EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 4, 2024, 3156-3166 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On Micro Pre Operators in Micro Topological Spaces

P. Sathishmohan¹, S. Stanley Roshan^{1,*}, K. Rajalakshmi², S. Brindha³, G. Poongothai¹

- ¹ Department of Mathematics, Kongunadu Arts and Science College(Autonomous), Coimbatore-29, Tamil Nadu, India
- ² Department of Science and Humanities, Sri Krishna College of Engineering and Technology, Coimbatore-08, Tamil Nadu, India
- ³ Department of Mathematics, Government Arts and Science College, Mettupalayam-04, Tamil Nadu, India

Abstract. The basic objective of this research work is to introduce and investigate the properties of micro pre-frontier, micro pre-exterior, micro pre-border, micro pre-kernel using the concept of frontier, exterior, border and kernel.

2020 Mathematics Subject Classifications: 54A05, 54A10

Key Words and Phrases: Micro pre-frontier, micro pre-exterior, micro pre-border, micro pre-kernel

1. Introduction

Levine's introduction of generalized closed sets in 1970 [3], providing a foundational framework for subsequent developments. Lellis Thivagar [1], further expanded this framework with the introduction of nano topology, utilizing approximations and boundary regions of a subset of a universe using an equivalence relation on it to define nano closed sets, nano-interior and nano-closure. The exploration of weak forms of nano open sets, such as nano α -open sets, nano semi-open sets, nano pre-open sets, and nano- β -open sets, was undertaken by many authors adding layers of complexity to the existing theories.

In 2013, Antony Rex Rodgio et.al.,[8] defined the properties of β^* open sets like frontier, exterior and border. In 2018, Sathishmohan et.al., [6] introduced some properties of nano pre-neighbourhoods in nano topology. In 2019, Chandrasekar [4], introduced the concept of micro topology which is a simple extension of nano topology, with a focus on micro preopen and micro semi-open sets. Chandrasekar and Swathi [5], introduced micro α -open

Copyright: © 2024 The Author(s). (CC BY-NC 4.0)

DOI: https://doi.org/10.29020/nybg.ejpam.v17i4.5434

Email addresses: sathishmohan@kongunaducollege.ac.in (P. Sathishmohan), stanleyroshan20@gmail.com (S. Stanley Roshan), rajalakshmikandhasamy@gmail.com (K. Rajalakshmi), brindha.sagashra@gmail.com (S. Brindha), gpkpoongothai@gmail.com (G. Poongothai)

^{*}Corresponding author.

sets and studied the basic properties. Recently in 2020, Hariwan Z.Ibrahim [9], introduced micro β -open sets in micro topological spaces. The aim of this paper is to introduce and investigate the properties of micro pre-frontier, micro pre-exterior, micro pre-border and micro pre-kernel using the notion of frontier, exterior, border and kernel to obtain their basic results. The basic definitions used in this paper is given below.

Definition 1. [1] Let U be the universe, R be an equivalence relation on U and $\tau_R(X) = \{U, \emptyset, L_R(X), U_R(X), B_R(X)\}$ where $X \subseteq U$. $\tau_R(X)$ satisfies the following axioms:

- (i) $U \in \tau_R(X)$ and $\emptyset \in \tau_R(X)$.
- (ii) The union of elements of any sub collection of $\tau_R(X)$ is in $\tau_R(X)$.
- (iii) The intersection of the elements of any finite sub collection of $\tau_R(X)$ is in $\tau_R(X)$.

That is, $\tau_R(X)$ forms a topology on U is called the nano topology on U with respect to X. $\{U, \tau_R(X)\}$ is called the nano topological space.

Definition 2. [4] Let $\{U,\tau_R(X)\}$ is a nano topological space here $\mu_R(X) = \{N \cup (N' \cap \mu) : N, N' \in \tau_R(X)\}$ and called it micro topology of $\tau_R(X)$ by μ where $\mu \notin \tau_R(X)$.

Definition 3. [4] The micro topology $\mu_R(X)$ satisfies the following axioms.

- (i) $U \in \mu_R(X)$ and $\emptyset \in \mu_R(X)$
- (ii) The union of elements of any sub collection of $\mu_R(X)$ is in $\mu_R(X)$.
- (iii) The intersection of the elements of any finite sub collection of $\mu_R(X)$ is in $\mu_R(X)$.

Then $\mu_R(X)$ is called micro topology on U with respect to X. The triplet $(U, \tau_R(X), \mu_R(X))$ is called micro topological spaces and the elements of $\mu_R(X)$ are called micro open sets and the complement of a micro open set is called a micro closed set.

