-Pint(A) ⊂ Mic-Pext(Mic-Pext(A)).
	- (xi) Let us assume that Mic-Pext(A) ∩ Mic-Pint(A) $\neq \emptyset$ therefore there exists $x \in$ Mic- $Pext(A) \cap Mic-Pint(A) \Rightarrow x \in Mic-Pext(A)$ and $x \in Mic-Pint(A) \Rightarrow x \in (U - A)$ and $x \in A$ which is not possible. Therefore our assumption is wrong. Hence Mic- $Pext(A) \cap Mic-Pint(A) = \emptyset$ similarly other two results. We have Mic-Pext(A) = $U-$ Mic-cl(A) =U−[Mic-Pint(A) ∪ Mic-Pfr(A)] that implies $U =$ Mic-Pint(A) ∪ $Mic-Pext(A) \cup Mic-Pfr(A).$
- (xii) Obvious.

In general, the converse of (6) and (7) are not true i.e., Mic-Pext(A) ∪ Mic-Pext(B) $\not\subset$ Mic-Pext(A ∪ B) and Mic-Pext(A ∩ B) $\not\subset$ Mic-Pext(A) ∩ Mic-Pext(B).

Example 3. Let $U = \{a, b, c, d\}$, $U \setminus R = \{\{a, b\}, \{c, d\}\}$, $X = \{b, c\}$, $\tau_R(X) = \{U, \emptyset, \{b, c\}\}$, $\mu = \{b, d\}$ and $\mu_R(X) = \{U, \emptyset, \{b\}, \{b, c\}, \{b, d\}, \{b, c, d\}\}.$ $Mic\text{-}PO(U) = \{U, \emptyset, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, \{a, b, d\}\}.$ Let $A = \{c, d, a\}$ and $B = \{c,d\}$. Then Mic-Pext(A) = $\{b\}$ and Mic-Pext(B) = $\{a,b\}$. Mic-Pext(A \cup B) = ${b}.$

 \Rightarrow Mic-Pext(A) ∪ Mic-Pext(B) ⊄ Mic-Pext(A ∪ B) and $Mic-Pext(A \cap B) = \{a,b\}$ which implies $Mic-Pext(A \cap B) \not\subset Mic-Pext(A) \cap Mic-Pext(B)$.

Theorem 6. $Mic-Pfr(A) \cap Mic-Pext(A) = \emptyset$. **Proof:** Let $x \in \text{Mic-Pfr}(A)$ i.e., $x \in (\text{Mic-Pcl}(A) - \text{Mic-Pint}(A))$. If $x \in Mic-Pcl(A)$ then $x \notin Mic-Pint(A)$. We know that $Mic-Pcl(A) \cap Mic-Pint(U - A)$ $= \emptyset$. Therefore $x \notin \text{Mic-Pint}(U - A)$ implies $x \notin \text{Mic-Pert}(A)$. Hence Mic-Pfr(A) ∩ $Mic-Pext(A) = \emptyset.$

4. micro pre-border

In this section, we define and study the notions of micro pre-border and obtain its basic properties.

Definition 15. Let A be a subset of a space U. Then the micro pre-border of A is defined as $Mic-Pbr(A) = A - Mic-Pint(A)$.

Theorem 7. For a subset of U, the following statements holds.

- S. Stanley Roshan et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 3156-3166 3163
	- (i) Mic-Pbr(A) \subset Mic-br(A) where br(A) denote the border of A.
	- (ii) $A = Mic-Pint(A) \cup Mic-Pbr(A)$.
- (iii) $Mic-Pint(A) \cap Mic-Pbr(A) = \emptyset$.
- (iv) If A is Mic-PO then Mic-Pbr(A) = \emptyset .
- (v) Mic-Pint(Mic-Pbr(A)) = \emptyset .
- (vi) $Mic-Pbr(Mic-Pbr(A)) = Mic-Pbr(A).$
- (vii) $Mic-Pbr(A) = A \cap Mic-Pcl(U A).$

Proof:

- (i) Obvious from the definitions of micro pre-border and micro border of A.
- (ii) Obvious from the definitions of micro pre-border of A.
- (iii) Obvious from the definitions of micro pre-border of A.
- (iv) If A is Mic-PO, then $A = Mic-Pint(A)$. Hence the result follows.
- (v) If $x \in Mic-Pint(Mic-Pbr(A))$, then $x \in Mic-Pbr(A)$. Now, $Mic-Pbr(A) \subset A$ implies $Mic-Pint(Mic-Pbr(A)) \subset Mic-Pint(A)$. Hence $x \in Mic-Pint(A)$ which is a contradiction to $x \in$ Mic-Pbr(A). Thus Mic-Pint(Mic-Pbr(A)) = \emptyset .
- (vi) $Mic-Pbr(Mic-Pbr(A)) = Mic-Pbr(A Mic-Pint(A)) = (A Mic-Pint(A)) Mic Pint(A - Mic-Pint(A))$ which is Mic-Pbr(A) – Ø, by (4). Hence, Mic-Pbr(Mic- $Pbr(A) = Mic-Pbr(A).$
- (vii) $Mic-Pbr(A) = A Mic-Pint(A) = A-(U-(Mic-Pcl(U-A))) = A \cap Mic-Pcl(U-A)$.