Definition 4. [4] The micro closure of a set A is denoted by Mic-cl(A) and is defined as $Mic\text{-}cl(A) = \cap \{B:B \text{ is micro closed and } A \subseteq B\}$. The micro interior of a set A is denoted by Mic-int(A) and is defined as $Mic\text{-}int(A) = \cup \{B:B \text{ is micro open and } A \supseteq B\}$.

Definition 5. [7] The union of all micro pre-open sets which are contained in A is called the micro pre-interior of A and is denoted by Mic-Pint(A) or by $Mic-PA_*$. As the union of micro pre-open sets is micro pre-open, $Mic-PA_*$ is micro pre-open always. micro pre-open is denoted by Mic-PO(U) and micro pre-closed is denoted by Mic-PF(U).

Definition 6. [7] The intersection of micro pre-closed sets containing a set A is called the micro pre-closure of A and is denoted by Mic-Pcl(A) or by $Mic-PA^*$.

Definition 7. [4] Let $(U, \tau_R(x), \mu_R(X))$ be a micro topological space and $A \subseteq U$. Then A is called micro pre-open if $A \subseteq Mic\text{-}int(Mic\text{-}cl(A))$.

Definition 8. [2] A point $x \in X$ is said to be limit point of A if every neighborhood of x intersects A in some point other than x itself.

Definition 9. [2] The set of all limit points of A is called the derived set of A and it denoted by D(A).

Definition 10. [7] A point $x \in U$ is said to be a micro pre-limit point of A iff for each $U \in Mic\text{-}PO(U), \ U \cap (A - \{x\}) \neq \emptyset$.

Definition 11. [7] The set of all micro pre-limit points of A is said to be the micro pre-derived set of A and in denoted by Mic-PD(A).

2. micro pre-frontier

In this section, we define and study the notions of micro pre-frontier and obtain its basic properties.

Definition 12. micro pre-frontier of $A \subset U$ is defined as $Mic-PA^*-Mic-PA_*$ and is denoted by Mic-Pfr(A). It is obvious that $Mic-Pfr(A) \subseteq Mic-fr(A)$, the micro frontier of A. But in general the converse may not be true. micro pre-interior(A) is denoted as $Mic-PA_*$ and micro pre-closure is denoted as $Mic-PA_*$.

Example 1. Let $U = \{a, b, c, d\}$, $U \setminus R = \{\{a, c\}, \{b, d\}\}$, $X = \{a, c\}, \tau_R(X) = \{U, \emptyset, \{a, c\}\}$, $\mu = \{b\}$ and $\mu_R(X) = \{U, \emptyset, \{b\}, \{a, c\}, \{a, b, c\}\}$. If $A = \{b, c\}$ then, $Mic\text{-}cl(A) = \{U\}$ and $Mic\text{-}int(A) = \{b\}$, $Mic\text{-}Pcl(A) = \{b, c, d\}$ and $Mic\text{-}Pint(A) = \{b, c\}$, where $Mic\text{-}fr(A) = \{a, c, d\}$ and $Mic\text{-}Pfr(A) = \{d\}$. This shows that $Mic\text{-}fr(A) \not\subset Mic\text{-}Pfr(A)$.

Lemma 1. For a subset A of a space U,

- (i) $Mic-PA^* = Mic-PA_* \cup Mic-Pfr(A)$.
- (ii) $Mic\text{-}PA_* \cap Mic\text{-}Pfr(A) = \emptyset$ and
- (iii) $Mic-Pfr(A) = Mic-PA^* \cap Mic-P(U-A)^*$.

Proof: By definition of Mic-Pfr(A), we have

- (i) $Mic-PA_* \cup Mic-Pfr(A) = Mic-PA_* \cup (Mic-PA^* Mic-PA_*) = Mic-PA^*$.
- (ii) $Mic-PA_* \cap Mic-Pfr(A) = Mic-PA_* \cap (Mic-PA^* Mic-PA_*) = \emptyset$.
- (iii) $Mic-Pfr(A) = Mic-PA^* Mic-PA_* = Mic-PA^* \cap (U-Mic-PA_*) = Mic-PA^* \cap Mic-P(U-A)^*$ by $lemma\ 3.8(1)\ [7]$.

Lemma 2. Mic-Pfr(A) is micro pre-closed.

Proof: By Lemma 1, $Mic\text{-}Pfr(A) = Mic\text{-}PA^* \cap Mic\text{-}P(U-A)^*$, which is micro pre-closed by corollary 3.9 [7].

Definition 13. A subset $A \subset U$ is called micro pre-regular if it is both micro pre-open and micro pre-closed set. The family of all micro pre-regular sets of U is denoted by Mic-PR(U). micro pre-closed is denoted by Mic-PF(U).

Theorem 1. $Mic\text{-}Pfr(A) = \emptyset$ iff $A \in Mic\text{-}PR(U)$.

Proof: Let $A \in Mic\text{-}PR(U)$. Then $A \in Mic\text{-}PO(U)$ and $A \in Mic\text{-}PF(U)$. Now, using results of Lemma 3.7 [7] and Theorem 3.16 [7] it follows that $Mic\text{-}Pfr(A) = \emptyset$. Conversely, let $Mic\text{-}Pfr(A) = \emptyset$. Then we show that $A \in Mic\text{-}PR(U)$. Since by hypothesis, $Mic\text{-}PA^* - Mic\text{-}PA_* = \emptyset$. We have $Mic\text{-}PA^* = Mic\text{-}PA_*$. But, $Mic\text{-}PA_* \subset A \subset Mic\text{-}PA^*$. Therefore, it follows that $A = Mic\text{-}PA_* = Mic\text{-}PA_*$ which means $A \in Mic\text{-}PR(U)$.

Theorem 2. Let A be subset of U. Then, the following holds.

- (i) Mic-Pfr(A) = Mic-Pfr(U A).
- (ii) $A \in Mic\text{-}PO(U)$ iff $Mic\text{-}Pfr(A) \subseteq U A$. i.e., $A \cap Mic\text{-}Pfr(A) = \emptyset$.
- (iii) $A \in Mic\text{-}PF(U)$ iff $Mic\text{-}Pfr(A) \subseteq A$.

Proof:

- (i) We have, $Mic\text{-}Pfr(U-A) = (U-Mic\text{-}PA)^* \cap (U-(U-Mic\text{-}PA))^* = (U-Mic\text{-}PA)^* \cap Mic\text{-}PA^* = Mic\text{-}Pfr(A)$ by Lemma 1(3).
- (ii) Assume $A \in Mic\text{-}PO(U)$. By definition, we have $Mic\text{-}Pfr(A) = Mic\text{-}PA^*-Mic\text{-}PA_*$ = $Mic\text{-}PA^* - A$. Since $A \in Mic\text{-}PO(U)$. Then, $A \cap Mic\text{-}Pfr(A) = A \cap (Mic\text{-}PA^* - A) = Mic\text{-}PA^* \cap (U - A) \cap A = \emptyset$. Conversely, if $A \cap Mic\text{-}Pfr(A) = \emptyset$. Then, $A \cap Mic\text{-}PA^* \cap (U-Mic\text{-}PA_*) = \emptyset$ implies $A \cap (U - Mic\text{-}PA_*) = \emptyset$ as $A \subset U - (U-Mic\text{-}PA_*) = Mic\text{-}PA_*$, but on the other hand $Mic\text{-}PA_* \subset A$. It follows that $A = Mic\text{-}PA_*$, which implies $A \in Mic\text{-}PO(U)$.
- (iii) Assume $A \in Mic\text{-}PF(U)$. Then, we have $U A \in Mic\text{-}PO(U)$. Then by (2), $Mic\text{-}Pfr(U A) \cap (U A) = \emptyset$. But, by (1), Mic-Pfr(U A) = Mic-Pfr(A). Hence $Mic\text{-}Pfr(A) \cap (U A) = \emptyset$. This shows that $Mic\text{-}Pfr(A) \subset A$. Conversely, if $Mic\text{-}Pfr(A) \subset A$, then $Mic\text{-}PA^* Mic\text{-}PA_* \subset A$, which implies $Mic\text{-}PA_* \cup (Mic\text{-}PA^* Mic\text{-}PA_*) \subset A \cup Mic\text{-}PA_* = A$, which implies $Mic\text{-}PA^* \subset A$ by Lemma 1(1). But $A \subset Mic\text{-}PA^*$. It follows that $A = Mic\text{-}PA^*$. Hence $A \in Mic\text{-}PF(U)$.

Remark 1. Let A and B be subsets of space U. Then $A \subset B$ does not imply that either Mic- $Pfr(A) \subset Mic-Pfr(B)$ or $Mic-Pfr(B) \subset Mic-Pfr(A)$. This can be verified by the following.

Example 2. Let $U = \{a,b,c,d\}$, $U/R = \{\{a,b\}, \{c,d\}\}\}$, $X = \{b,c\}$, $\tau_R(X) = \{U,\emptyset, \{b,c\}\}\}$, $\mu = b$ and $\mu_R(x) = \{U,\emptyset, \{b\}, \{b,c\}\}\}$. Mic-PO(U) = $\{U,\emptyset, \{b\}, \{a,b\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{b,c,d\}, \{a,b,d\}\}$. Then,

Case(1): Take $A = \{a\}$ and $B = \{a,c\}$. Then $A \subset B$. Also Mic-PA* = $\{a\}$, Mic-PA* = $\{\emptyset\}$ and Mic-Pfr(A) = $\{a\}$. Mic-PB* = $\{a,c\}$, Mic-PB* = $\{\emptyset\}$ and Mic-Pfr(B) = $\{a,c\}$. This shows that Mic-Pfr(A) \subset Mic-Pfr(B).