Theorem 8. For a subset of U, the following condition hold.

- (i) $Mic-Pbr(A) \subseteq Mic-Pfr(A)$.
- (ii) $Mic-Pext(A) \cap Mic-Pbr(A) = \emptyset$.

Proof:

- (i) Let, $x \in$ Mic-Pbr(A) i.e., $x \in A -$ Mic-Pint(A). By Theorem 3.16 [7] $A = Mic-pint(A)$ if A is Mic-PO. If A is not Mic-PO then $Mic-Pint(A) \subset A$. Therefore in general $Mic-Pint(A) \subset A$. So $x \in Mic-Pint(A)$. It is obvious that if $x \in Mic-Pint(A)$ then $x \notin Mic-Pcl(A)$. Therefore $x \in (Mic-Pcl(A))$ $-$ Mic-Pint(A)) implies $x \in$ Mic-Pfr(A). Hence Mic-Pbr(A) \subseteq Mic-Pfr(A).
- (ii) Let $x \in \text{Mic-Pext}(A)$ i.e., $x \in \text{Mic-Pint}(U A)$ where $x \in \text{Mic-Pint}(A)$. By Theorem 3.16 [7] $A = Mic-pint(A)$ if A is Mic-PO. If A is not Mic-PO then Mic-Pint(A) ⊂ A. Therefore in general Mic-Pint(A) $\subset A$. Therefore $x \notin A - Mic-Pint(A)$ implies $x \notin Mic-Pbr(A)$. Hence Mic-Pext(A) ∩ Mic-Pbr(A) = \emptyset .

5. micro pre-kernel

In this section, we define and study the notions of micro pre-kernel and obtain its basic properties.

Definition 16. For any $A \subset U$, Mic-Pker(A) is defined as the intersection of all micro pre-open sets containing A. In notation, Mic-Pker(A) = $\bigcap \{M/A \subset M, M \in Mic\$.

Lemma 4. For subsets A, B and A_i ($i \in I$, where I is an index set) of a micro topological space (U, $\mu_R(x)$), the following holds.

- (i) $A \subseteq Mic-Pker(A)$.
- (ii) If $A \subset B$, then Mic-Pker(A) \subset Mic-Pker(B).
- (iii) $Mic-Pker(Mic-Pker(A)) = Mic-Pker(A).$
- (iv) Mic-Pker($\bigcup A_i \mid i \in I$) $\subseteq \bigcup \{ Mic-Pker (A_i) \mid i \in I \}.$
- (v) Mic-Pker($\bigcap A_i \mid i \in I$) $\subseteq \bigcap \{ Mic-Pker (A_i) \mid i \in I\}$.

Proof:

- (i) It follows by the definition of Mic-Pker (A) .
- (ii) Suppose $x \notin$ Mic-Pker(B), then there exists a subset $S \in$ Mic-PO such that $B \subset S$ with $x \notin S$. Since $A \subset B$, $x \notin Mic-Pker(A)$. Thus $Mic-Pker(A) \subset Mic-Pker(B)$.
- (iii) Follows from (1) and definition of Mic-Pker(A).
- (iv) For each $i \in I$, Mic-Pker $(A_i) \subseteq$ Mic-Pker($\bigcup_{i \in I} A_i$). Therefore we have $\bigcup_{i \in I} \{Mic$ - $Pker(A_i) \subseteq Mic-Pker \left(\bigcup_{i \in I} A_i\right).$
- (v) Suppose that $x \notin \bigcap \{Mic-Pker(A_i/i \in I)\}\)$ then there exists an $i_0 \in I$, such that x \notin Mic-Pker(A_{i_0}) and there exists a micro pre-open set S such that $x \notin S$ and $A_{i_0} \subset$ S. We have $\bigcap_{i\in I} A_i \subseteq A_{i_0} \subseteq S$ and $x \notin S$. Therefore $x \notin Mic-Pker \{ \bigcap A_i/i \in I \}$. Hence $Mic-Pker(\bigcap A_i/i \in I) \subseteq \bigcap Mic-Pker(A_i)/i \in I$.

Theorem 9. Let A and B be subsets of U, then the following conditions hold.