Case(2): Take $A = \{a\}$ and $B = \{a,c,d\}$. Also $Mic\text{-}PA^* = \{a\}$, $Mic\text{-}PA_* = \{\emptyset\}$ and $Mic\text{-}Pfr(A) = \{a\}$. Let $Mic\text{-}PB^* = \{c,d,a\}$, $Mic\text{-}PB_* = \{\emptyset\}$ and $Mic\text{-}Pfr(B) = \{a,c,d\}$. This shows that $Mic\text{-}Pfr(A) \subset Mic\text{-}Pfr(B)$, where $Mic\text{-}Pfr(B) \not\subset Mic\text{-}Pfr(A)$.

Theorem 3. If $A \in Mic\text{-}PO(U) \cup Mic\text{-}PF(U)$, then Mic-Pfr(A) = Mic-Pfr(Mic-Pfr(A)). **Proof:** It follows by Lemma 1(3), Lemma 2 and Theorem 2 (2, 3).

Corollary 1. For every $A \subset U$, Mic-Pfr(Mic-Pfr(Mic-Pfr(A))) = Mic-Pfr(Mic-Pfr(A)). **Proof:** It is obvious.

Lemma 3. A subset A of U is micro pre-closed iff A = Mic-Pcl(A).

Theorem 4. For a subset A of space U, the following statements hold

- (i) A is Mic-PO iff Mic-Pfr(A) = Mic-PD(A).
- (ii) $Mic-Pfr(Mic-Pfr(A)) \subseteq Mic-Pfr(A)$.
- (iii) $Mic-Pfr(Mic-Pcl(A)) \subseteq Mic-Pfr(A)$.
- (iv) Mic-Pint(A) = A Mic-Pfr(A)

Proof:

- (i) Let A be micro pre-open then Mic-Pint(A) = A. Since Mic-Pfr(A) = Mic-Pcl(A) Mic-Pint(A) = Mic-Pcl(A) A. By Lemma 4.9 [7] we have $Mic\text{-}Pcl(A) = A \cup Mic\text{-}PD(A)$. Therefore $Mic\text{-}Pfr(A) = [A \cup Mic\text{-}PD(A)] A = Mic\text{-}PD(A)$. Conversely, Let Mic-Pfr(A) = Mic-PD(A). i.e., $Mic\text{-}Pcl(A) Mic\text{-}Pint(A) = [A \cup Mic\text{-}PD(A)] Mic\text{-}Pint(A) = Mic\text{-}PD(A) \Rightarrow A Mic\text{-}Pint(A) = \emptyset$ implies $A \subset Mic\text{-}Pint(A) \longrightarrow (1)$ and $Mic\text{-}Pint(A) \subset A \longrightarrow (2)$. Therefore from (1) and (2) we have Mic-Pint(A) = A is micro pre-open.
- (ii) Now $Mic-Pfr(Mic-Pfr(A)) \subseteq Mic-Pcl(Mic-Pfr(A)) \cap Mic-Pcl(U Mic-Pfr(A)) \Rightarrow Mic-Pfr(Mic-Pfr(A)) \subseteq Mic-Pcl(Mic-Pfr(A)) \subseteq Mic-Pfr(A).$
- (iii) $Mic-Pfr(Mic-Pcl(A)) \subseteq Mic-Pcl(Mic-Pcl(A)) Mic-Pint(Mic-Pcl(A)) \subseteq Mic-Pcl(A) Mic-Pint(A) \subseteq Mic-Pfr(A)$
- (iv) It is obvious from the definition of micro pre-interior and micro pre-frontier.

3. micro pre-exterior

In this section, we define and study the notions of micro pre-exterior and obtain its basic properties.

Definition 14. A point $x \in U$ is called micro pre-exterior point of a subset A of U if x is micro pre-interior point of (U - A) and set of all micro pre-exterior points of A is called micro pre-exterior of A and denoted by Mic-Pext(A). Therefore Mic-Pext(A) = Mic-Pint(U - A).

Theorem 5. For a subset A of a space U the following statements hold

- (i) $Mic\text{-}ext(A) \subseteq Mic\text{-}Pext(A)$.
- (ii) $Mic\text{-}Pext(A) \subset Mic\text{-}PO(U)$.
- (iii) Mic-Pext(A) = U-Mic-Pcl(A).
- (iv) Mic-Pext(Mic-Pext(A)) = Mic-Pint(Mic-Pcl(A)).
- (v) If $A \subset B$ then $Mic\text{-}Pext(B) \subseteq Mic\text{-}Pext(A)$.
- (vi) $Mic\text{-}Pext(A \cup B) \subseteq Mic\text{-}Pext(A) \cup Mic\text{-}Pext(B)$.
- (vii) $Mic-Pext(A) \cap Mic-Pext(B) \subseteq Mic-Pext(A \cap B)$.
- (viii) $Mic\text{-}Pext(U) = \emptyset$ and $Mic\text{-}Pext(\emptyset) = U$.
 - (ix) Mic-Pext(A) = Mic-pext(U Mic-Pext(A)).
 - (x) $Mic-Pint(A) \subseteq Mic-Pext[Mic-Pext(A)].$
 - (xi) Mic-Pint(A), Mic-Pext(A) and Mic-Pfr(A) are mutually disjoint and $U = Mic\text{-}Pint(A) \cup Mic\text{-}Pext(A) \cup Mic\text{-}Pfr(A)$.
- (xii) $A \cap Mic\text{-}Pext(A) = \emptyset$.

Proof:

- (i) Let $x \in Mic\text{-}ext(A) \Rightarrow x \in Mic\text{-}int(U-A)$. There exists $G \in \mu_R(x)$ such that $x \in G \subseteq (U-A)$. Also $G \in Mic\text{-}PO(U, X)$. Therefore $x \in G \subseteq (U-A)$ for Mic-PO set $G \Rightarrow (U-A)$ is Mic-Pint of x, $x \in Mic\text{-}Pint(U-A)i.e.$, $x \in Mic\text{-}Pext(A)$. Hence $Mic\text{-}ext(A) \subseteq Mic\text{-}Pext(A)$.
- (ii) Now $Mic-Pint[Mic-Pext(A)] = Mic-Pint[Mic-Pint(U A)] = Mic-Pint(U A) = Mic-Pext(A) \Rightarrow is contained in <math>Mic-PO(U)$.
- (iii) Mic-Pext(A) = Mic-Pint(U-A) = U-Mic-Pcl(A).
- (iv) Mic-Pext[Mic-Pext(A)] = Mic-Pext[U-Mic-cl(A)] by (3), Mic-Pext[U-Mic-cl(A)] = Mic-Pint[U-[U-Mic-Pcl(A)]] = Mic-Pint[Mic-Pcl(A)].
- (v) If $A \subset B$ then $(U B) \subset (U A) \Rightarrow Mic-Pint(U B) \subseteq Mic-Pint(U A)$ i.e., $Mic-Pext(B) \subseteq Mic-Pext(A)$.
- (vi) Since $A \subset (A \cup B)$ and $B \subset (A \cup B) \Rightarrow Mic-Pext(A \cup B) \subseteq Mic-Pext(A) \cup Mic-Pext(A \cup B) \subseteq Mic-Pext(B)$. Therefore $Mic-Pext(A \cup B) \subseteq Mic-Pext(A) \cup Mic-Pext(B)$.

- (vii) We have $(A \cap B) \subset A$, $(A \cap B) \subset B$. $\Rightarrow Mic\text{-}Pext(A) \subseteq Mic\text{-}Pext(A \cap B)$ and $Mic\text{-}Pext(B) \subseteq Mic\text{-}Pext(A \cap B) \Rightarrow Mic\text{-}Pext(A) \cap Mic\text{-}Pext(B) \subseteq Mic\text{-}Pext(A \cap B)$.
- (viii) $Mic-Pext(U) = Mic-Pint(U-U) = Mic-Pint(\emptyset) = \emptyset$ and $Mic-Pext(\emptyset) = Mic-Pint(U-\emptyset) = Mic-Pint(U) = U$.
 - (ix) Mic-Pext[U Mic-Pext(A)] = Mic-Pint[U (U Mic-Pint(A))] = Mic-Pint(Mic-Pext(A)) = Mic-Pint[Mic-Pint(U A)] = Mic-Pint(U A) = Mic-Pext(A).
 - (x) By the definition $Mic\text{-}Pext(A) \subset (U-A)$ then from (5) $Mic\text{-}Pext(U-A) \subset Mic\text{-}Pext/Mic\text{-}Pext(A)$] i.e., $Mic\text{-}Pint(A) \subset Mic\text{-}Pext/Mic\text{-}Pext(A)$].
 - (xi) Let us assume that $Mic\text{-}Pext(A) \cap Mic\text{-}Pint(A) \neq \emptyset$ therefore there exists $x \in Mic\text{-}Pext(A) \cap Mic\text{-}Pint(A) \Rightarrow x \in Mic\text{-}Pext(A)$ and $x \in Mic\text{-}Pint(A) \Rightarrow x \in (U-A)$ and $x \in A$ which is not possible. Therefore our assumption is wrong. Hence $Mic\text{-}Pext(A) \cap Mic\text{-}Pint(A) = \emptyset$ similarly other two results. We have $Mic\text{-}Pext(A) = U-Mic\text{-}Ci(A) = U-[Mic\text{-}Pint(A) \cup Mic\text{-}Pfr(A)]$ that implies $U=Mic\text{-}Pint(A) \cup Mic\text{-}Pext(A) \cup Mic\text{-}Pfr(A)$.
- (xii) Obvious. In general, the converse of (6) and (7) are not true i.e., $Mic\text{-}Pext(A) \cup Mic\text{-}Pext(B)$ $\not\subset Mic\text{-}Pext(A \cup B)$ and $Mic\text{-}Pext(A \cap B) \not\subset Mic\text{-}Pext(A) \cap Mic\text{-}Pext(B)$.