- (i) $Mic-Pker(A) \subseteq Mic-ker(A)$.
- (ii) Mic-Pker(A) ∩ Mic-Pker(B) ⊂ Mic-Pker(A ∪ B).
- (iii) $Mic-Pker(A \cap B) \subset Mic-Pker(A) \cup Mic-Pker(B).$
- (iv) Mic-Pcl(A) ∩ Mic-Pker(A) = A.
- (v) Mic-Pker(A) ∩ Mic-Pfr(A) = Mic-Pbr(A).

proof:

REFERENCES 3165

- (i) Let $x \in Mic-Pker(A)$. $\Rightarrow x \in \bigcap \{M/A \subset M, M \in \text{Mic-PO}\}\$ $\Rightarrow x \in \bigcap \{M/A \subset M, M \in micro-Open(\mu_R(x))\}$ Since every micro open is micro pre-open, $x \in Mic\text{-}ker(A)$.
- (ii) Let $x \in \{Mic-Pker(A) \cap Mic-Pker(B)\}\$ $\Rightarrow x \in$ Mic-Pker(A) and $x \in$ Mic-Pker(B) Therefore, $x \in Mic-Pker(A \cup B)$.
- (iii) Let $x \in Mic-Pker(A \cap B)$ $\Rightarrow x \in$ Mic-Pker(A) and $x \in$ Mic-Pker(B) Therefore, $x \in Mic-Pker(A) \cup Mic-Pker(B)$.
- (iv) Let $x \in Mic\text{-}Pcl(A) \cap Mic\text{-}Pker(A)$ By Lemma 3.7(1) [7] $A \subseteq$ Mic-Pcl(A) and by (1) $A \subseteq$ Mic-Pker(A). $\Rightarrow x \in A \subseteq$ Mic-Pcl(A) and $x \in A \subseteq$ Mic-Pker(A). Therefore, $x \in A$.
- (v) Let $x \in$ Mic-Pker(A) \cap Mic-Pfr(A). To prove, $x \in$ Mic-Pbr(A) i.e, $x \in A-$ Mic-Pint(A). Since Mic-Pker(A) = $\bigcap \{M/A \subset M, M \in Mic-PO\}$ and Mic-Pfr(A) = $Mic-Pol(A)-Micro-Pint(A)$. $\Rightarrow x \in \bigcap \{M/A \subset M, M \in \text{Mic-PO}\}\cap \text{Mic-Pol}(A) - \text{Mic-Pint}(A)$. By Lemma 3.7(1) [7] and Lemma $4(1)$, we have $\Rightarrow x \in A \cap (A - \text{Micro-Pint}(A))$ $\Rightarrow x \in A$ and $x \in A - Mic-Pint(A)$ $\Rightarrow x \in A$ and $x \in Mic-Pb**r**(A)$ Therefore, $x \in Mic-Pbr(A)$.

6. Conclusion

In this paper, we introduced the notions of micro pre-frontier, micro pre-exterior, micro pre-border and micro pre-kernel by employing the concept of frontier, exterior, border and kernel elucidating various associated properties. Our intent is to further elaborate on these findings in forthcoming research endeavors, with a particular focus on exploring practical applications.

References

- [1] Lellis Thivagar. M and Carmel Richard. On nano forms of weakly open sets. International Journal of Mathematics and Statistics Invention, 1(1):31–37, 2013.
- [2] James R. Munkres. Topology. Pearson Education, India, 2018.
- [3] Levine. N. Generalized closed sets in topology. Rendiconti del Circolo Matematico di Parlermo, 19(2):89–96, 1970.
- [4] Chandrasekar. S. On Micro Topological Spaces. Journal of New Theory, 26:23–31, 2019.
- [5] Chandrasekar. S and Swathi. S. Micro α -open sets in micro topological spaces. *Inter*national Journal of Research in Advent Technology, 6(10):2633–2637, 2018.
- [6] Dhanasekaran P. K. Sathishmohan. P, Rajendran. V and Vignesh Kumar. C. More on nano preneighbourhoods in nano topological spaces. Journal of Applied Science and Computations., 10(5):899–907, 2018.
- [7] Stanley Roshan. S Sathishmohan. P and Rajalakshmi. K. On micro pre neighborhoods in micro topological space. Indian Journal of Science and Technology, 17(22):2346– 2351, 2024.
- [8] Antony Rex Rodgio. Jessie Theodore and Hanaselvi. Notions via β^* -open sets in topological spaces. IOSR Journal of Mathematics, 6(3):25–29, 2013.
- [9] Ibrahim H. Z. Micro β-open sets in micro topology. General Letters in Mathematics, 8(1):8–15, 2020.