Example 3. Let $U = \{a, b, c, d\}$, $U \setminus R = \{\{a, b\}, \{c, d\}\}\}$, $X = \{b, c\}$, $\tau_R(X) = \{U, \emptyset, \{b, c\}\}\}$, $\mu = \{b, d\}$ and $\mu_R(X) = \{U, \emptyset, \{b\}, \{b, c\}, \{b, d\}, \{b, c, d\}\}$. Mic-PO(U) = $\{U, \emptyset, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, \{a, b, d\}\}$. Let $A = \{c, d, a\}$ and $B = \{c, d\}$. Then Mic-Pext(A) = $\{b\}$ and Mic-Pext(B) = $\{a, b\}$. Mic-Pext(A \cup B) = $\{b\}$.

 \Rightarrow $Mic\text{-}Pext(A) \cup Mic\text{-}Pext(B) \not\subset Mic\text{-}Pext(A \cup B)$ and $Mic\text{-}Pext(A \cap B) = \{a,b\}$ which implies $Mic\text{-}Pext(A \cap B) \not\subset Mic\text{-}Pext(A) \cap Mic\text{-}Pext(B)$.

Theorem 6. $Mic\text{-}Pfr(A) \cap Mic\text{-}Pext(A) = \emptyset$.

Proof: Let $x \in Mic\text{-}Pfr(A)$ i.e., $x \in (Mic\text{-}Pcl(A) - Mic\text{-}Pint(A))$. If $x \in Mic\text{-}Pcl(A)$ then $x \notin Mic\text{-}Pint(A)$. We know that $Mic\text{-}Pcl(A) \cap Mic\text{-}Pint(U-A)$ $= \emptyset$. Therefore $x \notin Mic\text{-}Pint(U-A)$ implies $x \notin Mic\text{-}Pext(A)$. Hence $Mic\text{-}Pfr(A) \cap$

 $Mic\text{-}Pext(A) = \emptyset.$

4. micro pre-border

In this section, we define and study the notions of micro pre-border and obtain its basic properties.

Definition 15. Let A be a subset of a space U. Then the micro pre-border of A is defined as Mic-Pbr(A) = A - Mic-Pint(A).

Theorem 7. For a subset of U, the following statements holds.

- (i) $Mic-Pbr(A) \subseteq Mic-br(A)$ where br(A) denote the border of A.
- (ii) $A = Mic-Pint(A) \cup Mic-Pbr(A)$.
- (iii) $Mic\text{-}Pint(A) \cap Mic\text{-}Pbr(A) = \emptyset$.
- (iv) If A is Mic-PO then Mic-Pbr(A) = \emptyset .
- (v) $Mic\text{-}Pint(Mic\text{-}Pbr(A)) = \emptyset$.
- (vi) Mic-Pbr(Mic-Pbr(A)) = Mic-Pbr(A).
- (vii) $Mic-Pbr(A) = A \cap Mic-Pcl(U-A)$.

Proof:

- (i) Obvious from the definitions of micro pre-border and micro border of A.
- (ii) Obvious from the definitions of micro pre-border of A.
- (iii) Obvious from the definitions of micro pre-border of A.
- (iv) If A is Mic-PO, then A = Mic-Pint(A). Hence the result follows.
- (v) If $x \in Mic-Pint(Mic-Pbr(A))$, then $x \in Mic-Pbr(A)$. Now, $Mic-Pbr(A) \subset A$ implies $Mic-Pint(Mic-Pbr(A)) \subset Mic-Pint(A)$. Hence $x \in Mic-Pint(A)$ which is a contradiction to $x \in Mic-Pbr(A)$. Thus $Mic-Pint(Mic-Pbr(A)) = \emptyset$.
- (vi) Mic-Pbr(Mic-Pbr(A)) = Mic-Pbr(A Mic-Pint(A)) = (A Mic-Pint(A))-Mic-Pint(A Mic-Pint(A)) which is $Mic-Pbr(A) \emptyset$, by (4). Hence, Mic-Pbr(Mic-Pbr(A)) = Mic-Pbr(A).
- $(vii) \ \mathit{Mic-Pbr}(A) = A \mathit{Mic-Pint}(A) = A (U (\mathit{Mic-Pcl}(U A))) = A \cap \mathit{Mic-Pcl}(U A).$

Theorem 8. For a subset of U, the following condition hold.

- (i) $Mic-Pbr(A) \subseteq Mic-Pfr(A)$.
- (ii) $Mic\text{-}Pext(A) \cap Mic\text{-}Pbr(A) = \emptyset$.

Proof:

- (i) Let, x ∈ Mic-Pbr(A) i.e., x ∈ A Mic-Pint(A).
 By Theorem 3.16 [7] A = Mic-pint(A) if A is Mic-PO. If A is not Mic-PO then Mic-Pint(A) ⊂ A. Therefore in general Mic-Pint(A) ⊆ A. So x ∈ Mic-Pint(A). It is obvious that if x ∈ Mic-Pint(A) then x ∉ Mic-Pcl(A). Therefore x ∈ (Mic-Pcl(A) Mic-Pint(A)) implies x ∈ Mic-Pfr(A). Hence Mic-Pbr(A) ⊆ Mic-Pfr(A).
- (ii) Let $x \in Mic\text{-}Pext(A)$ i.e., $x \in Mic\text{-}Pint(U-A)$ where $x \in Mic\text{-}Pint(A)$. By Theorem 3.16 [7] A = Mic-pint(A) if A is Mic-PO. If A is not Mic-PO then $Mic\text{-}Pint(A) \subset A$. Therefore in general $Mic\text{-}Pint(A) \subseteq A$. Therefore $x \notin A Mic\text{-}Pint(A)$ implies $x \notin Mic\text{-}Pbr(A)$. Hence $Mic\text{-}Pext(A) \cap Mic\text{-}Pbr(A) = \emptyset$.

5. micro pre-kernel

In this section, we define and study the notions of micro pre-kernel and obtain its basic properties.

Definition 16. For any $A \subset U$, Mic-Pker(A) is defined as the intersection of all micro pre-open sets containing A. In notation, $Mic\text{-}Pker(A) = \bigcap \{M/A \subset M, M \in Mic\text{-}PO\}$.

Lemma 4. For subsets A, B and $A_i (i \in I, where I is an index set) of a micro topological space <math>(U, \mu_R(x))$, the following holds.

- (i) $A \subseteq Mic\text{-}Pker(A)$.
- (ii) If $A \subset B$, then $Mic\text{-}Pker(A) \subset Mic\text{-}Pker(B)$.
- (iii) Mic-Pker(Mic-Pker(A)) = Mic-Pker(A).
- (iv) $Mic\text{-}Pker(\bigcup A_i/i \in I) \subseteq \bigcup \{Mic\text{-}Pker(A_i)/i \in I\}.$
- (v) $Mic\text{-}Pker(\bigcap A_i / i \in I) \subseteq \bigcap \{Mic\text{-}Pker(A_i) / i \in I\}.$

Proof:

- (i) It follows by the definition of Mic-Pker(A).
- (ii) Suppose $x \notin Mic\text{-}Pker(B)$, then there exists a subset $S \in Mic\text{-}PO$ such that $B \subset S$ with $x \notin S$. Since $A \subset B$, $x \notin Mic\text{-}Pker(A)$. Thus $Mic\text{-}Pker(A) \subset Mic\text{-}Pker(B)$.
- (iii) Follows from (1) and definition of Mic-Pker(A).
- (iv) For each $i \in I$, $Mic\text{-}Pker(A_i) \subseteq Mic\text{-}Pker(\bigcup_{i \in I} A_i)$. Therefore we have $\bigcup_{i \in I} \{Mic\text{-}Pker(A_i)\} \subseteq Mic\text{-}Pker(\bigcup_{i \in I} A_i)$.
- (v) Suppose that $x \notin \bigcap \{Mic\text{-}Pker(A_i/i \in I)\}\$ then there exists an $i_0 \in I$, such that $x \notin Mic\text{-}Pker(A_{i_0})$ and there exists a micro pre-open set S such that $x \notin S$ and $A_{i_0} \subset S$. We have $\bigcap_{i \in I} A_i \subseteq A_{i_0} \subseteq S$ and $x \notin S$. Therefore $x \notin Mic\text{-}Pker(\bigcap A_i/i \in I)$. Hence $Mic\text{-}Pker(\bigcap A_i/i \in I) \subseteq \bigcap Mic\text{-}Pker(A_i/i \in I)$.

Theorem 9. Let A and B be subsets of U, then the following conditions hold.

- (i) $Mic-Pker(A) \subseteq Mic-ker(A)$.
- (ii) $Mic\text{-}Pker(A) \cap Mic\text{-}Pker(B) \subset Mic\text{-}Pker(A \cup B)$.
- (iii) $Mic\text{-}Pker(A \cap B) \subset Mic\text{-}Pker(A) \cup Mic\text{-}Pker(B)$.
- (iv) $Mic-Pcl(A) \cap Mic-Pker(A) = A$.
- (v) $Mic-Pker(A) \cap Mic-Pfr(A) = Mic-Pbr(A)$.

proof:

REFERENCES 3165

```
(i) Let x \in Mic\text{-}Pker(A).

\Rightarrow x \in \bigcap \{M/A \subset M, M \in Mic\text{-}PO\}

\Rightarrow x \in \bigcap \{M/A \subset M, M \in micro\text{-}Open(\mu_R(x))\}

Since every micro open is micro pre-open,

x \in Mic\text{-}ker(A).
```

- (ii) Let $x \in \{Mic\text{-}Pker(A) \cap Mic\text{-}Pker(B)\}\$ $\Rightarrow x \in Mic\text{-}Pker(A) \text{ and } x \in Mic\text{-}Pker(B)\$ Therefore, $x \in Mic\text{-}Pker(A \cup B)$.
- (iii) Let $x \in Mic\text{-}Pker(A \cap B)$ $\Rightarrow x \in Mic\text{-}Pker(A) \text{ and } x \in Mic\text{-}Pker(B)$ Therefore, $x \in Mic\text{-}Pker(A) \cup Mic\text{-}Pker(B)$.
- (iv) Let $x \in Mic\text{-}Pcl(A) \cap Mic\text{-}Pker(A)$ By Lemma 3.7(1) [7] $A \subseteq Mic\text{-}Pcl(A)$ and by (1) $A \subseteq Mic\text{-}Pker(A)$. $\Rightarrow x \in A \subseteq Mic\text{-}Pcl(A)$ and $x \in A \subseteq Mic\text{-}Pker(A)$. Therefore, $x \in A$.
- (v) Let $x \in Mic\text{-}Pker(A) \cap Mic\text{-}Pfr(A)$. To prove, $x \in Mic\text{-}Pbr(A)$ i.e, $x \in A-Mic\text{-}Pint(A)$. Since $Mic\text{-}Pker(A) = \bigcap\{M/A \subset M, M \in Mic\text{-}PO\}$ and Mic-Pfr(A) = Mic-Pcl(A)-Mic-Pint(A). $\Rightarrow x \in \bigcap\{M/A \subset M, M \in Mic\text{-}PO\} \cap Mic\text{-}Pcl(A)-Mic\text{-}Pint(A)$. By Lemma 3.7(1) [7] and Lemma 4(1), we have $\Rightarrow x \in A \cap (A-Mic\text{-}Pint(A))$ $\Rightarrow x \in A \text{ and } x \in A-Mic\text{-}Pint(A)$ $\Rightarrow x \in A \text{ and } x \in Mic\text{-}Pbr(A)$ Therefore, $x \in Mic\text{-}Pbr(A)$.

6. Conclusion

In this paper, we introduced the notions of micro pre-frontier, micro pre-exterior, micro pre-border and micro pre-kernel by employing the concept of frontier, exterior, border and kernel elucidating various associated properties. Our intent is to further elaborate on these findings in forthcoming research endeavors, with a particular focus on exploring practical applications.

References

- [1] Lellis Thivagar. M and Carmel Richard. On nano forms of weakly open sets. *International Journal of Mathematics and Statistics Invention*, 1(1):31–37, 2013.
- [2] James R. Munkres. Topology. Pearson Education, India, 2018.
- [3] Levine. N. Generalized closed sets in topology. Rendiconti del Circolo Matematico di Parlermo, 19(2):89–96, 1970.

REFERENCES 3166

[4] Chandrasekar. S. On Micro Topological Spaces. *Journal of New Theory*, 26:23–31, 2019.

- [5] Chandrasekar. S and Swathi. S. Micro α -open sets in micro topological spaces. *International Journal of Research in Advent Technology*, 6(10):2633–2637, 2018.
- [6] Dhanasekaran P. K. Sathishmohan. P, Rajendran. V and Vignesh Kumar. C. More on nano preneighbourhoods in nano topological spaces. *Journal of Applied Science and Computations.*, 10(5):899–907, 2018.
- [7] Stanley Roshan. S Sathishmohan. P and Rajalakshmi. K. On micro pre neighborhoods in micro topological space. *Indian Journal of Science and Technology*, 17(22):2346–2351, 2024.
- [8] Antony Rex Rodgio. Jessie Theodore and Hanaselvi. Notions via β^* -open sets in topological spaces. *IOSR Journal of Mathematics*, 6(3):25–29, 2013.
- [9] Ibrahim H. Z. Micro β -open sets in micro topology. General Letters in Mathematics, $8(1):8-15,\ 2020.$